@article{M2AN_1994__28_5_611_0, author = {Wei, Yuting}, title = {Stabilized finite element methods for miscible displacement in porous media}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {611--665}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {5}, year = {1994}, mrnumber = {1295589}, zbl = {0853.76042}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1994__28_5_611_0/} }
TY - JOUR AU - Wei, Yuting TI - Stabilized finite element methods for miscible displacement in porous media JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 611 EP - 665 VL - 28 IS - 5 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1994__28_5_611_0/ LA - en ID - M2AN_1994__28_5_611_0 ER -
%0 Journal Article %A Wei, Yuting %T Stabilized finite element methods for miscible displacement in porous media %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 611-665 %V 28 %N 5 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1994__28_5_611_0/ %G en %F M2AN_1994__28_5_611_0
Wei, Yuting. Stabilized finite element methods for miscible displacement in porous media. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 5, pp. 611-665. http://archive.numdam.org/item/M2AN_1994__28_5_611_0/
[1] Dynamics of Fluids in Porous Media, Dover Publication, Inc., New York.
, 1988,[2] Transport Phenomena, John Wiley, New York.
, , , 1966,[3] Mixed and Hybrid Finite Element Methods, Springer-Verlag. | MR | Zbl
, , 1991,[4] Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Meths, 32, 199-259. | MR | Zbl
, , 1982,[5] The Runge-Kutta local projection P' discontinuous Galerkin finite element method for scalar conservation laws, RAIRO-Model. Math. Anal. Numer., 25, 337-361. | EuDML | Numdam | MR | Zbl
, , 1991,[6] Godunov-mixed methods for advective flow problems in one space dimension, SIAM J. Numer. Anal., 28, 1282-1309. | MR | Zbl
, 1991,[7] Simulation of miscible displacement in porous media by a modified method of characteristics procedure, In Numerical Analysis, Dundee 1981, vol. 912 of Lecture Notes in Mathematics, Springer-Verlag, Berlin. | MR | Zbl
, 1982,[8] Numerical methods for the flow of miscible fluids in porous media, In Numerical Methods in Coupled Systems, pp. 405-439, John Wiley and Sons Ltd., London, R. W. Lewis, P. Bettess and E. Hinton, Eds. | Zbl
, 1984,[9] A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, R. A. I. R. O., Anal. Numér., 17, 249-265. | EuDML | Numdam | MR | Zbl
, , , 1983,[10] The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O., Anal. Numér., 17, 17-33. | Numdam | MR | Zbl
, , , 1983,[11] A derivation for Darcy's law for miscible fluids and a revised model for miscible displacement in porous media, In Mathematical Modeling in Water Resources, vol. 2, pp. 165-178, Computational Mechamcs Publications, Elsevier Applied Science, Southampton, Boston, T. F. RUSSELL, E. R. EWING, C. A. BREBBIA, W. G. GRAY, G. F. PINDER, Eds.
, , , , , , , , 1992,[12] Numerical methods for a model for compressible miscible displacement in porous media, Math. Comp., 41, 441-459. | MR | Zbl
, , 1983,[13] Numerical methods for convectiondominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal.,19, 871-885. | MR | Zbl
, , 1982,[14] On the approximation of miscible displacement in porous media by a method of characteristics combined with a mixed method, SIAM J. Numer. Anal., 25, 989-1001. | MR | Zbl
, 1988,[15] The mathematics of reservoir simulation, Frontiers in Applied Mathematics, SIAM, Philadelphia. | MR | Zbl
, 1983,[16] Simulation of miscible displacement using mixed methods and a modified method of characteristics, In Proceedings, Seventh SPE Symposium on Reservoir Simulation, pp. 71-81, Dallas, Texas, Society of Petroleum Engineers, Paper SPE 12241.
, , , 1983,[17] Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comp. Meth. Appl. Mech. Eng., 47, 73-92. | MR | Zbl
, , , 1984,[18] Stabilized finite element methods: II. The incompresible Navier-Stokes Equations, Comput. Meths. Appl. Mech. Engrg., 99, 209-233. | MR | Zbl
, , 1992,[19] Stabilized finite element methods : I. Application to the advective-diffusive model, Comput. Meths. Appl. Mech. Engrg., 95, 253-276. | MR | Zbl
, , , 1992,[20] Finite Element Methods for Navier-Stokes Equations, Theory and Algonthms, Springer-Verlag, Berlin, Heidelberg, New York. | MR | Zbl
, , 1986,[21] Uniformly high-order accurate non-oscilatory schemes I, SIAM J. Numer. Anal., 24 279-309 | MR | Zbl
, , 1987,[22] A multidimensional upwind scheme with no cross-wind diffusion, In Finite Element Methods for Convection Dominated Flows, pp. 19-35. ASME, New York, 1979 T. J. R. HUGUES, ed. | MR | Zbl
, , 1979,[23] A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions : application to the streamline upwind procedure, In Finite Element Methods in Fluids, Wiley, Chichester, R. H. GALLAGHER, ed.
, , 1982,[24] A new finite element formulation for computational fluid dynamics : VIII The Galerkin/least-square method for convective-diffusive equations, Comput. Meths..Appl. Engrg., 73, 173-189. | MR | Zbl
, , , 1989,[25] Upstream weighting and mixed finite elements in the simulation of miscible displacements, Modélisation Mathématique et Analyse Numérique, 19, 443-460. | Numdam | MR | Zbl
, , 1985,[26] Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47, 1-18. | MR | Zbl
, , 1986,[27] Error estimates for some mixed finite element methods for parabolic type problems, R. A. I. R. O., Anal. Numér., 14, 41-78. | Numdam | MR | Zbl
, , 1981,[28] Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal., 22, 947-961. | MR | Zbl
, 1984,[29] Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, Soc. Petroleum Engr. J., 6, 213-216.
, 1966,[30] Fundamentals of Numerical Reservoir Simulation, Elsevier, New York.
, 1977,[31] pivate communication.
, ,[32] Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal., 22, 970-1013. | MR | Zbl
, 1985,[33] TVB uniformly high-order schemes for conservation laws, Math. of. Comp., 49, 105-121. | MR | Zbl
, 1987,[34] Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, R. A. I. R. O. Modél. Math. Anal. Numér., 26, 749-782. | Numdam | MR | Zbl
, 1991,[35] Discontinuous Galerkin - mixed finite element methods for convection - dominated diffusion problems, to appear.
,