On absorbing boundary conditions for quantum transport equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 28 (1994) no. 7, p. 853-872
@article{M2AN_1994__28_7_853_0,
     author = {Arnold, A.},
     title = {On absorbing boundary conditions for quantum transport equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {28},
     number = {7},
     year = {1994},
     pages = {853-872},
     zbl = {0821.45002},
     mrnumber = {1309417},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1994__28_7_853_0}
}
Arnold, A. On absorbing boundary conditions for quantum transport equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 28 (1994) no. 7, pp. 853-872. http://www.numdam.org/item/M2AN_1994__28_7_853_0/

[1] A. Arnold, P. A. Markowich, N. Mauser, 1991, The one-dimensional periodic Bloch-Poisson equation, M3AS, 1, 83-112. | MR 1105009 | Zbl 0828.34073

[2] A. Arnold, C. Ringhofer, 1995, An operator splitting method forthe Wigner-Poisson problem, to appear in SIAM J. Num. Anal. | MR 1360463 | Zbl 0860.65143

[3] F. A. Buot, K. L. Jensen, 1990, Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices, Phys. Rev. B., 42, 9429-9457.

[4] M. Cessenat, 1985, Théorèmes de trace pour des espaces de fonctions de la neutronique, C. R. Acad. Sc. Paris, tome 300, série I, n° 3, 89-92. | MR 777741 | Zbl 0648.46028

[5] P. Degond, P. A. Markowich, 1990, A quantum transport model for semiconductors : the Wigner-Poisson problem on a bounded Brillouin zone, Modélisation Mathématique et Analyse Numérique, 24, 697-710. | Numdam | MR 1080715 | Zbl 0742.35046

[6] B. Engquist, A. Majda, 1977, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31, 629-651. | MR 436612 | Zbl 0367.65051

[7] W. R. Frensley, 1987, Wigner function model of a resonant-tunneling semiconductor device, Phys. Rev. B, 36, 1570-1580.

[8] T. Ha-Duong, P. Joly, 1990, On the stability analysis of boundary conditions for the wave equation by energy methods, Part I: The homogeneous case, Rapports de Recherche 1306, INRIA. | Zbl 0829.35063

[9] L. Halpern, J. Rauch, 1987, Error analysis for absorbing boundary conditions, Numer. Math., 51, 459-467. | MR 902101 | Zbl 0656.35076

[10] N. Kluksdahl, A. M. Kriman, D. K. Ferry, C. Ringhofer, 1989, Selfconsistent study of the resonant tunneling diode, Phys. Rev. B., 39, 7720-7735.

[11] H. O. Kreiss, 1970, Initial boundary value problems for hyperbolic Systems, Comm. Pure Appl. Math., 23,277-298. | MR 437941 | Zbl 0193.06902

[12] H. O. Kreiss, J. Lorenz, 1989, Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, San Diego. | MR 998379 | Zbl 0689.35001

[13] P. A. Markowich, C. Ringhofer, 1989, An analysis of the quantum Liouville equation, Z. angew. Math. Mech., 69, 121-127. | MR 990011 | Zbl 0682.46047

[14] P. A. Markowich, C. Ringhofer, C. Schmeiser, 1990, Semiconductor Equations, Springer-Verlag, Wien, New York. | MR 1063852 | Zbl 0765.35001

[15] F. Nier, 1993, Asymptotic analysis of a scaled Wigner equation and quantum scattering, To appear in M3AS.

[16] C. Ringhofer, D. Ferry, N. Kluksdahl, 1989, Absorbing boundary conditions for the simulation of quantum transport phenomena, Transport Theory and Statistical Physics, 18, 331-346. | MR 1026635 | Zbl 0703.35163

[17] D. Robert, 1987, Autour de l'Approximation Semi-classique, Birkhauser, Boston. | MR 897108 | Zbl 0621.35001

[18] M. A. Shubin, 1987, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, Heidelberg. | MR 883081 | Zbl 0616.47040

[19] H. Steinrück, 1991, The one-dimensional Wigner-Poisson problem and its relation to the Schrödinger-Poisson problem, SIAM J. Math. Anal., 22, 957-972. | MR 1112058 | Zbl 0738.35077

[20] V. I. Tatarskii, 1983, The Wigner representation of quantum mechanics, Sov. Phys. Usp., 26, 311-327. | MR 730012