Spectral-finite element method for compressible fluid flows
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) no. 4, p. 469-491
@article{M2AN_1992__26_4_469_0,
     author = {Guo, B.-Y. and Cao, W.-M.},
     title = {Spectral-finite element method for compressible fluid flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {26},
     number = {4},
     year = {1992},
     pages = {469-491},
     zbl = {0747.76064},
     mrnumber = {1163977},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1992__26_4_469_0}
}
Guo, B.-Y.; Cao, W.-M. Spectral-finite element method for compressible fluid flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) no. 4, pp. 469-491. http://www.numdam.org/item/M2AN_1992__26_4_469_0/

[1] P. J Roache, Computational Fluid Dynamics, 2nd edition, Hermosa Publishers, Albuquerque, 1976. | MR 411358

[2] T. Atusi, The existence and uniqueness of the solution of equations describing compressible viscous fluid flow in a domain, Proc. Japan Acad., 52 (1976), 334-337. | MR 421321 | Zbl 0364.35039

[3] B.-Y. Guo, Difference Methods for Partial Differential Equation, Science Press, Beijing, 1988.

[4] P.-Y Kuo, Résolution numérique de fluide compressible, C.R. Acad. Sci. Paris, 291A (1980), 167-171. | MR 605008 | Zbl 0446.76062

[5] B.-Y. Guo, Strict error estimation of numerical solution of compressible flow in two-dimensional space, Sciential Sinica, 26A (1983), 482-498. | MR 724921 | Zbl 0517.76075

[6] T. J. Chung, Finite Element Analysis in Fluid Dynamics, McGraw-Hill International Book Company, 1978. | MR 497683 | Zbl 0432.76003

[7] B.-Y. Guo, H.-P. Ma, Strict error estimation for a spectral method of compressible fluid flow, CalColo, 24 (1987), 263-282. | MR 1004522 | Zbl 0668.76072

[8] C. Canuto Y. Maday, A. Quarteroni, Analysis of the combined finite element and Fourier interpolation, Numer. Math., 39 (1982), 205-220. | MR 669316 | Zbl 0496.42002

[9] C. Canuto, Y. Maday, A. Quarteroni, Combined finite element and spectral approximation of the Navier-Stokes equations, Numer. Math., 44 (1984), 201-217. | MR 753953 | Zbl 0614.76021

[10] B.-Y. Guo, Spectral-difference method for solving two-dimensional vorticity equations, J. Comput. Math., 6 (1988), 238-257. | MR 967884 | Zbl 0668.76022

[11] B.-Y. Guo, W.-M. Cao, Spectral-finite element method for solving two dimensional vorticity equations, Acta Math, Appl. Sinica, 7 (1991), 257-271. | MR 1132064 | Zbl 0734.76052

[12] W.-M Cao, B.-Y. Guo, Spectral-finite element method for solving three- dimensioanl vorticity equations, Bulletin, 32 (1991), 83-108. | MR 1166470 | Zbl 0797.76041

[13] B.-Y. Guo, W.-M. Cao, Spectral-finite element method for solving two-dimensional Navier-Stokes equations, accepted by J. Comp. Phys. | Zbl 0900.76443

[14] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. | MR 450957 | Zbl 0314.46030

[15] P. Grisvard, Equations différentielles abstraites, Ann. Sci. École Norm. Sup., 4 (1969), 311-395. | Numdam | MR 270209 | Zbl 0193.43502

[16] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. | MR 520174 | Zbl 0383.65058

[17] A. Schatz, V. Thomée, L. B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations, Commun. Pure Appl. Math., 33 (1980), 265-304. | MR 562737 | Zbl 0414.65066