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MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
MODELISATION MATHEMATIQUE ET ANALYSE

(Vol. 27, n° 3, 1993, p. 289 a 311)

B-RATIONAL CURVES AND REPARAMETRIZATION :
THE QUADRATIC CASE

by J.-C. Fiorot ("), P. JEANNIN (1) and S. TaLEB (')

Communicated by P. J. LAURENT

Abstract. — The notion of massic vector, previously introduced, allows us to represent any
rational curve as a B-rational (BR) curve, such a BR-curve being completely determined by its
massic polygon. For computational and stability purposes we are led to determine the massic
polygon resulting from a one-to-one quadratic change of parameter which allows a description
of the whole support with a parameter belonging to [0, 1[.

Keywords : Rational curves, BR-curves, quadratic change of parameter, homogeneous
coordinates, massic polygons, p-reciprocity, Bézier curves.

Résumé. — La notion de vecteur massique, récemment introduite, nous permet de représen-
ter toute courbe rationnelle comme une courbe B-rationnelle (BR), une telle courbe (BR) étant
complétement déterminée par son polygone massique. Dans I’ objectif de calculer une courbe
rationnelle de maniére stable nous sommes amenés a déterminer le polygone massique résultant
d’un changement quadratique biunivoque du paramétre. Ce nouveau polygone massique permet
alors une description de tout le support avec un paramétre parcourant [0, 1[.

1. INTRODUCTION

In [5, 6, 7] a general framework is given to represent any rational curve by
a massic polygon. Such a representation is called a B-rational (BR) curve, it
includes the Bézier (BP) curves [1, 2], i.e., polynomial curves defined over a
bounded interval and the rational Bézier curves [4, 3]. BR-curves were
introduced and analysed to enable rational curves to be exploited in computer

(*) Manuscript received March 1992.

(*) Manuscrit regu le 30 mars 1992.

(") Université de Valenciennes et du Hainaut-Cambrésis, ENSIMEV, Laboratoire MMI,
B.P. 311, F-59304 Valenciennes Cedex.

(1) Université des Sciences et Technologies de Lille, UFR de Calais, Laboratoire ANO,
Bat. M, F-59655 Villeneuve d’Ascq Cedex.

(") Université de Valenciennes et du Hainaut-Cambrésis, IUT Département Génie Méca-
nique Productique, Laboratoire MMI, 59326 Valenciennes Cedex.

M2 AN Modélisation mathématique et Analyse numérique 0764-583X/93/03/289/23/$ 4.30
Mathematical Modelling and Numerical Analysis © AFCET Gauthier-Villars



290 J.-C. FIOROT, P. JEANNIN, S. TALEB

science, CAGD and CAM. Example 1 following proposition 1 illustrates the
process in order to obtain a massic polygon of a BR-curve.

The problem of change of parameter crops up in the study of parametrized
curves in order to give equivalent representation of their supports, and more
significantly for computational and stability purposes. In [8] we studied the
homographic (and affine) change of parameter, for BR-curves. This paper is
devoted to the quadratic case. Usually a rational curve is parametrized over

R. We want to parametrize the support of such a curve over a finite interval
which will be [0, 1[. The simplest function allowing us to make this change
is a special quadratic function introduced in [6, section 2.3] which provides a
one-to-one correspondence between R and [0, 1[. Hence the support of a

BR-curve of length~n with parameter € R is identical to that of a BR-curve
of length 2 n with parameter «# € [0, 1[. In {6, section 2.3] such a representa-
tion is given for the circle, the folium of Descartes, the skew cubic and the
window of Viviani. In this paper we propose a systematic study of the
problem.

We are led to treat this problem for computational and stability purposes.
For instance the question of overflow arises when calculating points of a
rational curve which are at finite distance, image of parameter values
belonging to a neighbourhood of infinity. The proposed quadratic change of
parameter bringing back the parameter in [0, 1[ provides an answer to this
question. Moreover with a parameter belonging to [0, 1[ we can calculate
the curve by extensions of the De Casteljau’s algorithm, called ALBR1 and
ALBR?2 [6, sections 3.3 and 3.4], by handling affine combinations that are
convex, which would not be the case with a curve defined over

R. This property offers a guarantee of stability.

The paper is organized as follows. In the first section we recall the general
framework and some results concerning the BR-curves. This material comes
from [6]. In the second section we make, for a BR-curve of length
n, a one-to-one quadratic change of parameter. The new parameter belongs
to [0, 1[. The curve obtained is again a rational curve, of length
2 n. The new massic vectors are determined as linear combinations of the
previous ones. The new massic polygon presents a kind of symmetry called
p-reciprocity. These (2 n + 1) massic vectors are completely determined by
the first (n + 1). The third section gives an algorithm to calculate the
triangular matrix defining the new massic vectors from the old ones. In the
fourth section we apply this process to the polynomial curves. Three
examples show the simplicity of it. Another development of this work is
done in [9, 10]. This paper is written so as to be self-contained.

2. GENERAL FRAMEWORK. BR-FORM OF A RATIONAL CURVE.
According to [5, 6, 7] we recall some basic definitions and results
concerning the representation of rational curves by BR-curves.
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B-RATIONAL CURVES AND REPARAMETRIZATION 291

Let us define & (resp. &) a real affine space, & (resp. ZF ) its associated
linear vector space such that & (resp. &) is an hyperplane of % (resp.

F ) and & the projective completion of &; In general, & is a 2 or 3-
dimensional affine space.

Let 2 be a point of & not belonging to &.
We define the linear vector space £ = (€ xR*)U é; called the massic

vector space [6]: 0 € & is called a massic vector, it is either a weighted
point or a pure vector.

The isomorphism £ : & - & defined by (P, a) = a 2P, 2 (i) =i
induces an addition operator and an external multiplication in é, respectively
denoted by @ and *, such that & is a linear space and £ is an isomorphism.

Forany 6 and ' e & and A eR: 6 ® 0’ = Q- (2(8) + 2(8")) and
A %8 =0"'.£0(6)). Proposition 1.2.1.6 in [6] gives the rules of use of

@ and * operators. We consider the linear form y : & >R s x(Pa)=
a, y()=0; x(0) is called the mass of 6.

Let 110: F — {2} > & be the conic projection of apex 2 and
. & - {6} — & be the natural projection: (P ;a)= P, II(i)=

(#),,. They are linked by the relation IT = II2 o 0 [6, proposition 1.2.2.3].
We have: VA £ 0, II(A0) = II(0).

DEFINITION 1 OF A B-RATIONAL CURVE : Let 0, 64, ..., 0, be (n+ 1)
massic vectors not simultaneously null; a B-rational (BR)-curve of

é;, of controlling massic polygon 0 = (8, 04, ..., 8,), denoted by
BR[6,, 84, ..., 8,] or BR[0], is described by the point :

BR[6g, 6, ..., 6,1 (t) = IIBP [0, 64, ..., 0,1 (1));

BP[6y, 6., ..., 0,1 = 3 BI(t)* 8, is the Bézier curve in &, n is called the

=0
length of the (BR)-curve ; B}(t) = (7) A -ty ~'¢,i=0,1, ..., nare the

Bernstein basis polynomials relatively to {0, 1].

EQUIVALENT DEFINITION 2 : Considering R; € & defined by QR =
!}(Bi) we have :

BR[6, 6, ..., 0,] (t) = I2 (BP [Ry, Ry, ..., R,] (2)).

vol. 27, n° 3, 1993



292 J.-C. FIOROT, P. JEANNIN, S. TALEB

EXPLICIT FORM : Define I = {i:0,€ & xR* 0,=(P,;B,)} and
I= {i:O,eé_”', 0[=(71}. We have 1 U = {0, 1, ...,n}, INT =& .
From Definition 1 above and preliminary results [[6] proposition 1.3] we
obtain the explicit form of a (BR) curve :

Y 8. B)P, LB®OT,

rel rel

BR[6]1(t) = T B 17 (1
if B()#0 andwhere B(t)= Z B, BX(®).
by
BR[61(t) = (ZIB.B:*mF, + z_B:'(t)fa)w @)
if Bt)=0and V(t)=Y B,BI(t)P, + ¥ BI() U, # 0
rel teT
BR[6](t,) = lim BR[61(t)if B(t;) =0and V () = 0. (3)

totg

Remark 1 :

(i) When I = &, the BR-curve is reduced to a rational Bézier curve [4,
3].

(ii) When7 =@ and 6, = (P,;c), i =0, 1, ..., n, ¢ being a constant,
then B (¢) = ¢ and the BR-curve is reduced to a polynomial Bézier (BP) curve
1, 2].

THEOREM 1 [6, proposition 2.2.2.2] : Any rational (or unicursal) curve is
a BR-curve and conversely.

3. QUADRATIC CHANGE OF PARAMETER FOR A BR-CURVE. BASIC RESULTS

Let BR[w] be a BR-curve of length n with massic polygon
w = (wy, Wy, ..., w,).

We consider the quadratic change of parameter introduced in [6, section
23):t =D ()

aB3(u) + BB3(u) + yB3(u)
Bi(u)

¢ (u) = 3’
a, B, y being three arbitrary constants with ay < 0.
This last condition ensures that whatever 8, @ is a one-to-one correspon-

dence between [0, 1[ and R (@ is increasing if @ <0, decreasing if
a > 0). We notice that @ (0) = @ (1) = co. Then the curve described by

M? AN Modéhisation mathématique et Analyse numénque
Mathematical Modelling and Numernical Analysis



B-RATIONAL CURVES AND REPARAMETRIZATION 293

BR{w](t) with t € R is identical to that described by BR[w ](® (1)) with
ue [0, 1[. We will see that BR[w](® (u)) is a BR-curve of length
2n:

BR[w1(@ (u)) =BR[6y, 64, ..., 0,,1(u).
The aim of this paper is to calculate the new massic polygon 6 as a

function of w. Let us recall that if 8 describes a BR-curve and A € R*, then
A0 = (A0, AB,, ..., AB,,) describes the same curve.

LEMMA 1 : Let F (T, T,) be a homogeneous polynomial (vector-valued or
not) of degree n in Ty, T, and let P (U,, U,), P,(U,, U,) be two homoge-
neous polynomials of degree 2 in U,, U, such that

Pi(yU,, aU,) = ayP (U, Uy)
Py(yUy, alUy) = ayP (U, Uy).

Then G(U,, Uy) = F (P (U, Uy ), P,(U,, U,))is a homogeneous polyno-
mial of degree 2 n in Uy, U,. It can be written :

2n X .
GWU, U= Y b ut"tt Uy
i=0
with b; satisfying b,, _; = p"'ibi, i=0,1, .., n, where p = %.
Proof : Successively we have :

G(')'Up aUz) = F(P1(')’U1, alU,), P2(')’U1s C"Uz))
F(“7P1(U2, U1), a?'Pz(Uz, U1))
a™ y"F (P (Uy, Uy), Py(Uy, Uy))
a"y"GU, U,)).

Il

G(yU,, aUy)

2n
Replacing G by z b, U3n—i U’ on both sides of this last equality we
i=0
obtain the result.

DEFINITION 3 : A sequence b = (by, by, ..., b, ,) satisfying :
b2n_,-=p"_ibi, l=0, 1,...,”, p#o,
is said to be p-reciprocal.

THEOREM 2 : Let BR[w] be a BR-curve of length n and let ® be the
quadratic function defined as above. Then BR[w 1(® (u)) can be written in
the following form :

BR[w]1(® u)) = BR[ 8y, 01, ..., 0,,1(u).

vol. 27, n® 3, 1993
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The massic polygon 6 = (0, 64, ..., 6,,) is X -reciprocal :
o
n—-1i
020, = (1) 6,, i=01,..n.
a

Proof : By (T';, T,) we denote the homogeneous cartesian coordinates of
t relatively to the cartesian projective frame of reference (oo, 0, 1) of the

projective line R = R U {0} :

T
t=— if T,#0, t=0 for T,=0.
TZ

By (U,, U,) we denote the homogeneous barycentric coordinates of

u relatively to the barycentric projective frame of reference (0, 1, % ) of

U, 1—u U, 1
uEIR.<U2)=)L< u ), u=oo.<U2)=/\(_1), A#0.

The quadratic change of parameter ¢ = @ (1) can be written again in the
following form :

T,

T,

aU? +2BU, U, + yU3
20,U,.

By T,(U,, Uy) and T,(U,, U,) we denote the two above-mentioned polyno-
mials. A being the symbol for forward difference operator, successively we
have :

BR[w]1(t) = H( 5 B;‘(z)w,)
=0
(7) t A’wo)
Zﬁ (:‘) T Tg"A’w())

) Tll H_l A'wo) .

Il
=

Let us define F (T, T,) = Z (?) TN T57' Awy. F is a vector-valued
1=0
homogeneous polynomial of degree n in Ty, T,.

M? AN Modéhisation mathématique et Analyse numérnque
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T,(U,, Uy) and T,(U,, U,) are homogeneous polynomials of degree 2 in
U,, U, having the following property :
Tl(’)’U], aUz) = a'yTl(Uz, Ul)
T (yU,, alUy) = ayT,(U,, Uy).
From F we define G(U,, U,) = F (T (U,, U,), T,(U,, U,)), so G is a
homogeneous polynomial of degree 2 n in U,, U,. It can be written
2n 2 n . . R
G, U= Y (j ) Ui b o, with 6;€é.
;=0

We have :
BR[w ](® (u)) = I(F (T,(Uy, Uy), T,(Uy, Uy)))

2n
-n(E () o vt
j=0
2n
n<,\2" ZB}"(u)oj)
i=0
2n
H(ZB,?"(u)oj)
j=0

BR[w](® (u)) = BR[6, 0, ..., 6,,1(u) .

The polynomials F (T, T,), T,(U,, U,), T,(U,, U,) satisfying the
hypothesis of lemma 1, it follows that coefficients of G verify the relations

2n n—i (2 p .
(2n_i)02"-i (%) (i)o,., i=0,1,...n

n—i
i.e.,an_,—=(1> 6., i=01,..,n.

COROLLARY 1 : The support of BR[8]1(u) when u € [0, 1] is identical to
that of BR[w](t) when t € R.

Proof : It comes from BR[w ](#) = BR[w ](® (1)) and the properties of
&b,

Remark 2 : Theorem 2 states that it is sufficient to know 8,, 6, ..., 6
determine entirely 6 = (8y, 84, ..., 6,,).

. to

PROPOSITION 1 : With the notation above, for i =0, 1, ..., n we let
. . 2" . 2 . .
TNT; ' = Z a ui" v, .
j=0

vol. 27, n° 3, 1993
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By K we denote the 2 n + 1) x (n + 1) matrix with @ as entries at row j and
column 1 and by K the submatrix of K reduced to its n + 1 first rows Then 1t
follows :

Y

(i) The sequence of the 2 n + 1 rows of K are = -reciprocal (K determines
a

K entirely),

(ii) the entries of K above the secondary diagonal are null (@, = 0 for
i+j=n—-1,n-2,..0),

(iii) the rising secondary diagonal entries of K are (2", a2'"!,

a2 . ah,
n(n+1)

(iv) determinant of K = (-2 a) 2%
(v) the massic vectors 0y, 0, ..., 8, are related to w,, w,, ..., w, by the
following matrix relation :

9 wo
(?1 = D7' KD, A.wo
én Aw,
with
o ((9): (1) (1))
and

o= ((2): (1) (7))

Proof : (i) Ty T3~ ' is a homogeneous polynomial of degree »n in
T,, T,; T,(U,, U,) and T,(U,, U,) are homogeneous polynomials of degree

2 in U,, U,. According to the lemmal we deduce that T T;"' =
2n

. n=J .
Za{Uf"‘f U, with @?" 7 = (l) a&,j=0,1,..,n
o
7=0
The sequence (a?, a,l, ey Ay s a,z") is the i-th column of K and is
Y -reciprocal for each i =0, 1, ..., n.
[24

It follows that the sequence of rows of K = (K°, K, ..., K", ..., K*") is
%-reciprocal: K*"-) = ( Y )"_J K forj=0,1, .., n
24
(ii) Expanding T3 T3 ~' in decreasing powers of U, :
T'T37' = (aU2 +2BU, U, + yU3) 2" ' UF~' 2"~!
=2" Q' U UL

M? AN Modélisation mathématique et Analyse numérique
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it gives: a’=al=...=a"""'=0 for i=0,1,...,n—1 and

a '=2""'a'fori =0,1, ..., n

(iii) From above the rising secondary diagonal is (2%,

2", ...,2"  al, ., ah).
nn+1)

(iv) Determinant of K is equal to (—1) 2  times the product of the
n{n+1)
rising secondary diagonal entries i.e., determinant of K=(-2a) ?

(v) We know (previous proof) that :

BR[w](t):II(z (7) Alw,T: T;-.») ,
i=0

then
n 2n
BR[w](® (1)) = 17< Y (’l’) Aiwo( Y a Uit/ Ué))
i=0 1=0
2n n n . ; o i .
-1(3, (£ (7) horen) e 08
=H( 2n (27[) U%n—j sz 01_)
J
7J=0
with
1 - n i A .
6, = (Zn) by (7) dlaiwo j=0.1, . 2n.
J
Y

By the = -reciprocal property of the 8,, i =0, 1, ...,2n, we only
23

calculate the (n + 1) first massic vectors €;. They are related with
wy, @y, ..., @, by the matrix relation given in the proposition with

0 0 0 0 ag
0 0 0 a,_, al
K = 0 0 ai’ a,_y ap”!
n—1 n-1 n-1 n-1
0 a4 a; a,_; ap
n n n n n
a, a4 a; Tt Gp_g a,

Remark 3. — Determination of matrix D7’ K D, : The entries of the i-th

columm of matric K are the (n + 1) first coefficients of the expansion of

vol. 27, n® 3, 1993
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T\ T, ' = (aU?+2BU, U, + yU3Y QU,Uy)" " with respect to U3",
vir-'u,, ..., UTUS, ..., U
For example we obtains, as matrix D' KD,,

n=2:
0 0 a?
0 a ap
2 4 1 )
3 3B 3(2/3 +ay)
n=3:
0 0 0 a’l
0o o0 a? a’p
4 8 1 2, o2
0 5a SaB 5(4sz +a‘y)
2 6, 3,52 1 3
s 3B zQB+ay) BaBy+28)
n=4:
0 0 0
0 0
0 gaz
4 12
°© 3 7 P
8 32 8 )
35 gﬁ 35(63 +3avy)
0 at \
a’ a’B
Zatp Z6a?p?ra’y)
%(12aﬁz+3a2'y) %(4aBS+3aZBy)
i(4ﬂ3+6aﬁy) i<ﬁ4+3a32y+3a2y2)
35 35 8

For greater values of 7, the expansion of T} T% ~* and matrix D; ! KD, can

be obtained using computer algebra systems.
Propositions 2 and 3 below lead to an algorithm for another calculation of

K.

Example 1 : Folium of Descartes defined over [0, 1[

Suppose the plane & and the space & have a cartesian frame of reference
respectively (2, i,j)and (£2,1i,j, k= 0202,).

M2 AN Modélisation mathématique et Analyse numénque
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The Folium of Descartes (1638) is the curve represented parametrically by
the point M (¢) with coordinates :

3t o~
x@)=——, teR
1+
32
@)=
Y 1+

or in homogeneous cartesian coordinates :

X(t)=3t
Y(t) =3¢
Z(t)=1+1¢.

We know [6, proposition 2.1.4.1] that
M@)=IQX@)i +Y(@)]j +Z(@) k)
=Gk +3ti +382] +2k).
AsIIN =Moo 2 'and O~ 'k) = (2,;1), 2-'G) =1, 02°'G)=7, it
becomes

M@)=I((2,;1)®3ti @3] @ 2(2,;1)).

Therefore there exists a massic polygon w = (wg, @, w,, w;) such that:

wo= (2,;1)
Aw():_l?
A2w0=f

Alwy= (£2,;1).
Then

M@#)= (0@ 3t A0, ® 312 A%w @ > A% wy)

- n( i B3 (1) w,.)

1 =0
= BR [wg, @, @,, w3] (1)

with: wo= (2;51), @, =(@2,+i;1), w@,=2,+27+/;1),
w3=(nl+%(?+f);2).

vol. 27, n° 3, 1993
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DefiningP = 2, +1,0=02,+2i +j,R= £, +%(? + ), we obtain
explicitly :
B3(t) 2, + Bi(t)P + B3(t)Q + 2 B3(t)R

M) = ., teR.
© B3(1) + Bi(1) + BA(1) + 2 B3 () ©

Again we find the massic polygon given in [6, section 2.3.2]. The image of
{0, 11 is the anticlockwise arc (£2,, R), (fig. 1).

II(6o) = O(fs) =
I(6,) = (64) = A

Figure 1.

We make the quadratic change of parameter ¢t = @ (x). We obtain
Mo ® =BR[w]o® =BRI[8, 0, ,60,, 63, 8,, 085, ,04]

with 8 = (8, 6, ..., ,8), a p-reciprocal massic polygon such that

0, W,
6 - Aw
02 A (l)o
03 A3w0

M? AN Modélisation mathématique et Analyse numérique
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From remark 3 (n = 3), within the specific case a = -1, B =0,
y=1( = —1) we obtain
0 0 0 -1
0o 0 0 1 0 (£2,;1)
9, 4 1 i
= _= 0 2z
8, 0 5 5 -
03 2 o 2% o) \@lin
5 5 b

and finally :

0, =
-1
322
0, =—0,
05=01
06=—00

Defining A = £2, — 4 i,B= 2, - %], we obtain explicitly

— BS(u) 12, +3 L BsuyA + 2 B (u)B-—B (u)A + Bé(u) 2,
Mu) =

—Bo(u)+ B (u)+ 2 ps S(u) - —Bf,",(u)+B (u)

N (M)j + BSu) ) C ue o 1I.

~ BS(u) + 3 BSG) + 2 BS) - 3 BS@) + BSG)

In [6, section 2.3.2] we give a slightly different massic polygon
corresponding to « =1, 8 =0, v = — 1.

N =

The anticlockwise loop (fig. 1) corresponds to u € [ , 1[ (resp. to

V2

t € [0, + o [), segment on the second quadrant to u € [1 - % ] (resp.

tot € [— 1, 0]) and the segment on the fourth quadrant to u € ]O, 1 - g ]

(resp. to t € ]— o0, — 11]).

vol. 27, n° 3, 1993
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COROLLARY 2 : Denoting the mass of a massic vector 8 by x (8) we have
the relation

X(oo) X(wo)
XD | _ poigp,| X @0
x(6,) A"X(a)o)

The massic sequence (x (64), x (1), .., x(8,), ..., X (0,,)) is Y reci-
(¢4

procal.

Proof: We know [6, proposition 1.2.2.8] that y is a linear form :
&> R, the relation (») of proposition 1 giving the 6; as a function of
w; remains true by considering the masses, on both sides of the equality.

COROLLARY 3: Let 6 = (8, 0,, ..., 6,,) be a p-reciprocal massic

polygon with p < 0. Choosing a and vy such that p = Y , then there exists a
o
massic polygon o = (wgy, @y, ..., w,) such that
BR[w]o @ =BR[0]

@D is the quadratic function previously given (B is arbitrary). It is sufficient to
define the massic polygon w by the relation :

wg 9o
A(l)o _ - 0]
. = Dz lK lDl .
A"wo 0"

Proof : The scalar « is different from zero, so K is invertible and we
deduce (wgy, @, ..., w,) from equation (») proposition 1. The condition
p < O guarantees that the quadratic correspondence ¢t = @ (u) is a one-to-one

correspondence between [0, 1[ and R.

Example 2 : Curve of Agnesi

We consider the curve of Agnesi (1748) also named versiera, was first
considered by Fermat (1666), is given parametrically by the point
M (u) with cartesian coordinates :

2u—1
W =5 a0
4u*(1 —u)
u) = , uel0,1[.
Y 4u* —8uP+8ut—4u+1
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Its homogeneous cartesian coordinates are :

Xw)=8u’ -20u*+24u> - 16> +6u—1
Yu)=—-8ub+24u’ —24u*+ 843
Zw)=—-8ub+244° - 32u* +2443 - 10u*+2u.

We obtain the following BR-form of this rational curve by the method
illustrated in example 1 or by that of [6, section 2.2.2.3] :

M(u) =BR[90, 0], 02, 03, 04, 05, 06] (u)

. - - 1 -
with 05 = Vo, Vo= (-1,005 ;= (2133 ). @i =0, 0) 6,=V,,

= 1 1
Vo= (-15.0)s 63=(Quiiz ), Q5= ©.2); .=—0, 65=0,,
0s = — 04. In figure 2 the length of pure vectors 6, 6,, 6,, 6¢ has been

multiplied by 2.

Q3 = H(Q’g)o

{

)
1
T
<
1
|
N
o

i

I
=4
Il
|
o

Q1 = 11(6:) = II(65)
Figure 2.

Explicitly we have :

Bu)Q, + B(u)Q3+ Bs(u)Q1

M) = 3 .
5Bi(u) + ng(u) + §Bg(u)
Bi(u) 170 + B§(u) 172 - B6(u> Va— B§) V,
, uel0, 1.
BS(u d+3 B @ +3 B (u)
This massic polygon being p-reciprocal with p = — 1 then by corollary 3

this BR-curve comes from a BR-curve of length 3 by a quadratic change of
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parameter. More precisely there exists a massic polygon
o = (wy, w, w,, w;) such that

BR[w] o ® = BR[6].

Taking a = -1, B =0, vy=1, (p = — 1) we obtain :
3 5
pD;'k-'p,=|_1 _3 9
2 ! i 9 3
01 00
-1 0 0 0

which gives wg, Awg A2wg, Awq and finally :
1
wo= (Po; 1), Po=(0,1); ;= (P;1), P1=(§,Q;
4 1 3 1 .
Wy = (Pz;g), Py= (5,2) ; wy= (P33;2), P3= (1,5), (fig. 3).
Explicitly M(®~(¢)) = BR[w] (¢) is given by :

B3(1)Po+ BYO Py + 3 BY(©) Py + 2B3(0) Ps

BR[w] () = , teR.

B+ BY() + 3 BY() + 2 B3()

Figure 3.

4. ALGORITHM FOR CALCULATING MATRIX K
PROPOSITION 2 :

(1) T, must be written

21
Ty=Y a Ui'' U,
1=0
1 -k
() (a),j=0,1,..,24, are%—reciprocal ie.,ay, ;= ( % ) aj,
k=0,1,...,1.
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(iii) The following algorithm gives the coefficients (a j) of polynomials
T, i=2,3,...,n (T' = aU? + 2 BU, U, + yUY) : initialization : a!, =
al =0, aj=a, al=28, al=vy, al=0, p = 'y_

fori =2,3,...,n
forj =0,1, ...,ido

a}:aa} +2ﬂa 1+‘yoz"1
afi_;=pilal(ifj<i)

a'_2=a_1=0_

Proof :

(i) Expanding T} = (aUj + 2 BU, U, + yU3Y, T} can be written
28
Ti=Y ajU}' U3,
i=0

(ii) T} is a homogeneous polynomial of degree i in T,, T,, according to

lemma 1, T} has X -reciprocal coefficients.
a

(iii)
. 21_2 . . . .
T\ '= Y o U U
j=0
TN=T,T,"' = («aU+2 BU, Uy + yU3) T} !
. 2i-2 X . . 2i-2 . . . i
Ti= Y eaj/'UT" T UL+ ¥ 2Baf U -1 T ULY +
j=0 ji=0
2i-2 X . . .
+ Y yaj U TP ULYR
j=0
We define a'3' = @' 7' = @i;!, = @i ! = 0. By some direct change of

indices, T} becomes :
2‘ . . .
=Y (eaj ' +2Baj {+yaj2) U T U,
j=0
Thena—aa;'l+23a 1+‘y0¢1_2,j—01 w21,

The (af) bemg L _reciprocal, we calculate (af), for j =0, 1, ..., i, by
j a P J

i i-j . .
this relation and we deduce “ii—j = ( X ) aj, j=0,1,..1i-1.
o
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PROPOSITION 3 : The entries @, of the (n + 1) x (n + l)matrixf( are given
by :
&=0 for i+j=n—-1,n-2,..0

3

atTit = n—t gt

D i=0,1,_,,’n, j=0,1,...,i

(ad=1).

Proof : The first result was proved proposition 1(ii).
21

From T} = ) « U?'~! Uh we obtain

1=0
21
T} = (}: a Uy~ U’z) QU, Uy~
=0
2
= Z2”"a;U’1"J+’U§+J". a)
71=0

2n
In proposition 1 we have defined T} 73 ' = Z @ U2?"~) Ul From (i) and
7=0

(i1) of this proposition we deduce :
T = Y a&U" UL
k=n—1
By changing the indices : j = k — n + i, it becomes
2.
Tll H_l — Z a:1+_]—l U111—1+t Ug-)-j—l .
1=0
By comparing with equality (/) we deduce :
a;t Tt =2""a;, i=0,1,..,n j=0,1,..,1i.
In proposition 1 (iii) we have seen that @5 = 2", so we define @ = 1. Then

we deduce the following algorithm giving the non-zero entries of K.
ALGORITHM : Initialization : a!,=al, =0, aj=a, a]=2B8,
ay=1vy, aj=2" a}"'=a2""!, df = B2";
for i=2,3,..,n
for j=0,1, .., ido
al= aa;_l+ ZBa;:}+ ‘yajizl
a:l—l+j =2ll—l a}l
Y
fe1 =0
43
a'y=al{=0.
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