Global error control for the continuous Galerkin finite element method for ordinary differential equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 28 (1994) no. 7, p. 815-852
@article{M2AN_1994__28_7_815_0,
     author = {Estep, Donald and French, Donald},
     title = {Global error control for the continuous Galerkin finite element method for ordinary differential equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {28},
     number = {7},
     year = {1994},
     pages = {815-852},
     zbl = {0822.65054},
     mrnumber = {1309416},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1994__28_7_815_0}
}
Estep, Donald; French, Donald. Global error control for the continuous Galerkin finite element method for ordinary differential equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 28 (1994) no. 7, pp. 815-852. http://www.numdam.org/item/M2AN_1994__28_7_815_0/

[1] P. Ciarlet, 1987, The Finite Element Method for Elliptic Problems. North-Holland, New York. | MR 520174 | Zbl 0383.65058

[2] K. Eriksson, C. Johnson, 1987, Error estimates and automatic time step control for nonlinear parabolic problems, I, SIAM J. Numer. Anal., 24, 12-23. | MR 874731 | Zbl 0618.65104

[3] K. Eriksson, C. Johnson, 1991, Adaptive finite element methods for parabolic problems I a linear model problem, SIAM J. Numer. Anal., 28, 43-77. | MR 1083324 | Zbl 0732.65093

[4] K. Eriksson, C. Johnson, 1992, Adaptive finite element methods for parabolic problems II optimal error estimates in L∞(L2) and L∞(L∞), preprint # 1992-09, Chalmers University of Technology. | MR 1335652 | Zbl 0830.65094

[5] K. Eriksson, C. Johnson, Adaptive finite element methods for parabolic problems III time steps variable in space, in preparation.

[6] K. Eriksson, C. Johnson, 1992, Adaptive finite element methods for parabolic problems IV nonlinear problems, Preprint # 1992-44, Chalmers Umversity of Technology. | MR 1360457 | Zbl 0835.65116

[7] K. Eriksson, C. Johnson, 1993, Adaptive finite element methods for parabolic problems V. long-time integration, preprint # 1993-04, Chalmers University of Technology. | MR 1360458 | Zbl 0835.65117

[8] D. Estep, A posteriori error bounds and global error control for approximations of ordinary differential equations, SIAM J. Numer. Anal. (to appear). | MR 1313704 | Zbl 0820.65052

[9] D. Estep, A. Stuart, The dynamical behavior of the discontinuous Galerkin method and related difference schemes, preprint. | MR 1898746 | Zbl 0998.65080

[10] D. French, S. Jensen, Long time behaviour ofarbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems, preprint. | MR 1283945 | Zbl 0806.65132

[11] D. French, S. Jensen, 1992, Global dynamics of finite element in time approximations to nonlinear evolution problems, International Conference on Innovative Methods in Numerical Analysis, Bressanone, Italy.

[12] D. French, J. Schaeffer, 1990, Continuous finite element methods which preserve energy properties for nonlinear problems, Appl. Math. Comp., 39, 271-295. | MR 1075255 | Zbl 0716.65084

[13] J. Hale, 1980, Ordinary Differential Equations, John Wiley and Sons, Inc., New York. | MR 587488 | Zbl 0186.40901

[14] C. Johnson, 1988, Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25, 908-926. | MR 954791 | Zbl 0661.65076

[15] J. Chaeffer, 1990, Personal communication.

[16] A. Stroud, 1974, Numerical Quadrature and Solution of Ordinary Differential Equations, Applied Mathematical Sciences 10, Springer-Verlag, New York, 1974. | MR 365989 | Zbl 0298.65018