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ON THE DISCRETE MAXIMUM PRINCIPLE
FOR PARABOLIC DIFFERENCE OPERATORS (*)

by HUNG-JU Kuo (!, 2) and N. S. TRUDINGER (3)

Communicated by R. TEMAM

Abstract. — We derive a discrete analogue for parabolic difference inequalities of the Krylov
maximum principle for parabolic differential inequalities. The result embraces both explicit and
implicit difference schemes and extends to the parabolic case our previous work on linear
elliptic difference inequalities with random coefficients.

Résumé. — Pour des inégalités aux différences paraboliques, on établit I’ analogue discret du
principe du maximum de Krylov connu pour les inégalités paraboliques. Le résultat obtenu
concerne a la fois des schémas aux différences explicites et implicites et est une généralisation
au cas parabolique de notre travail antérieur concernant les inégalités aux différences
elliptiques linéaires a coefficients aléatoires.

AMS MOS : Primary : 65M06, 35K20, 39A70 ; Secondary : 35A15, 65M12, 39A10.

1. INTRODUCTION
In this paper we establish discrete versions of the Krylov maximum

principle (4, 5] for linear parabolic partial differential operators of the form
Q"u:aijDiju+biD,L¢+cu—Dtu (1.1)

in cylindrical regions 0" = 2 x R* <« R"*!, where 2 is a domain in
Euclidean n-space, R". Our results are analogues of the discrete version of
the Aleksandrov maximum principle for elliptic operators,

Lu=a’Dju+b D, u+cu, (1.2)
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720 HUNG-JU KUO, N. S. TRUDINGER

established in our previous work [6] (Theorem 2.1). As in [6], our estimates
are formulated in such a way that their continuous versions follow via
Taylor’s formula.

Our discretizations of the operator (1.1) will involve linear difference
operators, essentially of positive type, acting on space-time mesh functions.
We will consider meshes in R”*! of the form,

E:Elz,T:ZZXZT
={0)eR"*x=(n,...,m)ht =mr,m,meZ} (1.3)

with spatial mesh length # = 0 and time step 7 > 0. A real-valued function
on E is called a mesh function and, for fixed y # 0, € Zj, we define the
following basic difference operators, acting on the linear space of mesh
functions, % (E):

8 ulx, t) = I—;T {ux+y, t)—ux, 1)},

5y ulx, t) = T)l’—l {uCe, t) —ulx -y, 1)},

8, u(x, t) :%(5; + 8y ) ulx, t)zﬁTlﬂ {ux+y, 1) —ulx—-y, )},

S u(x, 1) =258/ 8; ux, t) 9
= l;|2 {uCx+y, 1) =2u(x, t)+ulx -y, 1)},

87 u(x, t) =_11: {u@x, t)—u(x,t— 1)} .

The spatial part of our difference operators will be determined by second
order difference operators of the form

Lyu(x, t)=3 alx t,y) 82ulx, 1)+

y

+ Zb(x, t,y)8,ux, t)+cx, t)ulx, t) (1.5)

with real coefficients a, b, ¢, having compact support with respect to
y, and satisfying as in [6], the condition

1
alx, t,y) -3 ly| |b(x, 2, ¥)] =0. (1.6)

Such operators can be used to approximate uniformly elliptic differential
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ON THE DISCRETE MAXIMUM PRINCIPLE 721

operators of the form (1.2) ([6, 8]). From the operators (1.5) we construct
parabolic difference operators of the form

F@Oyx, t) = ﬂ”,ff’,)u(x, t)
=0-a)Lyux,t)+alL,u(x,t —7)— 8, u(x, t) (1.7)

where « is a fixed number satisfying O < @ < 1. When a = 0, the operator
Z 1is called implicit, when a« = 1, the operator Z is called explicit and the
general case is refered to as explicit-implicit in correspondence with the
resultant difference schemes. The operators (1.7) are of positive type (as
defined by Motzkin and Wasow [8], see also [7]), if, as well as (1.6)
holding, we have

m(zzﬂ"t’Ty)—c(x, z)) <1, (1.8)
Tyl
l-a)cx,t)+ ac(x,t —7)=<0. (1.9)

In the parabolic case, (1.9) can be achieved by replacement of u by
¢“" u for an appropriate constant C, provided 7 is sufficiently small.
Consequently only (1.6) and (1.8) will be essential for us with (1.9) being
replaced by a weaker condition (see (2.6)).

We shall formulate a discrete version of the Krylov maximum principle in
the next section for operators & () satisfying stricter conditions than (1.6)
and (1.8) corresponding to the non-degeneracy condition assumed in [6]. In
Section 3 we provide some basic inequalities from Krylov’s paper [4] which
are used in our proof which is supplied in Section 4. Finally in Section 5 we
relate the discrete and continuous versions of the maximum principle. In an
ensuing paper, we shall apply Theorem 2.1 to the derivation of local
estimates, corresponding to those in the elliptic case [6].

2. THE DISCRETE MAXIMUM PRINCIPLE

In this section we formulate a discrete maximum principle for the operator
Z ) Theorem 2.1. The spatial operators L, in (1.5) will be subjected to the
same non-degeneracy condition as in [6]. That is, as well as (1.6), we
assume for each point xe 2, and ¢t =m7, m=0,1, ..., N for some
N € N, there exists an orthogonal set of vectors yl, ..., " € Z} such that

a- a){a(x, t,y') - |—y2—| |b(x, ¢, yf)|} +
+ a{a(x, t— T, y')—% |bx, t — 7, yi)|} =A;(x,t)=0, (2.1)
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722 HUNG-JU KUO, N. S. TRUDINGER

i =1, ..., n. Furthermore we will assume the coefficients a vanish whenever
Iyl = |yl,>Kh

for some fixed K € N and write
2 =D(x,t)= H Ai(x, t) (2.2)
i =1

a(x, t) = Za(x, t,y), b t)= Z |b(x, t, ¥,

¥y
ay=maxa(x,t), by=maxb(x,t), ¢y =maxc®(xt).
We also need to assume non-degeneracy with respect to the time variable and
this we do by strengthening the condition (1.8) to
alx, t,y)
arT 22——2——c(x,t) =1l -y t) (2.3)

S b
for some positive function . Note that (2.3) will be satisfied if the time step
7 and the ratio 7/h? are sufficiently small, in particular if

2 aagKr/h* + arcy <1. (2.4)

When the operator & is implicit, « = 0 and (2.3), (2.4) are automatically
satisfied. Combining (2.2) with (2.3), we also write

L
G, )=y t—7)D(x, 1), D*=(F)"*". (2.5)

In accordance with our remarks after condition (1.9), we shall replace (1.9)
by the condition

(l-—a)rc=sl—pn (2.6)

where w is a positive constant. Writing 7 = 7N, we distinguish interior and
boundary points in the discrete cylinder

Qh,‘r = th (Zfrﬁ [05 T]),

corresponding to the operators & }*). First we define the discrete interiors

h, 7°

and boundaries of the set £2, corresponding to the operators Z ) by

0)t)={xe2,|Q1 —a)alx, t,y)+aalx, t—7,y)=0,Vx+y¢ 2,}
Q) = 2, - 250).
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ON THE DISCRETE MAXIMUM PRINCIPLE 723

The discrete parabolic interior and boundary of the cylinder Q, , are then
defined by

Q. U.Q,?(mr)x {m7}

{x, )e Oy ,|(1 —a) a(x, t,y)+ aalx,t —7,y)=0,
V(X'*')’, l)¢Qh,'r’ t>0}

QZ,T:Qh,'r—Qg,T
= U [25m7)x {mT}]U [£2,x {0}].

m=1

We also need to recall the notion of upper contact set, as used in [6].
Namely, if u is a spatial mesh function defined on £2,, we define the upper
contact set of u, I'" = I'* (u) to be the subset where u is concave, that is
I'* consists of those points x in {2, for which there exists a hyperplane
P = P(x) in R"*' passing through (x, u(x)) and lying above the graph of
u. For a space-time mesh function u defined on the cylinder Q) , we then
define its spatial upper contact set by

r'=r-ws={xneQ,, |lxerl’}

where I';] denotes the upper contact set on {2, of the spatial mesh function,

u'(x) = u(x, t). We also define the increasing set of a space-time mesh -
function u by

I=ITw)={(x1)eQ,  |ulx,t)>u(x, s) foralls, 0<ss<t}
and let
=L wu)y=r+nlI

denote the increasing-upper contact set of u. We can now state the following
discrete analogues of the Krylov maximum principle corresponding to the
operator ), 0= a < 1.

THEOREM 2.1: Let u be a space-time mesh function on the cylinder
O, . satisfying the difference inequality,

Z®u=f in Q) ,, 2.7
together with the boundary condition,

u<0 in Qf ., (2.8)

vol. 27, n° 6, 1993



724 HUNG-JU KUO, N. S. TRUDINGER

Then we have the estimate

n

max u<CR"* | f1D*|| nsr gy (2.9)
QIL 7
. . by T
where C is a constant depending only on n, K, p, = ¢y T, R = diam {2

and & is the increasing-upper contact set of u.

We remark that, as with the continuous case [4, 5], the estimate (2.8) is
one of several variants which stem from the special case by = ¢j = 0. A
more explicit form of the constant C, with an exponential dependence on the
quantities by and ¢y will be given in the course of the proof of Theorem 2.1.
With the integral norm in (2.9) taken over &, rather than Q,, ,, the estimate
(2.9) actually corresponds to refinements of the original Krylov estimate due
to Nazarov and Ural’tseva [9], Reye [10] and Tso [11]. The form of estimate
(2.9), involving the integral L**! norm, rather than a sup norm, will be
crucial in deriving local estimates and subsequent stability results in our
ensuing paper (cf. [6, 71).

3. PRELIMINARIES

Our proof of the maximum principle, Theorem 2.1 is based on certain
inequalities of Krylov [4], together with the discrete adaptation in [6] of the
geometric argument of Aleksandrov. As in [6], the notion of normal
mapping (or supergradient) is crucial, the normal mapping of a spatial mesh
function u# on the set (2, being defined by

x@) =x,0)={peRu@)<sux)+p.z—x), Vze2,}. (3.1

The upper contact set I'* of u is thus the subset of {2, where x, is non-
empty. Note that in the discrete case, x(£2,) = R" and that x (x) is
unbounded whenever x is an extreme point of the convex hull of
£2,, which we denote as £2,. The basic inequalities we need are encompassed

in the following lemmas, which correspond to special cases of [4],
Corollary 1.

LEMMA 3.1 : Let u and v be mesh functions on (2, vanishing at extreme
points of .(},, and satisfying u=v on £2,. Then we have the inequalities,

0= Y @@x,®|-v@®|x, ()] =

xen,

snm+1) Z w-v)®|x,®|. 3.2

xe 2y
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Note that in (3.2), we use |S| to denote the n dimensional Lebesgue measure
of a measurable set S in R" and the terms in the above sums are understood to
vanish whenever u and v vanish, in particular at the extreme points of the

convex set .()h. In fact there is no loss of generality in replacing the functions
u and v in Lemma 3.1 by their concave envelopes which then vanish on
a{)h. In this form, Lemma 3.1, is directly covered by Krylov [4].

LEMMA 3.2 : Let u be a mesh function of £2,, vanishing at extreme points

of flh. Then for any z € £2,, we have the estimate,

1
n

dz n+1
u(z) = {Z— Z u(x)lxu(x)I] s (3.3)

nxen,

where d, = max |z —x]|.
xe 2,

For completeness, we shall describe the proofs of Lemmas 3.1, 3.2
following Krylov [4]. First we need their analogues for smooth functions.
Setting Q= 2 x (0, T) and assuming u € C®(R"*'), with u =0 on
02 x (0, T), we have, by integration by parts,

H D,u(detDzu)dxdr=—H uD,(det D* u) dx dt +
Or

T

+ J {ulx, T) det D> u(x, T) — u(x, 0) det D? u(x, 0)} dx.
0 s

Letting [#"] denote the cofactor matrix of the Hessian matrix D? u, we then
have

H uD,(det D* u)dx dt = H uu' D, u dx dt
Qr Qr

= JJ (D;j u) u’ D, udx dt
Or

n H (det D> u) D, u dx dt ,
Or

i

by integration by parts, since ) D; u’ = 0, for each j. Accordingly, we
obtain the identity, i=1

n+1) ﬂ D, u(det D* u) dx dt =
Or

= J {u(x, T) det D u(x, T) — u(x, 0) det D* u(x, T)} dx. (3.4)
o)

vol. 27, n° 6, 1993



726 HUNG-JU KUO, N. S. TRUDINGER

Now let us assume that {2 is convex and that # and v are convex functions in
C?(42) vanishing on the boundary 82, with u <v in £2. Setting

wx,t)= (1 —-1t)ulx)+ tv(x),

we shall apply (3.4) to w on Q,. Since D*w =0 by convexity and
D,w=v—u=0, we see immediately that

f udetDzusJ vdetD?v . (3.5)
n n

Furthermore,
D,” w,detDzw} =J D, wyw! Dy, w
0N N

= - J wij(Di,w)Djtw
0
=0

since [w”] =0, by virtue of the convexity of w. Hence

jw,detDzwsJ v — u)det D2 w(x, 0)
n 7]

= J v —u)detD?u,
n
so that from (3.4) and (3.5) we conclude

Osj (vdetDzv—udetDzu)s(n+1)J (v —u)det D* u, (3.6)
N n

which is the smooth version of (3.2). The passage from (3.6) to (3.2) is
achieved by approximation. If u is a concave function on {2, we define a
Borel measure w, by

@, (E) = |x.(E)| (3.7)

for any Borel set E < 2. Clearly, o, is finite if ue C%!(2) and
furthermore, when u € C2(£2 ), we have the representation

w, (E) = J det (— D% u), (3.8)
E

so that w, is absolutely continuous with respect to Lebesgue measure.

M? AN Modélisation mathématique et Analyse numérique
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Switching from convex to concave functions, it follows that we can write
(3.6) in the form

Osf (udw“—vdwv)s(n+l)f u-v)do,,
o Jo

where u, v € C% 1 (£2) N C?(2) are concave on {2, vanish on 342 and satisfy
u=v in {2. Using the property that the sequence of measures {‘"u,,.}
converges weakly to »,, when the sequence {u,} converges uniformly to
u, we may then extend (3.9) to concave functions u, v € C% 1(£2) and (3.2)
thus follows as a special case ; (see [2, 4] for further details). The estimate

(3.3) follows from the first inequality in (3.9), as in [4], by taking
v to be the conical function

v(x) = u(z)(l _I_x(_j‘z—zl.) ,

on the ball {|x —z| <d,}.

4. PROOF OF THEOREM 2.1

First we consider the case when b = ¢ = 0. It is convenient to consider the
difference inequality (2.7) as a system of difference inequalities for the
spatial mesh functions u,,, m =0, ..., N given by

U, =ulx, mr). “4.1)
Writing «

a,(x, y)=alx, y, mr), f,(x)=f(&x mr),
.(2,(,), = .Q,?(mr), (),l,’, = .Q,b,’(mr) )

we see that (2.7), (2.8) are thus equivalent to the system,
(1 - C!)Zam(‘x’ y) sfum(-x) + @ Zam—l(x’ y) 6)?um=—l(x) -
1
- () —u, 1 (x)) (4.2)

=f,(x), for xe 29,

. b
u,<0, in £2,,
uy<0, m=1,.,N.

vol. 27, n® 6, 1993



728 HUNG-JU KUO, N. S. TRUDINGER

In order to use Lemma 3.1, we need to replace u,, by an increasing sequence
v,, defined by

J— +
U, = max uj .

j=m

We observe that v, = 0 in m NP vy=0, m=1,.. N and moreover,
setting j=m
am:(lﬁa)am_*'aam—lv

it follows that whenever v
the difference inequality

x)=v,,_,&x), thenv, (x) = u,(x), and we have

m

> e, y) 820, (x)=
= -a)d a,kxy) 82 u,(x) + a Y a1 (X Y) 82 u, 1 (x)

m — (’ )
—2a Za—T‘y;—y (g (X) = 14y, (X))

= (é‘z @ Zam__l‘l)T(;Cz’—y) ) (unz(x)'—un1—1(x))+fm(x)

m—1(x)
= Y_Tlx— (um — Uy _ 1)(.X) + fm(x) (43)

by (4.2), (2.3) where vy,(x)= v m7), m=1,..,N. Letting I'} =
I'*(v,) and
L= {xel|v,x)>v, ()}

we can now follow our proof of Theorem 2.1 in [6], to obtain
520, <0 (4.4)

for all xe I')}, x + v e 2, Consequently, from (4.3), we have

- Z am('x’ yl)a)% Um(x) +
i=1

L @) @)= ) (@45)

for x € &,,, where y = y'(x, mr), is as in (2.1). Letting x,, = x, , We can
then estimate, as in [6], Theorem 2.1,

a0 =[] ﬁ 20,() —v(x+y) - v(x -y}
P=1

=[] = 1¥'183 v,(x)), (4.6)

i=1
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so that using the arithmetic geometric mean inequality, we obtain from (4.5),

T Ifm(x)l n+ 1l n i
(Um_'vnz—l)(x)lxm(x)lsy ]< ) n%

m_ n+1 oy,

“4.7)

= (Kh)”r< £ 0] )1

n+1)2k

where
L
n n+1
@rj: = <7m1 H Ai,m)
i=1

Ai,m(x)z/\i(x, WL’T), m:O, ,N

Since the left hand side of (4.7) vanishes for x ¢ & ,,, the inequality clearly
extends to all x € £2, with f (x) replaced by zero for x ¢ &,. We are now
in a position to apply Lemma 3.1. Indeed this yields the estimate

Z Um(X)l,\/m(X)l - um~1(x)IXm—1(x)| =

YE f2y

s(n+1) Z v, — Um—l)(x)l/\/m(x)l

xe 2y,

. |fm(x)| n+1
= ¥ (&h) T(m> . (4.8)

xef,

(Note that, by virtue of condition (2.1), the extreme points of o) p lie in
027, Ym). Summing (4.8) from m = 1 to N and using v, = O we thus obtain

N . Ifm(x)l n+1
Z oy )| xn ()] = Z z (Kh) T(m) . 4.9

xe 2, m=1xe%,

Hence we conclude from Lemma 3.2,

1 n

(w”)in—(vl (KR)II+1 %

max vy <
0, (n+1)

1

{Z AR (lf;(f:)l) }M (4.10)

m=1xe%,

and the estimate (2.9) for the case b = ¢ = 0.

vol. 27, n° 6, 1993



730 HUNG-JU KUO, N S TRUDINGER
To treat the general case, we 1ntroduce a modified mesh function

# and corresponding operators Z , defined by

ax,t)=e Yu, t)
Z,ux,t)=0—a)er L, u(x, t)+

+alyu(x,t—7)—86; u(x,t), (4.11)
where A 1s a non-negative constant to be determined later. Since

Lyu(x,t)y=e*L,u(xt),

Ly, t—7)=e "L uCx,t—1)
S, u(x, t)=e 278 u(x, t)—% (e —1)u(x, t)
we obtain, from the differential inequality (2.6),
Z, ux, t)=e " F ux,t) +% (e™ —1)u(x, 1)
= f" (x,t)+%(e”‘—l)ﬁ(x,t) 4.12)

in Q‘,f, .- By virtue of conditions (1.6), (1.8), it follows that the operator
%, given by
.faﬁ:,@"aﬁ—%(em—l)ﬁ
is of positive type provided the analogue of (1.9) holds, that 1s
T{ac(x,t—7)+e(1-a)clx, t)) <e™-1. (4.13)

Clearly, (4.13) will hold for some constant A if 7(1 — @) ¢ < 1, that is if
(2.6) holds. But if (1.6) (1.8) hold and & , is nondegenerate in the sense that
a(x, t,y)=0 for some y, then Trac> —1 by (1.8) and this becomes a
necessary condition for (4.13). Accordingly, (1.6), (1.8) and (2.6) are both
necessary and sufficient conditions for the operator Z » to be of positive type
for some constant A.

Returning to the proof of Theorem 2.1, we now define spatial mesh
functions u,, v,, by

U, =u(lx, mr), v,(x, mr)=max (i4,)" (x) 4.14)

J=m
and let I',,, &, be as before. Setting
bp(x,y)=0bWx, y, m7), ¢(,x)=cx, mr),

M? AN Modélisation mathématique et Analyse numérique
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ON THE DISCRETE MAXIMUM PRINCIPLE 731

together with
(am, B Km) = (1 - a)eTA(am, bms Cm) + a(am—lv bm-— 1> Cm'—l) >
we then obtain, in place of (4.3), using the positive type condition (1.6),

Y @, ) 87 0,(x) + Y Brulx, ) 8, 0,(X) + K (X) 0, (x) =

=7, ux, m'r)+{1 ( 22 m-1057) cmwl(x))}x

|12
X (vm - vm—l)(x)

L % € -1)v,x), 4.15)

whenever v,,(x)>v,, _,(x). Now for each x € I';}, there exists a vector
P € X, and consequently for each y # 0, number r, € [0, 1] such that

p.y

p:
N b4

=r, 8, v, (x)+ (1 —r,)) 8, v, (x).
Thus,

6yvm(x):%(5;+8y“)vm(x)
=py+ (r=3 ) 6 + 830,00,
o CEE S INETHOR

Therefore, since 82v,,(x)<0 in I',, we obtain from (4.15),

Zam(x’ y) Sjvm(x) + Zﬁm(x’ )’)Py + Km vm(-x)2

22t o )~ fa )+ T - 1o, (416)

for all x e &,,, where we have set
T 9) = a6 )~ 2L B )= 0by 2.9).

To estimate p,, we replace the domain {2 above by

= {x e R"|dist (x, 2) <kR}

vol. 27, n°® 6, 1993



732 HUNG-JU KUO, N. S. TRUDINGER

where £ is a positive constant and R is the diameter of (2. Extending the mesh
function u to vanish outside Q, ,, we clearly arrive at (4.16) again, for the

corresponding extended functions v,, with {2 replaced by 2. But then we
can estimate for x € I';, p € x,,(x),

Uy (X)

Pl = ————,
dist (x, 9.02)
v, (x)

= kR

Consequently, from (4.16), we obtain

Y @, (x, y)8}0v,x) - Z'—}r@ O =V DX + [, (X)) =

W

1, ., 1
{:(eA_ 1)_Km(x)fﬁz [ﬁm(x’y)'} Um(X),

b
= {%(ETA_ 1)‘ (l _a)BOeTA‘aBO} vm(x)v (forBO:—i+cg) >

kR
=0, 4.17)
provided
1 By<1, A 5o 4.18
(1-a)mBy<1, "1 - (0 -a) By (4.13)
Invoking (2.6), we can satisfy (4.18) by fixing & and A such that
(I + &)1 —a)7hy 1+e [ bo
k= , A= ~ | — + .
R - ( ) ) 4.19)

for some e > 0. With these choices of k and A, we thus obtain the difference
inequality (4.5) with «,, replaced by @,, and the estimate (4.10) follows as
before. Returning to our original function u, we then conclude the estimate,

1 n

max u < w, '1+1[K(k+ I)R]n+1 eATuf/@*“Lm.i(y), (4.20)

0 n+1

where k£ and A are given by (4.19). Furthermore, by appropriate choice
k= by T/nR, we may write (4.20) in the form

n
n

b T\ AT
max u<sCyn)K"~ (R+—> X
O, - M

x exp[Cc§ Tin || f12*|

sty (421)
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where C, and C, are positive constants. This completes the proot of

Theorem 2.1.

Remarks :

(i) It is clear from the above proof that the constant K in the estimates
(2.9), (4.10), (4.20), (4.21) can be replaced by

K = max |y'|
Q. -
i=1,..,n

(ii) When & is explicit, thatis « = 1, wecantake C;, = # = 1 in (4.21).
(iit) When by = 0, we can take k = 0, 0 =0, C, = 1 so that the estimate
(4.21) reduces to

n

max u < Cy(n)(KR)"*! explcg T/,u]”f/@*“Lnu(y
O, +

o (4.22)

(iv) Utilizing the above case, by = 0, and following the proof of Theorem
2.1, we obtain in the general case,

n

max u<Cy(n)(Kk+1)R)"*" explco T/p]-
Q. -

max u”
-(nf/@*||y,+l(5,)+ X ||b/9*||L,,+l(y)>. (4.23)

By appropriate choice of k, we then conclude the estimate
n
max u=C (R"“ + ||b/@*||2,,+1(y)) VF1D% |y (424)
Q. -

where now C depends on n, K and ¢y T/u.

5. SEMIDISCRETE SCHEMES

By letting either of the parameters %, 7 tend to zero, we can recover
estimates for semidiscrete schemes. For a continuous time scheme, we
consider the spatially discrete mesh £ = E, = Z} x R, with mesh function
u € 4 (E) assumed to be absolutely continuous with respect to time. The
operator & = %, is defined by

Fu(x,t)y=Lyu(x,t)-D,u, (5.1)
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for almost all #, and our hypotheses on & reduce to (1.6), (2.1) with
Z* = @ § defined by

n 1/(n+1)
Z*(x,t) = (H A {x, t))
=1

The discrete parabolic interior and boundary of the cylinder Q, = Q) x
(0, T, corresponding to &, are then defined by

0) = {(x, 1) e Qylalx, t,y) =0Vx+y ¢ 2,)
Or =0,-0).

The increasing upper contact set & of the mesh function u is defined as
before. Corresponding to Theorem 2.1, we then have the following estimate.

-

THEOREM 5.1 : Let u be a space-time mesh function in the cylinder
Q,,, satisfying the differential-difference inequality,

Fu=f in Q), (5.2)
together with the boundary conditions,
u<0 in Qf. (5.3)

where f is a mesh function satisfying fI2* € L"*'(& ). Then we have the
estimate,

n

max MSCR"+II|f/@*|ILrl+I(y), (54)
Qn

where C depends on n, K, byTIR, cg T and R = diam .
The norm in (5.4) is defined by

T Up
g1y = { ) h”|Xyg(X,T)|pdx}

0 xe 2y

for g = f/2*, p=n+ 1, where x4 denotes the characteristic function of
& in Q,. Theorem 5.1 follows from Theorem 2.1 with « = 0, by sending
7 to zero and observing that we may express (5.2) in the integral form,

ljt Lhu(x,s)ds—éfu(x,t)aéjl fx, s)ds (5.5

T
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forall (x,t)e Q) t=7=0. Alternatively, it can be proved directly from
the spatially discrete version of the identity (3.4) and Lemma 3.2. The
remarks at the end of Section 4, with « = 0, 7 — 0 also apply here.

When we let the spatial mesh length /4 tend to zero, we obtain a system of
elliptic operators of the form

Zoux, )= (1 —-a)Lu(x,t)+ alu(x,t —7) -8 u(x,t) (5.6)

where now E = R" x Z, and
Lu(x,t) =Y a(x,y, 1) Dy u(x, y) +
y
+ Zb(x, y»)Dyulx, t)+clx, Hulx, t), (5.7)

where y = y/|y| and the first and second spatial derivatives of the mesh
function u are assumed to exist in a reasonable sense, for example
u, € CX(R") for each m, where u,(x)= u(x, mr). In order to fulfill

conditions (1.6), (2.1), (2.3), (2.6) as A —» 0, we clearly must restrict to the
implicit case a = 0, whence we take

Fux, t)y=Lu(x,t)— 86, u(x, t) (5.8)
and conditions (1.6), (2.1), (2.6) reduce to

alx,y,t)=0, a(x,y,t)=A,(x,1t)=>0, (5.9)
re(x,t)<1—p. (5.10)

Utilizing the representation of Motzkin-Wasow [8] (see also [6]), we may
replace (5.7) by any uniformly elliptic operator L of the form

Lu(x,t)=a’x, t)D,ux, t)+b'(x,t)D, ulx, t) +c(c, t)ulx, t) (5.11)

satisfying (5.10) and deduce an appropriate analogue of Theorem 2.1, by
letting # — 0. However the proof of Theorem 2.1 can be applied directly to
the operators &, similar to the approach in [4], to get results for non-
uniformly parabolic operators. Letting 0, = 2 x {m7}" |, we assume that
the operator L is elliptic in Q, for each ¢, that is the coefficient matrix
[a"] is positive for all x, ¢t € Q,, and write

|
2* = (det [a"])"*', by,=max |b|, ¢ =max c* .
0 0
Q, Q.

Corresponding to Theorem 2.1, 5.1, we now have the following discrete
time estimate.
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THEOREM 5.2 : Let u, f be mesh functions on Q., with u,, € C*(2)N
C%2), f,e L' (R2) for each n=1, ..., N, sausfying the differential-
difference inequality

Zu=f m Q,, (5.12)
together with the boundary condition
u,<0 on 32, uy<0, m=1,..,N. (5.13)

Then we have the estimate

n

sup u<CR"* |\ f1D*| ey, (5.14)
0,

where C 1s a constant depending only on n, i, by T/R, c¢§ R, & denotes the
increasing-upper contact set of u and R = diam (2.
The norm 1n (5.14) is defined by

N lip
”g”LI’(y) = { Z Tlxy 9 (x, m7)|pdx}
0

m=1

for g = f/12*, p =n+ 1, where x4 denotes the characteristic function of
& in Q,. Corresponding remarks to Remarks (1) and (1v) at the end of
Section 4 also apply here. In order to directly adapt our previous proof, we
also use that the concave hull of a function u e C?(£2) belongs to
C'(£2), ([9]1, [10]). By sending 7 — 0 in Theorem 5.2 we obtain the
estimates of [4, 9, 10, 11], but these can also be deduced directly from (3.4)
and Lemma 3.2.
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