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EXTERNAL FINITE ELEMENT
APPROXIMATIONS OF EIGENVALUE PROBLEMS (*)

by M. VANMAELE (') and A. ZENISEK (%)

Communicated by J. DEscLoux

Abstract. — The paper is devoted to the finite element analysis of second order elliptic
eigenvalue problems in the case when the approximate domains {2, are not subdomains of the
original domain 2 c R>. The considerations are restricted to piecewise linear approximations
and in the case of eigenfunctions to simple eigenvalues. The optimum rates of convergence for
both the approximate eigenvalues and the approximate eigenfunctions are obtained.

Résumé. — Cet article est consacré a I’analyse des problémes elliptiques spectraux du
second ordre par la méthode des éléments finis dans le cas ou [!ouvert approché
2, n’est pas contenu dans I’ouvert original 2 < R2. Les développements sont faits pour des
approximations linéaires par morceaux et dans le cas des fonctions propres pour des valeurs
propres simples. On obtient des ordres optimaux de convergence pour I'approximation des
valeurs propres et des fonctions propres a la fois.

1. INTRODUCTION

In [11, Chapter 6] the second order elliptic eigenvalue problems are
approximated by the finite element method in the case of domains
{2 which are such that 2,< 2, {2, being the approximate polygonal
domain.

The aim of our paper is to generalize the results of [11, Chapter 6] to the
case where approximate domains {2, are not subdomains of the given
bounded domain 2 < R% We analyse piecewise linear finite element
approximations and (similarly as in [11]) we do not take into account the
numerical integration and restrict our considerations concerning the eigen-

(*) Manuscrit recu le 21 juillet 1992.

(") Seminar of Mathematical Analysis, Faculty of Applied Sciences, University of Gent,
Belgium.

(3) Department of Mathematics, Technical University, Technickd 2, 61669 Brno, Czechoslo-
vakia
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566 M. VANMAELE, A. ZENISEK

functions to the case of simple exact eigenvalues. To our knowledge this
paper is the first one devoted to eigenvalue problems where the situation
{2, « £ is considered.

When the exact eigenfunctions w,, belong to V = H{({2) we prove the
convergence of both the approximate eigenvalues and the approximate
eigenfunctions. In the case when the exact eigenfunctions belong to
V N H?*(2) we prove the optimum rates of convergence, i.e.

|/\m_)‘m.h| = C(m) hz,
[Fon =l 5, = Clmy i1 G =0,1),

w,, being an extension of w,,.

The convergence of approximate eigenfunctions corresponding with
multiple exact eigenvalues and the effect of numerical integration will be
considered in a subsequent paper.

2. FORMULATION OF THE PROBLEM

Let 2 be a bounded two-dimensional domain with a Lipschitz-continuous
boundary which is piecewise of class C>3. (This means that 2 may have
corners.) Let 2, < R? be a polygonal domain approximating 2. Let us
assume that all vertices of the polygonal boundary 842, are lying on
942 and that all points where the condition of C3-smoothness of 342 is not
fulfilled are vertices of 942,. We have 2, ¢ 2.

Further, let 2 < R? be a bounded domain satisfying 2 > 2 U 2,
regardless of 4. Next, let a : H'(2) x H'(2) - R be a bilinear form given
by

a(u, v) = Z k. a“ S dx, VYu veH'(2) @2.1)
) i 3%, > ) )

nljvl

where the coefficients k;;, i, j = 1, 2, are defined on 0 and satisfy

lj’

(i) kyeWh>),i,j=1,2, _ (2.2)

(i) ky, =ky ae. in 2, 2.3)

(iii) 3Juo=>0: Z kij(x) € &= po(€1 + €3) ae.in 2,

i j=1
VéL E,eR(2.4)
We consider then the following eigenvalue problem, associated with

a(.,.):
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APPROXIMATIONS OF EIGENVALUE PROBLEMS 567

2.1. Problem
Find A e R, we V=Hy2) (w=#0):
aw,v)=A(w,v) YoeV=H}{), 2.5)

with (., . ) the inner-product in L,(2).
The pairs {A, w} are called eigenpairs, A is an eigenvalue and
w is an eigenfunction.

2.2. Remark : W™P(2), 1 <p <o, H"(2) = W™2(2) and H}(2) are
the usual notations for the Sobolev spaces (see, e.g., [4], [11], [13]). The
symbols || . ||, , and | . |, ,, denote the norm and the semi-norm, respecti-
vely, in H*(2) [we have L,(2) = H*(2)].

Assumptions (2.2)-(2.4), properties of L,(f2) and H(l,(.Q ), and [11,
Theorem 6.2-1] imply the following theorem :

2.3 THEOREM : The eigenvalues of Problem 2.1 form an increasing
sequence,

D<A | sA)=--'=A,s---5+ 0.

The corresponding eigenfunctions {w,,} :’; | form a Hilbertian orthonormal
-basis of L,(£2).

In this paper we shall approximate Problem 2.1 by the finite element
method using triangular finite C %-elements with polynomials of first degree.

2.4. Triangulations

We consider a triangulation ([11, § 1.5]) G, of the polygonal domain
0,, consisting of a finite number of closed triangles T. Denoting by
o, the set of all vertices (nodal points) of G,, we assume :

() o,c 2, 0,N302,cdn,

(ii) the points of 942, where the condition of C3-smoothness of
342 is not satisfied, are elements of o,

The symbols k; and 6, denote the length of the maximum side and the
magnitude of the minimum angle of T < G, respectively. We set

h = max hy.
Tes,

We assume that the family of triangulations {G,} hy = 0, satisfies

he (0, hg)
the minimum angle condition (see [11, (5.1-21)]) and the inverse assumption
(see [4, (3.2.28)]).

vol. 27, n* 5, 1993



568 M. VANMAELE, A. ZENISEK

We shall consider only such triangulations G, that at most two vertices of
each T € G, lie on 842. A straight triangle with two vertices on 942 is called a
boundary triangle.

2.5. Ideal triangulations.

Let T € G, be a boundary triangle. We associate with it an ideal triangle
T'“. This closed curved triangle is obtained from T replacing the side of
T which approximates a part of 342, by this part of 82. When we replace all
boundary triangles in G, by the associated ideal triangles T we obtain the

ideal triangulation B.¢ of the domain 2 associated with G,,.

2.6. Remark : For simplicity, we shall assume in Sections 4, 5 and 6 that
the triangulations G, € {G,} are constructed in such a way that for all
boundary triangles lying along the boundary 82 we have either T < T or
T>T9

2.7. Remark : Following the terminology of [6] we call 2, an internal
approximation of 2 if 2, < 2. In the opposite case 2, ¢ 2 we call
{2, an external approximation of 2. To our knowledge the finite element
approximations of Problem 2.1 have been studied till now only in the case of
domains (2 having internal approximations {2, (see [1, 2, 3], [11] and the
references in [1, 2, 3]). O

With the triangulation of 2, we associate the finite element spaces

X, = {vh € C°(2,): v,|7 = alinear polynomial VT € G,} < H'(£2,),

(2.6)
Vo= {v,€X,:v,=0 on 802,} < Hj(2,). 2.7
We have in general X, « H'(2) and V, ¢« V = H{(2).
Let us set
2 du dv
1
a,(u, v) = Z L) kifa_)c_-a_xdx VYu,ve H (12,), (2.8)
hLj=1 h v
(u, v), = f uvdx Vu,velL,(42,). (2.9)
2,

From (2.2)-(2.4) and [13, p. 221, case I', = 3842] it is seen that a@,(., . ) has
the following properties :

i) ap(u, v)=a,(v,u) Yu,veH' (2,); (2.10)
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APPROXIMATIONS OF EIGENVALUE PROBLEMS 569
(i) 3C;=>0: |ay(u, v)| < Cy|uf, 0/,|U|l-!2;.
Vu,ve H'(2,), Vh; (2.11)

(i) 3C,=>0:a,(v, v)= ,uolvlinhacznv”i a,

Vv e Hy(12,), Vh. (2.12)

The first inequality in (2.12) holds also for all v € H'(£2,).

With a,(.,.) we associate the continuous eigenvalue problem on
02,:

2.8. Problem
Find A" e R, w'" e H\(2,) w" #0):
a,(w®, vy = AWM vy, Yve H (2,).

The consistent mass (internal) approximation of it reads :

2.9. Problem
Find A, eR, w,eV, w,#0):
ay(wy, 0,) = A,(wy, v,), Vv, eV,. (2.13)

The properties (2.10)-(2.12) of a,, the properties of L,(£2,) and of
Hy(2,), and [11, Theorem 6.4-1] imply the following theorem :

2.10. THEOREM : The eigenvalues of Problem 2.9 form an increasing
finite sequence

O<AypsAyp=<---=sA;, UMAK)=dimV,).

There exists a basis of V,, consisting of eigenfunctions w,, ,(1 <= m <1 (h)),
which satisfy

Wi n Wi =6 - (2.14)

2.11. Remarks : a) In accordance with Remark 2.7, in the case
02, 2 we call the eigenpair {A,, ,, w, ,} an external finite element
approximation of {A,, w,}.

b) As this paper is a generalization of [11, Chapter 6] we use the same
notations as in [11, Chapter 6].

¢) The main tool in generalizing [11, Chapter 6] will be the simultaneous
consideration of v, € V, and ¥, € V, where ¥, is the function associated with

v, [a generalization of the techniques developed in {12], [5] and [13]].
d) As usual, the symbol C will denote a generic constant independent of
h with generally different values at any two different places.

vol. 27, n° 5, 1993



570 M. VANMAELE, A. ZENISEK

3. EXTENSION THEOREM

In the case of external finite element approximations we estimate the
expressions of the form [W, —w, ,|. , ( =0,1), where W, is an
’ iy

extension of w,. As we restrict our considerations to two-dimensional
problems we can use the following theorem proved in [10, Section 1.3] to
define this extension :

3.1. THEOREM : Let 2 be a bounded two-dimensional domain with a
Lipschitz-continuous boundary 8 which is piecewise of class Ck,
k= 1. Then there exists a linear and bounded extension operator
& : H*(2) — H*(R?). The operator & is also a linear and bounded extension
operator from H- () into H* " (R?), 1 <i < k.

3.2. Remark : For a given k we set it = & (u) for all u € H*(£2) (usually
k = 2).

4. SOME AUXILIARY RESULTS

Let T, be the reference triangle which lies in the (£,, &,)-plane and has the
vertices P *(0, 0), P¥(1,0) and P5(0, 1). We considgr the usual affine
invertible mapping F  which maps the reference triangle T, onto the triangle
T € 6, (see [13, Theorem 9.1]). In addition we need a one-to-one mapping
F ria : Ty —» T'. For this we lean on a suitable analytical representation of the
curved side of T'Y € B.% (For details see [13, Section 22].)

4.1. LEMMA : To every v, € V, there exists a function ¥, € V (called to be
associated with v,) with the following properties :

a) 9, C%2);

b) 9,(P;) =v,(P,) VP,€o,;

c) v, islinear on each triangle T € (6, N G,9);

d) if T<T“thend,=00nT*-Tand v, =v,onT;

e) if T Tthend, =v,0F;oFgonTq

Proof : This follows from the definition and the properties of F i« (see [13,

Sections 22, 23]). O

4.2. LEMMA : Let b, € V be associated with v, €V, and let T > T

Assume that the Lipschitz-continuous boundary 382 of (2 is piecewise of class
C3. Then

“vh_ '}h"i,rusChz_i”vhllz_rid = Ch*" || (i=0,1).

1, 74
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APPROXIMATIONS OF EIGENVALUE PROBLEMS 571

Proof : This follows immediately from [14, Theorem 2] (see also [13,
Section 25]), Lemma 4.1 and the linearity of v, on T. O

4.3. Notation : We denote

'rh:‘(zh_ﬁ’ w,=102-902,, 4.1)
M, = {T'es):T'cT}, (4.2)
S =\T, N,= {Te G, FoT9 Te "G,fld} . 4.3)

TeN,
4.4. LEMMA : We have
ol <Chlvll, g, VveH (2) (=7, w), (4.4)

||v||0’EhsCh2|v|LEh, Yve H'(2)withtrv =0on da2. (4.5)

Proof : For the proof of relations (4.4) see [13, Lemma 28.3] ; estimates
(4.5) are a simple consequence of the cited proof. O

4.5. LEMMA : We have

|v|1,7'hsChuzlvll,shsChl/zlvll’nh VUEXh’ (4.6)
||v||0,7hsCh||v||th YveX,, “4.7)
Iolly, ., <Ch*|v], , VveV,. (4.8)

Proof : Relations (4.6)-(4.7) are proved in [5, Lemma 3.3.12] ; estimate
(4.8) is a consequence of the proof of (4.7). O

4.6. LEMMA : We have
lolly,s, =<CRrZ|vll, 5z YveH'(2), (4.9)
lolly s, ., <Chlvl, s . VveHy2), (4.10)

where the set S, is defined by (4.3).

Proof : The proof is a simple modification of the proof of [5, Lemma
3.3.11]. We use the fact that the distance of the vertex of T < S, which lies
in the interior of (2, to the opposite side is O (h). O

4.7. DEFINITION : Let u € V N H*(R). We define the elliptic projection
(also called the Ritz approximation) II, u € V,, of u by

ay(i — Myu, v,)=0 Yv,eV,, (4.11)

vol. 27, n® 5, 1993



572 M. VANMAELE, A. ZENISEK

where it = & (u) and & : H'(2) - H*(R?) is an extension operator from
Theorem 3.1.

4.8. THEOREM : We have
i - 1, ul, , <Chllul,, YueVNH (2). (4.12)
> h ?

In addition, if the boundary 80 is of class €' (for the notation
€' see [4, p. 12]) and the coefficients k; € C*' (2) then

| — Tyul, , <CRlull, , YueVnH (2). (4.13)

Proof : A) Letu}" € V , be the interpolant of u, i.e. u}" (P;) = u(P;) for all
P, e o, Using (2.12), (4.11) and (2.11), we obtain

C A
B b L

Lo, <, (4.14)

Combining (4.14) with the standard finite element interpolation theorem and
Theorem 3.1 we obtain (4.12).

B) The form of V' and the assumptions concerning 942 and k;; enable us to
use [8, Theorem 4.2.1] and we see that relations [9, (45)] are sansfled. Thus
we can repeat all considerations introduced in [9, pp. 416-419]. To obtain
estimate (4.13) we note only that [9, (62)] can be improved to the form

lilly o0, <Ch*|tll, 5 YueV NH*(2). 0

4.9. THEOREM : Let {h} = {h_,-}j‘_"’:1 with lim h; = 0. Then

j—o

lim “u--H,,u” _0 YueVv. (4.15)
h—»O

Proof : According to [13, Theorem 31.4] for every u € V there exists a
sequence {u,,]_}, where w, €V, such that

lim “u — Uy, “ =0. (4.16)

B0 L 2y

The functions Uy, satisfy an estimate similar to (4.14) (replace u}" by
uhj) which combined with (4.16) leads to (4.15). 0

M? AN Modélisation mathématique et Analyse numérique
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APPROXIMATIONS OF EIGENVALUE PROBLEMS 573

5. CONVERGENCE OF APPROXIMATE EIGENVALUES

To extend the results from [11, Section 6.4] we first present some lemmas.

5.1. LEMMA : Let w;, i = 1, be eigenfunctions of (2.5), orthonormal in
Ly(£2). Then

(ﬁ)l” wj)h=6ij+Di,j,h (l,]?l) (51)
with

D",j',h = (ﬁ/i’ 1‘;{}_)')'rh - (Wl', wj)wh ’ (5.2)
where

(M,U)gh= J uwdx (e=7,w).
£

it

Further. we have
D j 4l =Ch* /A, A, (G,j=1). (5.3)

Proof : Relations (5.1)-(5.2) follow immediately from Theorem 2.3, (4.1)
and Theorem 3.1. Further, we see that

lDi,j,hl = Z | (ﬁ/,-, 1'."”,')5,,

E=T, @

(5.4)

We estimate the terms on the right-hand side. Using on the one hand (4.5)
and Theorem 3.1, and on the other hand Friedrichs’ inequality and (2.5),
relation (5.3) follows. 0

5.2. COROLLARY : For v € V satisfying ||v|, , = 1 we can write

~ 12
Hvllo,ghz 1+Bm,h (55)
with
~ 12
Bun= 1312, 10112, (5.6)
IfveV,, |lvly,=1, with
V., =span Wy, ..., w,,), w; eigenfunction of (2.5) (1 <i<=m), (5.7)

then we have

|Bp | <Ch* A, . (5.8)

Proof : It is easily seen that the relations (5.5)-(5.8) follow from Lemma
5.1 and Theorem 2.3. We only note that forve V,, |v], , =1 we have

Vmavziaiw[, ia?:l. (5.9)
i=1 i=1

O

vol. 27, n° 5, 1993



574 M. VANMAELE, A. ZENISEK

5.3. LEMMA : Let V" be the space spanned on W' == w; | o, @ =1,..,m).

Then we have
dim V% = dim I1,V,, =m, h<hy(m),

where II,, is the elliptic projector defined by (4.11) and V ,, is given by (5.7).
Proof : A) From Lemma 5.1 it follows that
Wi W =8,;+0H") G,j=1.,m).
This implies that the set (W?),_,_, is linearly independent. Hence,
dim Vﬁl = m.

B) To prove the second equality, we show that (I, w;), o; <, is a linearly
independent set. From

L, wi, Ty wpyy, = (Tyw; — Wi + Wi, Iy wy — wp +w;),,  (5.10)
it follows that

|(Hh w;, 1, Wj)hl = “Hh w; — W, ”Q a, [c ”Wj “()’_(2 + “Hh w; — f"j ”0, gh] +

G W] + Cllwilly o (0w =], , -

Using (5.1)-(5.3) and (4.15) we see that for every £ >0 we can find
ho(m, &) such that
I(thi, Hth)h|<5 @#Jj), h=shoim, €).

On the other hand (5.10), combined with (5.1)-(5.3) and (4.15) (or (4.12)),
leads to

2 1 ~ 2 ~ 2
”Hh Wi ”0 2, = D) ”Wi no 2, ”Wi — I, w; “() 2, =
1 - 2 1
=3 (A= |D; i) - ||w,» _thiHO,!Z,,BZ'
Thus, the matrix ((If, w;, II,W;),) <; j<m 1S non-singular. O
5.4. LEMMA : For v € V satisfying ||v|, , =1 we have
[ S D (5.11)
with

am, h(v) = 'Bm, hl + 2”5 - Hh UHQ 2, (1 + |Bm, h| )1/2 . (512)
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Let {h} = {hj};”:  with lim h; = 0. Then, ifveV,, |v|, , = 1 we have

j—sx
lim &, ,@®)=0. (5.13)
hj—0 !
[The convergence is uniform with respect toveV,. vl ,=1.]

Moreover, if V,, < H*(£2) then
|8, n(®)] < Cm)h Vh<hy(m), (5.14)

where C (m) is a constant depending on m.

Proof : Let v € V. We have
~12 2 ~ ~
”v”(),{)h— ”17110“0,0h= (U—HhD,U-FHhU)h:

2

=2@ - v, 0),— |7 “Hh”“o,n,,;

hence

2 ~ 112 = ~
” I, v ”0 a, = ”U ”0 n, 2 ”v — 1, v ”0 2, “v ”0 0,
Then, if ||v||0’!2 = 1, relation (5.5) leads to (5.11)-(5.12).
ForveV,, |v ||0, o = 1 we find using (5.9) and the Cauchy inequality that

m
]|5_17,,u||(2)’0hs ¥ ”W,-—th,-“z’nh; (5.15)
i=1

hence, due to (4.15),

lim |5 - 17,0 -0.
J 0, N
B0 o

Taking into account (5.12) and (5.8), relation (5.13) follows.
Ifv, cH2(0 ), (4.12) is applicable on the terms of (5.15) ; hence

”ﬁ — Hhv“o,n,,$ Cm)h.

Substituting this estimate and (5.8) into (5.12) we obtain (5.14). O
Let A,, and A, , be the m-th eigenvalue of (2.5) and (2.13) respectively.
Analogously to [11, Lemmas 6.4-1, 6.4-2 and Theorem 6.4-2], we first

estimate A, , from above.

vol. 27, n® 5, 1993



576 M. VANMAELE, A. ZENISEK

5.5. THEOREM : We have

A (,\ +C G, ( )) 1+ su Om 1) (5.16)
= € 2 e 7. E] .
e " E=Z‘r:,w e "E‘I/)m 1 - Sm, h(v)
1o llo. o =1
with 8, ,(v) given by (5.12) and with
Gulen) =Y “§DiHT,5h- (5.17)

i=1

Here w; is eigenfunction of (2.5) and w; = &(w;) (see Remark 3.2)
A=i=m).

Proof : Let ¥, , denote the set of all m-dimensional subspaces of
V. According to the min-max characterization, Lemma 5.3 and Lemma 5.4,
we find

. a, (v, v,) a. (v,. v
Ap p = min max i R h’z u = max ——h( h’z w =
En€¥ py PhE€ER v, v, €I,V v
m d v, 0 ” 1”0,.(2,, I"h #' m ” h”o’ 2,

a,IT, v, Il, v)
-~  max W (5.18)
vevV, 11, v
o100 =1 0. 2

Using the definition of I7, v we can write
a,II, v, Il v)y<a,(Il,v, ,v)+a,® - II,v, 0 — II,v) = q,(V, 7) =
=a(@,v)+a, @ 0)—a, @ v)<a(,v)+ z a, (0,0), (5.19)

where we denote

T, w, being defined in (4.1).
Using (2.2), (5.9) and (5.17), we obtain

|a., @, )| <C[T]}, <CGnle)) VveV,, [[v],,=1. (520)

We have

aw, w
max a(v, v) = max (—’—2———) = max#Z (w) = A, (5.21)
veV, weV, ”W”0 0 weVny

lello o=t w0 w0
where the last relation holds according to [11, (6.2-22)].
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Relations (5.19)-(5.21) give

a0, I,0) <A, +C Y G,(e,). (5.22)

=T, 0

Substituting (5.22) and (5.11) into (5.18) we easily obtain (5.16). O
5.6. LEMMA : For G,,(g,), (5.17), we have

lim G,(e,)=0 (e=1, w). (5.23)
]

Let V, c H*(2). Then we have
G, (g,)<C(m) h*. (5.24)

Proof : Relation (5.23) follows from the absolute continuity of the
Lebesgue integral. If V, < H*(£2) then (5.24) is proved by means of
Lemma 4.4. O

Now, we estimate A, , from below.

A. Case 2, c £ (internal approximation)

Let v, € V be the function associated with v, € V,, according to Lem-
ma 4.1. Then (5.18) can be rewritten as

. a(vy, by)
Apoy= min  max ———", (5.25)
EpeV g tn€En |vh “ 0, 0
b, #0

where E,, is the space of functions from V which are associated with
functions belonging to E,. As ¥, = v, in the case of a polygonal domain
{2 and ¥, is the extension of v, by zero in the case of internal approximations

of {2, it is obvious that dim E,, = m.

As the set ¥, , of all spaces E,, is a proper subset of ¥, (the set of all m-
dimensional subspaces of V) we see that

Am,hz/\m' (526)

B. Case 2, ¢ £2 (external approximation)

In this case estimating A, , from below is much more difficult.
We define

Ag(o) = [logll? 0~ ||1‘;,1||(2)’ L =AW+ Ap®) Vv, eV, (5.27)
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with (see (4.1), (4.2) and Lemma 4.1)

Apwp) = Y J (v2 — b7) dx, Aoz(”h)=””h1|g,7h- (5.28)

. id
Te M,

Further we define

A () = a,(y, v,) —a®y, v,) Yv,eV,. (5.29)

For simplicity, we first assume that k£, = 0 in (2.1) and (2.8). Then (5.29) is
reduced to

A (y) = A (v) +Ap V) (5.30)

with (using the short notation 9; for 8/9x;)

2
Ay =Y Y . ki [(3;0,) — (3;0,)1dx, (5.31)

Filep, =1 T

2
Ap) =Y ¥ i (3,0,)" dx (5.32)
T-T

TidEMh i=1

5.7. LEMMA : For Ay, (5.27)-(5.28), and A,, (5.29)-(5.32), we have
|[Aoi)| < CR*|v,|} 0, YUi€Vi, (5.33)
|Ai@)| <Chlv,|} ,  Vv,eV,. (5.34)

Proof : Using (4.1)-(4.2), Lemma 4.2 and Lemma 4.5, we obtain from
(5.28) that

|A01(Uh)| = Z “Uh -0y

T e m,,

|0, Tid(2 “Uh ”O, 7id + ||vh - ﬁh “0, Tid) =

< Ch?||v,|?

1,0,

|Ag ()] < Ch4|uh[i . < Ch5|v,,|i a,"

Substituting both inequalities in (5.27) and using (2.12), we obtain (5.33).
Using (2.2), relation (5.34) can be proved by similar devices as above. O

5.8. Remark : If k, # O then we can derive the same estimate (5.34). For
this, observe that for the additional term in A,, (5.29), we have

2(8;0,0;v, — 3;0,9;0,) = (8,0, — 9;0,,) 3,0y + 30,3V, — ajﬁh) —
— (8,0, — 3;0p) ;0 — 9,0, (3,0, — 3;v,). O
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According to (5.27) and (5.29), the quotient in (5.18) can be rewritten as

a;,(Vy, V) _ a(v,, vy) 1+A,(v)a, d,)

5 = ———H(v,) with H(v,) = — . (5.35)
[|vs ”Q 2, “Uh”Q 0 1+ AO(Uh)/”vh”Q 0
Making use of Lemma 5.7 and (2.12) we obtain
2 2
A lval}, Ay (v [oal
el _ o, e Ao Trvar o

a®non) ol o, lonlly o

Relations (5.35)-(5.36) form a starting point for estimating the approximate
eigenvalue A, , from below. According to (5.13) and (5.23), the right-hand
side of (5.16) tends to A, with 2 — 0. This means that A, , <2 A, for
h =< hy(m). Hence, (5.18) can be rewritten as

. ay(Vy, vy)
Ap p= min  max _,T , (5.37)
Exe , ,'n€En ”uh”() 0
U,,#O P

where only the m-dimensional subspaces E; of V, are (needed to be)
considered, satisfying

a,(Vy, v,)
—_— =

max > A, . (5.38)
on € En ”Ulz”() N
v, #0 » Ch
5.9. LEMMA : We have
2
|vh|1"(lh
———=<CA, VY, €eEJ,EXeV ,,. (5.39)
”vh“o,g

Proof : Using (5.38) and (2.12) we find that

2
lvhll,nh

lonl o,

m?

52/—‘40_1)\”1 VUhEE* EI:‘:E’V‘M,IL'

By Lemma 4.1 and (4.3) we have
”f)h ”Q n-s, = “vh”Q 0,-S, Vvh € Vh .
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In view of the definition of V, (see (2.7)), the minimum angle condition and
the quasi-uniformity of G, (guaranteed by the inverse assumption) it can be
proved that

”vh||(2),0h$ C ”Uh”; a,-5, Vv,eV,, Yh<hy.

Using these three relations for v, € E¥ we obtain (5.39). O

5.10. LEMMA : For H(v,) defined in (5.35) we have
Hw)=1-Cm)h Vv, eEX EXeV , ,, Yh<hym). (5.40)

Proof : Combination of (5.35), with (5.36) and Lemma 5.9 yields the
desired result. O
We now give a lower bound for A, ,.

5.11. THEOREM : We have
Apn=A,(1 —Cm)h) Vh=hy(m). (5.41)

Proof : From (5.35) and (5.37) it follows that

. a(i}h’ '}h) - .
A p = min  max ——— min min H(@,)} . (5.42)
Epe ¥, oncEn |0, Efe ¥, . n€En
o # 0 0.2 vy # 0

Denote by E* the subspace of functions from V which are associated with
functions belonging to E.*. The correspondence v, — 0, is a linear bijection.
This implies that dim E* = m and ¥ m h < ¥ . ; the meaning of 2 m, n and of
¥ ,, were explained in relation with (5.25). Hence

. a(vh’ v/l)
min max ———2_ =
Ere ¥, ,oncks |f>,l .
v, # 0 0, 2 X X R R
. a(y,, b,) . a(by, v,)
= min max ——— = —— o
Erev, WOn€ £ ”vh ”0 0 E e¥,, W€ E, |vh ”0 0
Dpso by #0

by the definition of A, (see [11, (6.2-21)]), and (5.41) follows from (5.42)
and (5.40). O

We formulate the main result as

5.12. THEOREM : Let A, be an eigenvalue of Problem 2.1 and A, , the
corresponding eigenvalue of Problem 2.9. Then it holds that
lim A, , = 2A,. (5.43)
h; =0 /
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Moreover, if V,, < H*(Q2) then we have
|Ap—Apul <Clm)h Vh=<ho(m). (5.44)

Proof : Combine Theorems 5.5 and 5.11 and apply Lemmas 5.4 and
5.6. O

6. CONVERGENCE OF APPROXIMATE EIGENFUNCTIONS

As in [11, Chapter 6] we restrict ourselves in this section to the case of
eigenfunctions corresponding to simple exact eigenvalues. We start our
considerations with some lemmas.

Let us set
p max ———Am K max B S
h = ) Jh =
™ L=i=I() |A; 5 — Ayl " l=<i=<I(h) A
i #m i#m —7\:

We note that p,, , is defined in [11, (6.4-21)]. As A; , - A, it is easily seen
that

6.1. LEMMA :
A A, y
o = p, = max s h<hy(m),
e " Anz_Am—1~£ /\m-'f-l_Am_E 0( )
A, 1+ ¢ Apsi1— €
Ky p < Kp = max , Vh<hy(m),
" " {/\M_Am—l-g ’\m+1_/\m_8} 0

with
O<e<min {A, ;— A, A, — A, }.

6.2. LEMMA : We have
1{h)
Z | 4T, W, Wi,h)h|2s
i=1
i#m 1) ) )
<Cm) Y (| — Ty Wy wi |+ A701K; + A, Kol *1 (6.1)
i=1

i#m

where j =1 or, if w,, € H*(2), j = 2 and where we denote

K() EKo(m, ia h) = (Wm1 wi,h) - (ﬁ)ms wi,h)h s (62)
Kl EKl(m, i, h):ah(ﬂf,,,, W,-,;l)—a(wm, v'v,-,h), (6.3)
K2 EKz(m, i, h) = (me, wi,h)h - (Ilwm, V‘i)l" h) » (6.4)
o9 < 3
vy 2 k‘,‘_) . (6.5)
szzl ax; \ 7 axg
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Proof : As IT, w,, € V, we have by (2.13), Definition 4.7, (2.5) and (6.2)-
(6.3)

L, Wps Wi 1 dh = A7 4 @y (I, Wy w; ) = A b ay W Wi )
= Ai_,IlL[a(wmf wi,h)"'Kl]
=/\mAi_,i11 (ﬁ’m’wi,h)h'*'KO]'*')‘i_,il:Kl- (6.6)

Subtracting from both sides of (6.6) the term A, A i(II, w,, w; ,), and
using Lemma 6.1, we obtain

-~ K .
| UL, We Wi | < P | B — Ty Wiy Wy 1] +A—”‘ |K, + A, Ko| (G m).
i,h

This implies (6.1) with j = 1.
If w,e€ H?(£2) then we have, according to Green’s theorem [8,
Theorem 3.1.1] (which can be used because k;; 9w, /dx; € H'(2)),

(W w; ) = LWy Wi s AWy wi,h) = (Lw,, W; ) -
Hence K| = K,. O
6.3. LEMMA : We have
|Ko(m, i, )| < CR i all 5 IWnll, o =<Ch* /AinAm, (6.7)
. 12 ~
|Ki(m, i, h)] <C ”W‘lhlll,sh(h'Wml1,5,,_7,,+ Y |Wm|1, Th)s

<Ch" /A, 4 A, . (6.8)

If w,, € H*(2) then

|KoOm, iy 1) < CH [wisll, o (W]l 5+ 2IWall, 5) <
<Cm)h"™* JA; ,, (6.9

+ huz”Lﬁ;mNQ f;.)$

<C@m)h¥* /A, ,. (6.10)

Proof : A) Making use of (4.1)-(4.2) and Lemma 4.1, we can rewrite (6.2)
as

|K2(m’ i’ h)l = Chz”"‘}i,h”],sh(”mello‘ S,— 74

Ky(m, i, h) = Z w, (W, , — w; h)dx—J Waw; pdx=Ky — K, .
?ldeM’ rd ’ * Th 5

(6.11)
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Notations (4.1)-(4.3) and Lemmas 4.2, 4.4, 4.5 and 4.6 imply

112
|K°1|€“W’"”0,Sh~r;,< z "wi,h'-wi,h”(z),r'd) =

T e My,

sCh3lwm|1,5,‘_q-h”Wi,h”LSh’ (6-12)

|Koa| = ||rv,,,||0, wiall L, = Ch9’2|ﬁzm|1, Wil (6.13)

L, S/x )

Combination of these estimates with Theorem 3.1 and with the relations

||wm||1’nsC aW,, w,,) = C JA,,,

wi, all Ls, = “wi,hHL 0h$C N aWi Wi ) =C S Ain

and substitution in (6.11) leads to (6.7). If w,, € H*(2) we first apply (4.9)
on (6.12) and (4.4) on (6.13).

B) For K, we derive in an analogous way

Ki(m,i,h)=
2 ow,, ow; ow, d(W; , — W, )
-y 3 J gy — l’hdx—i-J.kej—am—————l’a L axd
pid gy 21 T_id oxp i‘)xj rd X ¢ X;

Using similar devices as in part A) we obtain (6.8).
C) If w,, € H*(2) then relation K| = K, holds with

Ky(m, i, h) = Y J-d(wi”’_wi’h)medx+J w; p Lw,, dx .

e M, Th

According to Green’s theorem [8, Theorem 3.1.1] and the density of
H{(2)in L,(£2), the eigenvalue equation (2.5) for the eigenpair {A,,, w,,}
can be rewriften :

Lw, = A, w, ae. in{2.
It is easily seen that these equalities directly lead to (6.10). O
6.4. LEMMA : For the eigenvalues A" of Problem 2.8 we have
con=AP<scyn Yhashy, (n=1,2,..),
where ¢, ¢, >0 are constants independent of n and h.
Proof : The proof follows from [7, pp. 375-378]. ]
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6.5. THEOREM : Let A, be a simple eigenvalue of Problem 2.1. Then,
choosing conveniently the sign of every w,, hp We have

lim ”wm - Wy, h“
J L
;-0

0. (6.14)

0,2, =
If w,, € H*(2) then, choosing conveniently the sign of W, p, it holds that
Hﬁ)fn—wm,hllo, 0, <Clm)h Vh=ho@m). (6.15)
Moreover, if 82 is of class €' and k; € CY%'(2) then we have
W0~ Wa “Q 0= C(m)h? Yh<hy(m). (6.16)

Proof : We estimate the second term in

“ﬂ/m - wm’h“()’ﬂhs ”ﬂ/m— I, w

nllo o+ 1wn =W ally o - (6:17)

Using (2.14) we obtain

1))

Via Iw, = Z Ty Wy, Wi Dy Wi (6.18)
i=1
and
2 & 2 2
”Hh Wy — W, h“()’ 0, = Z I (Hh Wins wi,h)hl + ‘ (Hh Wins W, h)h -1 | .
l-l:fi?
(6.19)

The first term of the right-hand side is bounded by the right-hand side of
(6.1), where we separately estimate each term.

(i) Let z,, , denote the orthogonal projection of the function wh — I, w,
on the subspace of L,(£2,) with the orthonormal basis {w; h}f(:)l (for the
notation Ww” see Lemma 5.3). Then we have

1{h)

~ 2
Z I (wm - Hh Wi Wi, h)hl
i=1

= “Zm, h“g’ 0, =
= ||ﬂ}m - Hh Win “z’ a, - ”wm - Hh Wi = Zp, h“(Z)! a,” (620)

(ii) For the second term in (6.1) we use Lemma 6.3. Hence we obtain

1(h} . 1(h)
y A;,ﬂ[g + /\mK0|2sC(m)h4_;-5<h2 Y )tij,{) G=1,2), (6.21)
i=1 i=1

i#Em
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where the case j = 2 requires w,, € H>(£2). (This assumption will be made in
every case where j = 1, 2.) Now we estimate /2 Z /\if,ll. By (5.26) we have

AW < A, ,. This result combined with Lemma 6.4 gives

e R A TR I OE= R b

Hence, observing that / (k) = O (h~?),

1(h) I(h)
hZZAf,,‘lscl"th 7P dt < (p+1)Ch2e®
i=1 0
Substitution of this estimate in (6.21) gives
Ih)

Y ATHK + Ay Kot = Cm) B P (p + 1) 2P
i=1
i#m

Combining this estimate and (6.20) in (6.1). we arrive at

1y |
2 | Wi hl? = COm| [ = Hyw [}, + @+ 1) R2O 2425
i#m

G=12) (6.22)

Let us denote
vm, h = (IIh Wps Wi, h)h Wi b+

As to the second term of (6.19) we find

l“w’"“o‘nh— l(II/I W wm,h)hll = “wm - vmvh“o, nhs
= “wm_ 11/1 Wn “0‘ 2, + “1‘[/1 Win — vm,h“o‘ nh$
. a@)+2j-2
sC(m)l:"wm—thm”O'n’+\/p+1h 2} G=1,2),

using (6.18) and (6.22) in the last inequality. In view of Lemma 5.1 we
obtain

ll - "vano, 0 l = |- ”wm”;n = |Dm,m,hl SCh4/\m.
h I

Combination of this estimate with the former one results in

Il - |(thm’ Wm,h)hll =

- C(m)[ [~ Tyl o+ P ¥ 1

a\f(p)+2j—é

2} G=1,2). (6.23)
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We can always choose the sign of the function w,, ; in such a way that
(Hh Wins wm, h)h =0.

Combining (6.23) and (6.22) with (6.19) and then with (6.17) we find

- - a(p) 2‘—é
Hw,,,—wm,h”O’ﬂhsC(m)[”wm—thm||0,nh+\/p+lh o 2}
G=1,2). (6.24)

Applying Theorem 4.9 on (6.24) (j = 1, p = 2) leads to (6.14). Estimates
(6.15) and (6.16) follow from the combination of (6.24) (j = 2, p = 1) with

Theorem 4.8. O
By means of Theorem 6.5 it is possible to obtain the error estimate (5.44)
under weaker conditions for the exact eigenfunctions wy, ..., w, _,.

Moreover this estimate can be improved to O(h?) if 802 is of class
&" ! and the coefficients kg € C%'(2).

6.6. THEOREM : Let A, be a simple eigenvalue of Problem 2.1. If
w,, € H?(2) then

[App—Am| <Cm)R' " NYh<ho(m) (=0,1),
where i = 1 if 32 is of class €" "' and ke € C®'(2).
Proof : As in the proof of Lemma 6.2 we find

(Am,h - /\m)(Hh Wi Wiy, h)h =

=AWy — Il Wy, Wy 1)y + Ky(m, m, h) + Ay Kg(m, m, h)

Relation (6.23) (j = 2 and p = 1) combined with (4.12) implies

| T, Wy, W | = Vh<hy(m).

N —

Hence

[ A n = A $2/\m||wm_n,,wm||oyﬂh+2(|1<2| + A, Kol).

Combination of this estimate with (6.9)-(6.10) and with (4.12) or, if
392 is of class €' and ky € C*'(£2), with (4.13) leads to the desired

result. a
To prove the convergence and an error estimate for the approximate
eigenfunctions in the H'(£2,)-norm, we first estimate IT, w,, — Wy -
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6.7. LEMMA : Let A, be a simple eigenvalue of Problem 2.1. Then we
have

lim 142, W = W |, 5 =0 (6.25)
. £l

J
provided that the signs of w,,, n, are conveniently chosen. If w,, € H*({2) then

||thm—wm,,,||l’ﬂhSC(m)h”" Vh<hym) (i =0,1), (6.26)

where i = 1 if 32 is of class €" ' and kej € c®1(2).

Proof : Let us set u, = Il w,, — w,, ;. Using'(2.12), Definition 4.7, (2.5)
and (2.13), we get

Colluy ”f 2, = ay(up uy) = ay(Wy, y) — @y Wy, 4 Uy)
= A [ s Dy + Wy 1) — Wiy 1),
= A n W o )y + L@y W,y uy) —a(wy,, )] . (6.27)
In the first place, we see that ‘
I/\m(ﬁ)m’ U = A, k(W s uh)h' =

= I/\m(ﬂ)m — W, o upy + (A — ’\rﬁ,h)(wm, ho uh)hl

= [A,||Wn "Wm,h”(),ﬂ’;'*' [A, — Am‘h|]||uh||1-,nh
Using similar tricks as in the proof of Lemma 6.3 we obtain R
| O ) = G ] <COOVNI gl , G =1,2),
| @)W wi) — a Wy, )| < Com) \/h4f-3||u,,||1'nh G=12).
Substitution of the last three inequalities in (6.27) results in
Collunlly g, = Al Fm = Wi nlly o + 1A = A sl +Cm) i3

G=1,2), (6.28)

with the estimate for j = 2 being valid only if w,, € H*(£2 ). Combination
with Theorem 6.5 and Theorem 5.12 proves the convergence (6.25). Esti-
mates (6.26) follow from (6.28) combined with Theorems 6.5 and 6.6. The
results are of course evident in the case u, = 0. O
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6.8. THEOREM : Let A,, be a simple eigenvalue of Problem 2.1. Then we
have

i (7w, |
hi =0

(6.29)

L, -

provided that the signs of w,, n, are conveniently chosen. If w,, € H*(2) then
[Wm = W ] p, <Cm)h Yh<hom). (6.30)

Proof : Relations (6.29) and (6.30) follow from (4.15), (6.25) and (4.12),
(6.26), respectively. O

6.9. Concluding remark : In the case of eigenfunctions we have obtained
results of the same quality as in [11, Chapter 6].

In the case of eigenvalues, in order to obtain the rate of convergence
O (h*), we cannot avoid the assumption that 342 is of class €% .

The error estimates for both the eigenvalues and the eigenfunctions only
require w,, € H*(£2), while in [11, Theorem 6.5-1] this H?({2 )-regularity is
also required for the eigenfunctions wy, ...

> Wm—l'
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