@article{M2AN_1994__28_5_517_0, author = {Schwab, C.}, title = {Boundary layer resolution in hierarchical models of laminated composites}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {517--537}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {5}, year = {1994}, mrnumber = {1295585}, zbl = {0817.73038}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1994__28_5_517_0/} }
TY - JOUR AU - Schwab, C. TI - Boundary layer resolution in hierarchical models of laminated composites JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 517 EP - 537 VL - 28 IS - 5 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1994__28_5_517_0/ LA - en ID - M2AN_1994__28_5_517_0 ER -
%0 Journal Article %A Schwab, C. %T Boundary layer resolution in hierarchical models of laminated composites %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 517-537 %V 28 %N 5 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1994__28_5_517_0/ %G en %F M2AN_1994__28_5_517_0
Schwab, C. Boundary layer resolution in hierarchical models of laminated composites. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 5, pp. 517-537. http://archive.numdam.org/item/M2AN_1994__28_5_517_0/
[1] Survey lectures on the mathematical foundation of the finite element method in The mathematical foundations of the finite element method with applications to partial differential equations, A. K. Aziz, Ed., Academic Press, New York, 3-343 | MR | Zbl
, , 1972,[2] Hierarchic Models for Laminated Composites, Int. Journ. Num. Meth. Eng., 33, 503-536. | MR | Zbl
, , , 1992,[3] A posteriori error estimation for hierarchie models of elliptic boundary value problems on thin domains (in press m SIAM J. Numer. Anal.). | MR | Zbl
, , 1994,[4] Plates and Junctions in Elastic Multistructures, Masson Publishers and Springer Verlag, Paris and New York. | Zbl
, 1992,[5] Adaptive dimensional reduction solution of monotone quasilinear boundary value problems, SIAM J. Num. Anal., 29, 1294-1320. | MR | Zbl
, 1992,[6] Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris. | MR
, 1967,[7] Boundary Loyer Resolution in Hierarchical Plate Modelling, Preprint 92-13, Dept of Mathematics & Statistics, UMBC. | MR | Zbl
,[8] Singular Integrais and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ. | MR | Zbl
, 1970,[9] On a dimensional reduction method, part I, II & III, Math. Comp., 37, 31-68 and 361-384. | MR | Zbl
, , 1981,