@article{M2AN_1992__26_7_913_0, author = {Milner, F. A. and Suri, M.}, title = {Mixed finite element methods for quasilinear second order elliptic problems : the $p$-version}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {913--931}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {7}, year = {1992}, mrnumber = {1199319}, zbl = {0783.65076}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1992__26_7_913_0/} }
TY - JOUR AU - Milner, F. A. AU - Suri, M. TI - Mixed finite element methods for quasilinear second order elliptic problems : the $p$-version JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1992 SP - 913 EP - 931 VL - 26 IS - 7 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1992__26_7_913_0/ LA - en ID - M2AN_1992__26_7_913_0 ER -
%0 Journal Article %A Milner, F. A. %A Suri, M. %T Mixed finite element methods for quasilinear second order elliptic problems : the $p$-version %J ESAIM: Modélisation mathématique et analyse numérique %D 1992 %P 913-931 %V 26 %N 7 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1992__26_7_913_0/ %G en %F M2AN_1992__26_7_913_0
Milner, F. A.; Suri, M. Mixed finite element methods for quasilinear second order elliptic problems : the $p$-version. ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 7, pp. 913-931. http://archive.numdam.org/item/M2AN_1992__26_7_913_0/
[1] The p-version of the finite element method, SIAM Num. Anal., 18 (1981), pp. 515-545. | MR | Zbl
, and ,[2] Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44 (1985), pp. 39-52. | MR | Zbl
and ,[3] Mixed finite element methods for quasilinear second order elliptic problems, Math. Comp., 44 (1985), pp. 303-320. | MR | Zbl
,[4] Some results of Bernstein and Jackson type for polynomial approximation in Lp spaces, Jap. J. Appl. Math., 1 (1984), pp. 173-181. | MR | Zbl
,[5] A mixed finite element method for 2nd order elliptic problems, Proceed. Conf. on Mathematical aspects of finite elements methods, Lecture notes in mathematics, vol. 606, Springer-Verlag, Berlin, 1977, pp. 292-315. | MR | Zbl
and ,[6] On the stability and convergence of higher order mixed finite element methods for second order elliptic problems, Math. Comp., 54 (1990), pp. 1-19. | MR | Zbl
,[7] Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978. | MR | Zbl
,