@article{M2AN_1993__27_5_535_0, author = {Chavent, G. and Kunisch, K.}, title = {Regularization in state space}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {535--564}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {27}, number = {5}, year = {1993}, mrnumber = {1239815}, zbl = {0790.65050}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1993__27_5_535_0/} }
TY - JOUR AU - Chavent, G. AU - Kunisch, K. TI - Regularization in state space JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1993 SP - 535 EP - 564 VL - 27 IS - 5 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1993__27_5_535_0/ LA - en ID - M2AN_1993__27_5_535_0 ER -
Chavent, G.; Kunisch, K. Regularization in state space. ESAIM: Modélisation mathématique et analyse numérique, Tome 27 (1993) no. 5, pp. 535-564. http://archive.numdam.org/item/M2AN_1993__27_5_535_0/
[1] Stability of solutions for a class of nonlinear cone constrained optimization problems, part 2 : application to parameter estimation, Numer. Funct. Anal. and Optimization, 10 (1989) 1065-1076. | MR | Zbl
,[2] A new sufficient condition for the wellposedness of nonlinear least-squares problems arising in identification and control. In A. Bensoussan and J. L. Lions, editors, in Analysis and Optimization of Systems, Lecture Notes in Control and Information Sciences, Vol. 144 (1990) pp. 452-463, Springer-Verlag, Berlin. | MR | Zbl
,[3] A geometrical theory for the L2-stability of the inverse problem in a 1-d elliptic equation from an H1-observation, Appl. Math. and Optimization (to appear). | Zbl
and ,[4] Output least squares stability in elliptic systems, Appl. Math. and Optimization, 19 (1989) pp. 33-63. | MR | Zbl
and ,[5] Stability of perturbed optimization problems with application to parameter estimation, Num. Func. Analysis and Optimization, 11 (1990) pp. 873-915. | MR | Zbl
and ,[6] Augmentierte Lagrange-Verfahren und deren Anwendung auf Inverse Probleme mit H1-und L2-Beobachtungsnorm, Austria.
,[7] Tikhonov regularization for the solution of nonlinear illposed problems, Inverse Problems, 5 (1989) 523-540. | MR | Zbl
, and ,[8] Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. | Zbl
,[9] A numerical study of the augmented Lagrangian method for the estimation of parameters in elliptic systems, SIAM J. on Sci. and Stat. Computing (to appear). | MR | Zbl
, and ,[10] The augmented Lagrangian method for parameter estimation in elliptic systems, SIAM J. Control and Optimization. | Zbl
and ,[11] On the injectivity of the coefficient to solution mapping for elliptic boundary value problems and its linearization, submitted. | Zbl
and ,[12] Sequential quadratic programming for certain parameter identification problems, Mathematical Programming (to appear). | Zbl
and ,[13] Reduced sqp-methods for parameter identification problems, SIAM J. Numerical Analysis (to appear). | MR | Zbl
and ,[14] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | MR | Zbl
and ,[15] Optimization by Vector Space Methods, New York, 1969. | MR | Zbl
,[16] Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, 1984. | MR | Zbl
,[17] Tikhonov regularization for nonlinear illposed problems : optimal convergence rates and finite-dimensional approximation, Inverse Problems, 5 (1989) pp. 541-558. | MR | Zbl
,