An analysis of the cell vertex method
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 28 (1994) no. 6, p. 699-724
@article{M2AN_1994__28_6_699_0,
     author = {Morton, K. W. and Stynes, M.},
     title = {An analysis of the cell vertex method},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {28},
     number = {6},
     year = {1994},
     pages = {699-724},
     zbl = {0822.65078},
     mrnumber = {1302420},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1994__28_6_699_0}
}
Morton, K. W.; Stynes, M. An analysis of the cell vertex method. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 28 (1994) no. 6, pp. 699-724. http://www.numdam.org/item/M2AN_1994__28_6_699_0/

[1] J. W. Barrett and K. W. Morton, 1984, Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems, Computer Methods in Applied Mechanics and Engineering, 45, 97-122. | MR 759805 | Zbl 0562.76086

[2] P. W. Hemker, 1977, A numerical study of stiff two-point boundary problems, PhD thesis, Mathematisch Centrum, Amsterdam. | MR 488784 | Zbl 0426.65043

[3] R. B. Kellogg and A. Tsan, 1978, Analysis of some difference approximations for a singular perturbation problem without turning points, Mathematics of Computation, 32, 1025-1039. | MR 483484 | Zbl 0418.65040

[4] J. A. Mackenzie, 1991, Cell vertex finite volume methods for the solution of the compressible Navier-Stokes equations, PhD thesis, Oxford University Computing Laboratory, 11 Keble Road, Oxford, OX1 3QD.

[5] J. A. Mackenzie and K. W. Morton, 1992 Finite volume solutions of convection-diffusion test problems, Mathematics of Computation, 60(201), 189-220. | MR 1153168 | Zbl 0797.76072

[6] K. W. Morton, 1991, Finite volume methods and their analysis, in J. R. Whiteman, editor, The Mathematics of Finite Elements and Applications VII MAFELAP 1990, Academic Press, 189-214. | MR 1132499 | Zbl 0843.65070

[7] K. W. Morton, 1992, Upwinded test functions for finite element and finite volume methods, in D. F. Griffiths and G. A. Watson, editors, Numerical analysis 1991 Proceedings of the 14th Dundee Conference, June 1991, number 260 in Pitman Research Notes in Mathematics Series, pp. 128-141, Longman Scientific and Technical. | MR 1177232 | Zbl 0801.65096

[8] K. W. Morton, P. I. Crumpton and J. A. Mackenzie, 1993, Cell vertex methods for inviscid and viscous flows, Computers Fluids, 22(2/3), 91-102. | Zbl 0779.76073

[9] K. W. Morton and E. Süli, 1991, Finite volume methods and their analysis, IMA Journal of Numerical Analysis, 11, 241-260. | MR 1105229 | Zbl 0729.65087

[10] M. Stynes and E. O'Riordan, 1991, An analysis of a singularly perturbed two-point boundary value problem using only finite element techniques, Mathematics of Computation, 56, 663-676. | MR 1068809 | Zbl 0718.65062

[11] E. Süli, 1991, The accuracy of finite volume methods on distorted partitions. In J. R. Whiteman, editor. The Proceedings of the Conference on The Mathematics of Finite Elements and Applications VII MAFELAP, pp. 253-260. Academic Press. | MR 1132503

[12] E. Süli, 1992, The accuracy of cell vertex finite volume methods on quadrilateral meshes, Mathematics of Computation, 59(200), 359-382. | MR 1134740 | Zbl 0767.65072