@article{M2AN_1993__27_2_223_0, author = {Abergel, Frederic and Casas, Eduardo}, title = {Some optimal control problems of multistate equations appearing in fluid mechanics}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {223--247}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {27}, number = {2}, year = {1993}, mrnumber = {1211617}, zbl = {0769.49002}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1993__27_2_223_0/} }
TY - JOUR AU - Abergel, Frederic AU - Casas, Eduardo TI - Some optimal control problems of multistate equations appearing in fluid mechanics JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1993 SP - 223 EP - 247 VL - 27 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1993__27_2_223_0/ LA - en ID - M2AN_1993__27_2_223_0 ER -
%0 Journal Article %A Abergel, Frederic %A Casas, Eduardo %T Some optimal control problems of multistate equations appearing in fluid mechanics %J ESAIM: Modélisation mathématique et analyse numérique %D 1993 %P 223-247 %V 27 %N 2 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1993__27_2_223_0/ %G en %F M2AN_1993__27_2_223_0
Abergel, Frederic; Casas, Eduardo. Some optimal control problems of multistate equations appearing in fluid mechanics. ESAIM: Modélisation mathématique et analyse numérique, Tome 27 (1993) no. 2, pp. 223-247. http://archive.numdam.org/item/M2AN_1993__27_2_223_0/
[1] On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics, 1, 303-325. | Zbl
and , 1990,[2] Optimal control of turbulent flows, in Optimal control of viscous flows, S. S. Sritharan ed., Frontiers in Applied Mathematics Series, SIAM, Philadelphia. | MR
and , 1992,[3] A Green's formula for quasilinear elliptic operators, J. of Math. Anal. & Appl., 142, 62-72. | MR | Zbl
and , 1989,[4] Methods of feedback controlfor distributed Systems and applications to Burgers equations.
, , , , à paraître,[5] Equations de Navier-Stokes couplées à des équations de la chaleur : résolution par une méthode de point fixe endimension infinie, Ann. Sc. Math. Québec, 13, 1-17. | MR | Zbl
and , 1989,[6] Analysis and finite element approximations of optimal control problems for the stationary Navier-Stokes equations with Dirichlet conditions, M2AN, 25, 711-748. | EuDML | Numdam | MR | Zbl
, and , 1991,[7] Boundary velocity controlof incompressible flow with an application to viscous drag reduction, SIAM J. on Control & Optimization. | Zbl
, and , 1991,[8] Extremal Problems, North-Holland, Amsterdam.
and , 1979,[9] Contrôle de Systèmes Gouvernés pat des Equations aux Dérivées Partielles, Dunod, Paris. | Zbl
, 1968,[10] Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris. | Zbl
, 1969,[11] Les Méthodes Directes en Théorie des Equations Elliptiques, Editeurs Academia, Prague. | MR
, 1967,[12] Existence and nonuniqueness of rectangular solutions of the Benard problem, Arch Rational Mech. Anal., 29, 32-57. | MR | Zbl
, 1968,[13] Navier-Stokes Equations, North-Holland, Amsterdam. | MR | Zbl
, 1979,