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A NEW FORMULATION FOR ARCH STRUCTURES.
APPLICATION TO OPTIMIZATION PROBLEMS (*)

by Véronique LODS C)

Communicated by P -G CIARLET

Abstract — To mimmize costs, which depend on the displacement o f a loaded arch, studied
by following the Budiansky-Sanders's model, we use optimizatwn algorithms The design
variable is the shape <f> of the arch The difficulty is to calculate the descent directions A
method, usedfor example by Habbal and Monano [6, 8], consists in approximating the exact
denvative of the cost Hère, the aim is to justify these calculation of the descent direction For
that, we introducé a mixed formulation, equivalent to the state équation and the coefficients of
which only depend on <j> and on its first denvative, while the coefficients of the usual state
équation depend on the third denvative <}>'" of the shape of the arch By using this mixed
formulation, we can compare these descent directions to the gradient of the approached cost

Résumé —Pour minimiser des coûts, qui dépendent régulièrement du déplacement d'une
arche chargée, étudiée sous le modèle de Budiansky-Sanders\ on utilise des algorithmes de
descente La variable de conception est la forme <f> de l'arche La difficulté ici est de calculer les
directions de descente Une méthode, utilisée par Habbal et Monano [6, 8], consiste à
approcher la différentielle exacte du coût Le but ici est de justifier cette démarche L'idée est de
comparer cette direction de descente avec le gradient du coût approché, dit gradient discret
Pour cela, on introduit une formulation mixte, équivalente à l'équation d'état, et dont les
coefficients dépendent seulement de <f> et de sa dérivée première, alors que les coefficients de
l'équation d'état sont fonction de la dérivée troisième de la forme <f> de l'arche

INTRODUCTION

We consider an elastic loaded arch, studied by following the Budiansky-
Sanders's model. The coefficients of the usual state équation depend on the
third derivative <f> '" of the shape <f> of the arch. We presently give a mixed
formulation, the coefficients of which only depend on <f> and on its first
derivative. This mixed formulation is equivalent to the state équation.
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874 v. LODS

Then, like Bernadou-Ducatel [2], we approach the aren by beams, linked
by rigid hinges. By correctly choosing the discrete mixed spaces, we can
prove the équivalence between the discrete équation of Bernadou-Ducatel
and the discrete mixed problem, which is conforming. Then, we show the
convergence of the discrete displacement, already proved by Bernadou-
Ducatel, with another method.

Now, we wish to numerically minimize costs, which regularly depend on
the displacement of the aren, the design variable being the shape of the aren.
We use descent algorithms. The difficulty is to calculate the descent
direction. The idea is to approach the exact differential of the cost, which
dépends on the displacement and on an adjoint state, by using a finite
element code. Thust, we obtain a descent direction, which is called
discretized continuous gradient. We can hence use the finite element code as
a black box, and avoid calculating the gradient of the rigidity matrix. But, the
convergence of descent algorithms has been proved only if the descent
direction is equal to the discrete gradient, which is, by définition, equal to
the gradient of the approached cost. Numerically, we can observe that the
discretized continuous gradient is not equal to the discrete gradient. S o, in
the gênerai case, if the step h of the finite element method is too large, the
optimization algorithm may give wrong results, if the descent direction is
choosen equal to the discretized continuous gradient. By using the mixed
formulation, we here show that the différence between the discretized
continuous gradient and the discrete gradient converges to zero. So, we can
here use the discretized continuous gradient in our optimization problem.
Numerical results obtained by Habbal are correct.

1. THE CONTINUOUS PROBLEM

1.1. The state équation

The shape of the arch is given by a function <f> belonging to the space :

A = {<j> e WXco(I), suchthat: <t> (0) = <£(l) = 0} ,

where I - ]0, 1 [. If / dénotes the length of the arch, we define the
midsurface of the arch by :

<o = {(jc,y, z ) e R3, xel, z = <j> (JC), y e ]0, / [}

and thus the arch £2 is given by :

O = lm + x 3 n ( m ) , m e <o, x3 e - | , | l ,
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A NEW FORMULATION FOR ARCH STRUCTURES 875

where n{m) dénotes the unit vector normal to a> and e dénotes the thickness
of the arch, which is assumed to be sufficiently small, compared to the
curvature of o>, in order to apply the usual approximations of the Budiansky-
Sanders's model. The loading of the arch is assumed to be invariant with
respect to v, so that the displacement vector belongs to the (x, z ) plane. The
problem is then two dimensional. The local basis (?(m), n(m)\ denoted
also by (t(x\ n(x)\ is given by :

and w smü(+™
where S(<f>) = \ / l + <£'2> and (/, j ) is the canonical basis of R2.

According to the Kirchhoff-Love hypothesis, the displacement vector of
the arch can be calculated from the displacement field of the points belonging
to the midsurface <o. The displacement of a point of a> is given by its pair of
tangential and normal components u{x) = (ux(x\ u2(x)) on the local basis
(t(x), n(x)). The arch being embedded, the pair u — (M1S U2) of components
belongs to the space :

V=Hl
0(I)xHl(I).

From the virtual work principle, the displacement M*, which dépends on
the shape function <f>, satisfies the elliptic state équation ([1], [4]) :

u* e V, a(<f> ; «* , v) = L(<f> ; v), for all veV, (1)

w h e r e :

• the ene rgy a of the a rch is g i v e n by :

j e(4>;v) + DK(4>;u)K(<f>\v)} S(4>)dx

with :

C — Ee and D = E — where E is the Young modulus

and the e membrane energy and the K bending energy are equal to :

ei<f>v) = v [ + v ' and "l*->°)

where the curvature 77—— of o> and the rotation of the normal vector
RW)

6 (<f> ; v ) are defined by :

1 rh " V V f

and e(<f> ; v) = r 2
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876 V. LODS

• the virtual work of the external load L(<f> ; . ) is a linear form on the
space V, which is here choosen equal to the self weight of the arch :

: . , - - ƒ '
Jo

L(<f>;v) = - pe(<f>'vx + v2)dx
Jo

where p dénotes the density of the material.
In the state équation appears <f>m (because of the derivative of the

curvature). We look for a variational formulation for the arch, with
coefficients that depend only on <f> and its first derivative.

1.2. The continuous mixed formulation

When the arch is approached by beams, we impose the continuity of the
displacement vector and of the rotation of the normal vector at each node.
The idea here is to choose the components (ar, p ) of the displacement vector
on the fixed basis (i, j ), and the rotation 6 of the normal vector as the new
variables. But, to find again a mixed finite element scheme equivalent to the
finite element scheme of Bernadou-Ducatel, we have to introducé too the
e membrane energy as a new unknown. Finally, the new unknown is :

wm= (a , p, 0, e) e Vm = Hl
0(I) x Hl

Q(I) x Hl
0(I) x L2(I) .

The following lemma gives the relations between the four variables
(*, P, 0, e).

LEMMA 1 : Let <j> be a function of the space Wx °° (/ ).
1) Let v = (vu v2) be an element of the space V, then we have the

equalities :
a' = 0<f>' + e and (3 ' = - 0 + <f> ' e , (2)

in the space Xm = L2(I) x L 2 (I ) , where :

al + p] = ! > ! ? ( < £ ) + V2ii(<f>), O = 0(<f>;v), e = s(<f>;v). ( 3 )

2 ) We define the space :

W{<f>)= {vm= ( a , p , 0, e) e Vm, suchthat : b(<f> ; V, vm) = 0,

for all fx e Sm) ,

where the continuous bilinear form b(<f> ; . , . ) : Xm x Vm -* IR is given by :

+ 8-<f>f e)}dx. (4)= f1

Jo
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A NEW FORMULATION FOR ARCH STRUCTURES 877

Then the mapping : G(<f>): V -* W{<t>): v = (t^, v2)-+vm = (a, /?, 0, e\
defined by the relations (3), is an isomorphism.

Proof : 1) By differentiating the equality v = vx ?(<£) + v2 n(<f>X we
directly obtain :

We deduce the relation (2) by using the equality v = ai + fij, where the
basis (/, j ) is fixed.

2) Let vm be an element of the space W{<f> ). We define v = (vl9 v2) by the
relation :

(4) = al +

It is easy to verify the equalities :

v e V, e = O{<f>;v) a n d e =

Then, vm = G(<f> )(v) and consequently, G(<^ ) obviously being an injection,
we deduce that it is an isomorphism. D

By using the isomorphism G(<£), we deduce that the state équation (1) is
equivalent to find the function um = (a, /3, e, 0) e W{<}>) such that :

m), for all t ;meW(<^) (5)

where :

, with vm = (a, p, e, $
/o

and :

;i>m) = - f peS(<f>)@dx,
Jo

and we have the relations :

To find the mixed formulation, we characterize um as the solution of the
optimization problem :

minimize - c{<f> ; t?m, i?m) - M(<^ ; vm)

voL 28, n° 7, 1994



878 V. LODS

under the constraint vm e W(</>), which is equivalent to :

& ( 0 ; M , «>«) = 0 , for all p e 2 m .

By writing the Euler's équation of the Lagrangian :

Z(<f> ; / i , vm) = I c(<f> ; i?mf vm) - M(<f> ; vm) + b(<t> ; fi, vn)

we obtain the mixed formulation :

find (wm, A ) G Vm x Xm such that :

vm\ for all t>m G Vm
(o)

! m = 0 for all /ieXm.

Let us observe that the shape function <f> and its first derivative only appears
in this formulation.

We now prove that the state équation is equivalent to the mixed problem.
As the state équation is equivalent to the équation (5), it is enough to show
the équivalence between the équation (5) and the mixed problem. For that,
we apply Brezzi's theorem [3]. We have then to verify that :

1) the continuous bilinear form c(<f> ; . , .) is elliptic on the space

2) the continuous bilinear form b{<f> ; . ; . ) satisfies the L.B.B, condition
[ 3 ] :

inf sup b{<f> ; /*, vm) => 0 .

IMI*M = i IKIUm = i

PROPOSITION 1 : Let <f> be a function of the space :

Am= {<t> G WUco(I\ such that: </> (0) = <f> (1 ) = 0} .

The properties 1—2 are satisfied. M ore over, let i* be an element of the
space 2m, there exists :

vm= {a,p, 0, e)eVm

such that :

(i) 0 is Pi on [0, 0.5] and on [0.5, 1], e is constant on [0, 1],
(ii) a' = 0<t>' + s + jAl9 P' = - 0 + <f>' s -h M2>

where R is a strictly positive rational fraction.

M2 AN Modélisation mathématique et Analyse numérique
Mathematica! Modelling and Numerical Analysis



A NEW FORMULATION FOR ARCH STRUCTURES 879

Proof : 1) Let um = (a, /3, e, 6) be an element of the subspace
W(<f>) of the space Vm. We have to bound below the form :

;um,um) = f
Jo

c(<f>m f
Jo

By applying to 0 to the Poincaré's inequality, we obtain the existence of a
constant F >0 , that dépends on the function <f>, such that :

P {e2

Jo
c(<f>;um, um)^F {e2 + B2+ B'2} dx, (7)

Jo

From the définition of the space W(<t>) and from Poincaré's inequality, we
deduce the existence of a constant F ', which dépends also on <£, such that :

| |a ||Hi ^F' { || 0 ||£2 + || s||£2} and | |£ ||Hl ssF' {|| 0 ||L2 + 11̂ 11,2} .(8)

Then, from inequality (7), we deduce the ellipticity of the form c{<f> ; . , . ) •
2) Let fjb be an element of the space Xm. We define vm = (a, f3, 0, e) as

follows :

f1 f1 f1

# = $ I /i, 2 ax, e = — I fx^dx -- \ 0<f>f dx ,

Jo Jo Jo

f* f*
Jo Jo

with :

ij,{x) = 4x on [0,0.5] , 4(1 - x) on [0.5 ; 1 ] .

Thus, the function tf/ satisfies :

$ dx = 1 .
Jo

= 0 and
Jo

From these définitions, we immediatly deduce (i)-(ii), and, after a brief
calculation :

vm e Vm = Hl(I) x //J(/) x Hl
ö(I) x L2(l).

Moreover, it follows from the définition of the mapping h and from the
relation (ii), that :

vol. 28, n* 7, 1994



880 V. LODS

and we can easily verify the existence of a strictly positive polynomial
function C, such that :

by applying Poincaré's inequality to the functions a and /3. Finally, we
obtain the inequality (iii), and so the L.B.B, condition is obvious. D

Remark 1 : If we choose :

V =Hl
Q(I)x {H2(I)n / / i( /)} and Vm = Hl

QQ) x Hl
0(I) x H1 (ƒ) x l?(ƒ),

the properties (1) — (2) are still verified [7], •

Finally, we have proved the following theorem.

THEOREM 1 : Let <f> e A Then the state équation (1) is equivalent to the
mixed problem (6), and we have the following relation between the solution
u^ of the state équation and the mixed solution (um, A ) :

al + pj = « i ? ( 0 ) + w2 «(«*)» e = O{<f>\u), 6 = e(#;u), (9)

where

um = (a, /3, 0, s) and u^ = {ux, u2) .

Remark 2 : • For elastic shells, Ph. Destuynder and M. Salaun [5] have
obtained a quite complex mixed formulation, which also dépends only on the
shape of the shell and on its first differential.

• Let us notice that the Lagrange multipliers A = (Al5 A2) can be
calculated from the mixed displacement um. In particular, we have the
relations :

A[=0 and A^ = epS(</>),

which are obtained from the first équation of the mixed problem, by choosing
test functions vm—(a9piO,e) such that 6 = 0 and e = 0. D

We now discretize the state équation.

2. THE FINITE ELEMENT METHOD

2.1. The usual discrete équation

We choose to approximate the displacement by using the finite element
scheme of Bernadou-Ducatel [2]. At first, let us introducé, for each step

M2 AN Modélisation mathématique et Analyse numérique
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A NEW FORMULATION FOR ARCH STRUCTURES 881

h, a regular subdivision (xt)l=Ot >m+l of the closed set 7 = [0, 1 ], and let

us dénote :

Kt — [xn xl + l], for ail i = 0, ..., m .

The principle of this scheme is to approximate the arch by beams. Thus, we
define the finite element space Àh of functions 4>h such that :

• <t>h\Ki belongs to P i(Kt), for ail i = 0, ..., m

• <jj>h is continuous on the closed set 7 = [0, 1 ]

Now, we have to define the finite element test space. The arch being
approximated by beams, linked with rigid hinges, the finite element test
space dépends on the geometry. To be précise, with each function
4>h of the space Ah, we associate the discrete space :

Vh(4>h) — \yh e y*h, vh satisfies compatibility conditions }

where the space Y\ is the space of functions vh - (vhU vh2) such that :

• ^h\\Kt belongs to P 1(Kt), for ail / = 0, ..., m,

• Vh2\Kt belongs to P3(Kt), for ail / = 0, ..., m,

• 5M(0) - vh2(l) = v'h2(0) = v'h2(l) = 0.

The compatibility conditions require the continuity of the displacement
vector and of the rotation of the normal vector, at each node :

and

for ail i = 1, ..., m,

where (th = ï(^h), nh = n(<j>h)) dénotes the local basis of the approximating

arch.
Since :

Vh(<f>h) is not included in V and Âh is not included in W3y °° (/ ) ,

these approximations are non-conforming. So, we have to introducé :

vol 28, n° 7, 1994



882 v. LODS

• a new energy, which is equal to the sum of the énergies of each beam :

« -o J * .
dx

(12)

the new external work, which is equal to :

f1

L(<f>h;vh) = - \ pe{j>'hvhl + vh2)dx. (13)

Finally, the discrete displacement satisfies the elliptic équation (2) :

üheVh(jh) ah($h;üh,vh) = L($h;vh), for all vh e Vh($h) .(14)

To simplify the notations, we here did not mention the dependence of
uh on 4>h.

2.2. The convergence of the finite element scheme

Let us recall the method used in [2]. Let <f> be a function belonging to an

open set 0 of the space A, and let <j>h be its interpolated function on the space

Ah. The finite element scheme being non conforming, how can we prove the

convergence of the discrete displacement üh ? The idea of Bernadou-Ducatel

is to define a function uh of the space V, calculated from the function

uh of the space Vh(4>h). The scheme will be convergent because of the

estimate : \\uh — u^ || -• 0, when h -• 0.

To define the function uh, Bernadou and Ducatel introducé a bijection

Fh from the space Vh(<j>h) into a subspace Vh of the space V. The subspace

Vh is the space of the functions vh = (vhu vh2) such that :

— vh\\K, e Pi(Kt\ for all i = 0, ..., m,
— »*i(0) = t>w(l) = 0,
— vhl is continuous on the set I,

and
— vh2\Kt e ^ ( ^ X for all i - 0, ..., m9

— vh2(0) = vh2(l) = v^2(0) = v>h2{\) = 0,
— vh2 is C2 on the set / .

The bijection F h is given by :

M2 AN Modélisation mathématique et Analyse numérique
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where the function vk = (vhU vh2) is defined from the pair vh = (vhl, vh2) as

follows :

(Phi ?(<£) + ^ 2 «(<£))(**) = ( ^ I ' A + BM «*)(*,) (15)

0(<t>\vh)(xt)=- I - ^ - ) ( * , ) , (16)\ I
for ail i = 1, ..., m.

From Bernadou-Ducaters results [2], we can prove, under the assump-
tions :

• the function <j> belongs to the space W4' °° (/ ),

• the functions u^ is regular, i.e. :

u* sH2(I)x 7/3(/),

that :
| | * | | , when h -+ 0 ,

where «^ = F\(üh) and 2A is the only solution of the elliptic équation (14).

2.3. The discretized mixed formulation

The aim is again to recover the finite element scheme of Bernadou-
Ducatel, by discretizing the mixed problem. So, we don't dérive hère the
« best » finite element method of the mixed problem.

Naturally, we here still approach the aren by beams. But now, observe that
the approximation of the geometry is conforming (for the mixed formulation),
because the space Ah is included in the space VF1>G0(/).

The discrete test space is chosen to dérive again the scheme of Bernadou-

Ducatel. S o, we define :

Vmh = Vmhïx Vmhl xVmh2x Vmh3

where :

• Vmh\ i s m e space of functions ah such that :

— ahlK{ e P3(Kt% for all i = 0, ..., m

— aA(0) = a f c ( l ) = l
— ah is continuous on the set / .

• Vmhi is m e space of functions 0h such that :

i\ f o r a11 i = 0, •-., m

— 6h is continuous on the set / .

vol. 28, n° 7, 1994



884 v. LODS

• Vmh3 i s the space of functions eh such that :

— eh\Kt ^ P0(Ki), for all i = 0, ..., m,
and :

• Xmh — Xmhl x Xmhl where the space Xmhl is space of functions /t^ such
that :

— V>h\Kt
 G Pi(Ki\ f o r a11 ' = °. —> w.

Let us recall that we choose these discrete test spaces in order to dérive the
finite element scheme of Bernadou-Ducatel, but other choices can be more
interes ting.

Then these approximations are conforming because the spaces Vmh and
Xmh are respectively included in the spaces Vm and Xm. So, the discrete mixed
problem is :

find (umh, *h)eVmhx Xmh such that :

h;vmh) for all vmh G Vmh

= 0 for all fxh e Xmh,

To prove the existence of one and only one solution of this discrete mixed
problem, and the convergence of the discrete mixed solution to the mixed
solution, we apply Brezzi's theorem. From proposition 1 and from the
définition of the mapping Z>, we can easily verify the following lemma.

LEMMA 2. Let 4>h be a function of the space Ah.

1) The space :

Wh($h) = [vmh e Vmh such that :b{$h\ /*,,, vmh) = 0,

forait vheXmh} (18)

is the space of functions vmh = (ahi fi h, 0h, eh) such that :

<*h=0h$h + eh and (3 'h = - 0h + $'h eh . (19)

Consequently, the space Wh(<j>h) is included in the space W(<j>h).

2) The bilinear form c(<f>h;., . ) is uniformly elliptic on the space

3) The bilinear form b(<f>h ; . , . ) satisfies the L.B.B, condition :

inf sup

where R is a strictly positive rational fraction.
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Finally, from Brezzi's theorem and some calculation, we can now prove
the following resuit.

THEOREM 2 : Let <j> be a function of the space Am n W2* °° (/ ) and let

4>hbe its interpolated function on Ah.

• The mixed discrete problem (17) has one and only one solution

• Ifwe suppose that the mixed solution (um, A ) of the system (6) satisfies :

then :

um= (a, 0, 0, O = {H2(I)}3xHl(I\ A E {H1 (f)}2

II«-. — «—*II v + II A - A A | | = O ( h ) .

m The discrete mixed problem (17) is equivalent tofind umh G Wh(4>h) such
that :

, for all vmheWh($h). (20)

Let us notice that A belongs to the space | / / ! ( / ) } 2 , from remark 2.
Now, we can prove the équivalence between the discrete mixed problem

(17) and the finite element scheme of Bernadou-Ducatel. Thus, from
theorem 2, we shall deduce the convergence of the discrete solution
üh of the discrete équation of Bernadou-Ducatel to the solution u^.

2.4. Equivalence between the discrete mixed problem and the finite element
scheme of Bernadou-Ducatel

From theorem 2, the discrete mixed problem is equivalent to équation (20).
S o, we have only to prove the équivalence between this équation and the
discrete équation (14).

PROPOSITION 2 : Let <j>h be an element of the space Ah. We define the
mapping :

Gh:vh= (0A1, vh2) e Vh(<t>h)-^vmh = (ah, pk9 0h, eh) e Vmh

by:

= 5M t(<f>h) + vh2n(4>h), (21)

= l—*h, (22)
S(<t>h)

•h = — l — 5*i - (23)
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886 V. LODS

The mapping Gh is an isomorphism from the space Vh(<i>h) onto tne space

Proof : At the first, let us verify that :

»mh = Gk(ph)eVmh, for all vheVh(4h).

From the définition of the space Vh(4>h\
 t n e functions vhl and vh2 respec-

tively are Px and P 3 on each closed set Kr So, from the définition of
Gh, the functions ah, (3 h are P3, while 6h and eh respectively are
P2 and Po , on each closed set Kt. The boundary conditions being satisfied,
we have only to verify that the functions ah9 fih and 0h are continuous on the
set / . Or, conditions (lO)-(ll), which are satisfied for all vh of the space

Vhi<f>h\ ensure the continuity of the displacement vector and of the rotation
of the normal vector. Then we deduce, from relations (21)-(22), the
continuity of the three functions ah> f$h and 0h at each node, and then on
I.

So, the mapping Gh is well defined. It is obvious that Gh is an injection.

Thus, to prove that Gh is an isomorphism from the space Vh(<j>h) onto the

space Wh(4>h), we have just to verify the equality :

At first, we prove that the space Gh(Vh(<f>h)) is included in the space

Wh(<j>h). Let vh = (vhU vh2) be an element of the space Vh{<j>h\ and let us

dénote :

From lemma 2, to prove that vmh belongs to the space Wh(<j>h), we have only
to verify the equality :

{ } (24)

For that, we differentiate equality (21) and we thus obtain, the function
4>h being P x on each closed set Kx :

<*h~i + PU = K\ H<i>h) + Ki «(^fc) •

We deduce equality (24) by using relations (22)-(23). We have thus proved
the inclusion :
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We now verify the second inclusion :

Let vmh = (ah9 /3h, 0h, eh) be an element of the space Wh(4>h). We define
then vh = (vhU vh2) by the equality :

«* ? + PhJ = hi ' (0*) + 5M « ( 0 A ) * (25)

We have then to prove that :

eh = L - %, (26)
5(0*)

** = " ^ 7 " «il * (27)
5(0A)

to have the equality :

= V
mh

At first, formulas (26)-(27) are immediately obtained by differentiating the
equality :

and by using lemma 2, which gives the relation :

a'kï + PÜ =

Let us verify that vh belongs to the space Vh(<f>h). From the equalities :

£h = —v'h\ a n d « J + Phi = «A

we deduce that the function t?A1 is P x on each set ^ and that the function
vh2 is P 3 on each set K}. On the other hand the functions ah9 ph and
0h being continuous on the set /, we deduce, from equalities (25)-(26), the
continuity of the displacement vector and of the rotation of the normal vector
at each node. Consequently, the function vh belongs to the space
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Finally, we have proved the desired inclusion, and so, the equality :

Thus, the mapping Gh is an isomorphism from the space Vh(<f>h) onto the

space Wh($h). n

Now, we can prove the équivalence between the finite element scheme of
Bernadou-Ducatel and the discrete mixed formulation.

PROPOSITION 3 : Let <j>h be a function of the space Ah.
The discrete mixed problem (17) is equivalent to the discrete

équation (14), and we have the relation :

umh = Gh{üh).

Proof : From Brezzi's theorem [3], we already know that the discrete
mixed problem is equivalent to équation (20) :

umh e Wh(4>h), c(4>h ; umh, vmh) = M(j>h\ vmh), for all vmh e Wh($h).

Then, we have to prove the équivalence between this équation and the
discrete équation :

;vh) for all vheVhWh) .(14)

The mapping Gk being an isomorphism from the space Vh(<j>h) onto the space

Wh(<j>h\ it suffices to verify the equalities :

; »h* wft) = c(4>h ; vmh, wmh) and L(j>h ; vh) = M($ ; vmh) ,(28)

where :

and wmh = Gh(wh)y

for all functions vh and wh belonging to the space Vh(<j>h).

Let vh and wh be two functions belonging to the space Vh(<t>h), and let be

"mh = Gh(vh\ Wh = Gh(wh)-
From the définitions of the mapping Gh, we directly obtain the equalities :

{ S(<f>hf
and :

Jo
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where we have denoted :

»m* = (<*h* Pfr 0h> £h) and wmh = (ah, §h9 0h, eh) .

Consequently, we deduce equalities (28). D

From theorem 1 ans proposition 3, which give the équivalence, on the one
hand, between the continuous mixed problem (6) and state équation (1), and,
on the other hand, between discrete mixed problem (17) and discrete
équation (14), we find again the results of convergence of the discrete
displacement of Bernadou-Ducatel :

THEOREM 3 : Let <f> be a function of the space A and let <j>h be its

interpolated function on Ah. We suppose that the solution u^ — (ux, u2) of

state équation (1) satisfies :

u* eH2(I)xH3(I)

then the discrete displacement üh, which is the solution of the discrete

équation (14), « converges » when the step h -> 0, as follows :

• «AI ?(<£/,) + ûh2n(<t>h)^>uhi ?(<£) + u2n(<t>) in the space Hl(I).

$(j>k9 üh)^ 6(<f> ; u+) in the space Hl(I\

m e(<j>h, üh)^> e(<f> ; u4*) in the space L2(I).

We now study an optimization problem.

3. THE OPTIMIZATION PROBLEM

3.1. The continuous optimization problem

The design variable is the shape <f> of the arch, which belongs to an open
set <P of the space A. We want to minimize costs, which regularly depend on
the displacement. We write these costs on the following way :

j(<f>) = J(<f> ; I I * ) (29)

where ƒ : # x V- • R is a C1 mapping. We choose, for example, to
minimize the energy of the arch, and so, from the state équation, this cost is
equal to :

Our purpose is to minimise numerically the costy(^), by using descent
algorithms. At each step of the descent algorithm, we have to calculate the
descent direction. The descent direction can be derived by two stratégies. In
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one strategy, we first approach the cost, by discretizing the state équation,
with a finite element scheme, and then, we calculate the gradient of the
approached cost, called discrete gradient. In the other strategy, we calculate
an approximation, called discretized continuous gradient, of the exact
differential of the cost. The advantage of the second method is to use the
finite element code only at the last step, while we have to differentiate the
rigidity matrix to calculate the discrete gradient. Otherwise, the discrete
gradient seems safer, because the convergence of optimization algorithms is
then well known. Before describing the two stratégies, we recall the
following result, ([1], [9]) :

THEOREM 4 : We suppose that the mapping : <f> -• L{<j> ; . ) : <P -• V' is
differentiable, where V' is the dual of the space V. Then the mappings :

<f> -+U* : ( 0 ci ty3 '0 0 ( ƒ ) ) - • V and <j> -> j (</>): (0 c W3' °°(/ )) - IR

are differentiable, and :

(30)

where p*, which belongs to the space V, is the only solution of the adjoint
équation :

a(4> \p*, v) = — (<f> ; M*) , u , for all v of the space V . (31)
dV

Let us notice that the adjoint state/?* is equal to w*, when we minimize the
energy of the arch.

3.2. The approached cost

To use the optimization algorithm, we have to approach the costy'(^),
which is, for example, equal to the virtual work L of the self weight of the
arch. In this case, we naturally approach the fonction j by the fonction
j h defined on the space Ah by :

jh(èh)=Lh($h;üh). (32)

For another cost, we introducé a mapping Jh : Ah x °Üh -> R « approaching »
the map / , and we let :

y*<^)=W*;5A). (33)
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Usually, we write the discrete cost with the degrees of freedom of the

geometry <j>h and of the displacement üh. The vector of degrees of freedom of

a function <j>h of the space Ah is :

which belongs to the space Um.

The function <$>h being given, the displacement uh, which satisfies the

discrete équation (14), belongs to the space Vh(<j>h). Let us recall that this

space is isomorphic to the subspace Vh of the test space V. Consequently, the

dimension of the space Vh{<j>h) is independent of the geometry, and it is

equal to 3 m. Thus, the discrete équation can be written as follows :

Kd(<Pd)Ud = Ld(<Pd), (34)

where Kd(<Pd)v& the rigidity matrix, Ud is the vector of degrees of freedom of
the displacement üh, which belongs to (R3m, and Ld(<Pd) is the vector of

R3m, associated to the linear form Lh{<$>h ; .). The calculation of the ridigity

matrix and of the vector Ld(<Pd), which depend on the vector <Pd, are detailed
in [6], [8].

Finally, we write the approached jh{4>h) on the following way :

(35)

where j d is given by :

the mapping Jd being defined by the relation :

Jd(*dlVd) = Jh(jh;vh), for all Vd of lR3m,

where Vd is the vector of degrees of freedom of the displacement

h-
The optimization algorithm, which can be used as a black box, allows to

minimize the cost jd(&d). For that, at each step, a simulator requires the
calculation of the cost and of the descent direction. We now give some
details about the calculation of the descent direction.

3.3 The discrete gradient

The discrete gradient is equal to the derivative of the approximated
costjd(<Pd). To calculate it, we work like in the continuous case, (see
theorem 4). We then obtain the following result :
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PROPOSITION 4 We suppose that the mapping <Pd -• Ld{<Pd,)
(Rm-»[R3m is differentiable and that the mapping Jd Rm x IR3 m -* IR is
C 1

Then the mappings

<Pd-*Ud W"-> K "" and 0d^Jd(0d) U"'^M

are differentiatie, and, the components of the discrete gradient, on the
canonical basis (el)l = l m of the space Um, are given by

where Pdt M?m is the only solution of the adjoint équation

r\ T

(Kd(^>d)Pd,Vd)m^ = -f(0d,Ud)-Vd, for all Vd

and ( . , . )uim is the scalar product into the space 1)3 m

lt is not difficult to calculate this discrete gradient, but it requires to
differentiate the ngidity matrix, and so, to know very well the fimte element
code To avoid such heavy calculation, we prefer here to use the discretized
cpntinuous gradient

3.4. The discretized continuous gradient

At each itération, we have to calculate the descent direction at a vector
<Pd of the space IRm, which is the vector of degrees of freedom of a function
<j>h of the space Ah The method consists in approaching the exact
differentiall of the costy, by using the fimte element scheme as a black box

The approximation of the geometry being non conforming, we can't use
the formula (30) with the function <t>h The idea of S Monano [8] is to
construct a function <f> h belonging to a subspace Ah of the space
W3 °° (ƒ ), from the data of <Pd The subspace Ah is chosen equal to the sphnes
of five degrees, satisfying the boundary conditions at the points x = 0 and
x = 1 Thus, it is isomorphic to the spaces Rm and Ah Consequently, at each
vector <Pd of IRm, we associate

• a function <f>h of the space Ah c A,

• a function 4>h of the space Ah

The vector of degrees of freedom of these two functions is <Pd
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Finally, we will replace the function <f> by the function <f>h in the
formula (30). Let us now to detail the calculations of the direct state and of
the adjoint state :

— At first, from the data of vector <Pd, the finite element code provides
the vector Ud. Then, by interpolation, we obtain the direct state üh, which is
the only solution of the discrete équation (14) and the function uh = Fh{üh).

— Secondly, to obtain the adjoint state, we use the same finite element
scheme, which give us the vector P d of degrees of freedom of the function
ph, which is the only solution of the discrete adjoint équation :

Ph e Vh($h), ah($h ; ph, vh) =

= — (jh\üh).vht for all vheVh($h). (37)

Then, we calculate the function ph = F h(ph).
All these calculation are detailed in [8].

Finally, the components of the discretized continuous gradient, calculated at
the point <Pd of Rm are given by :

= ~ ~dé h ; Uft*Ph hi + ~dó h ; Ph ' hl + a^" A ; Ufl * /w '

where Shl is the spline of the space Ah, associated with the vector of degrees
of freedom er We propose now to compare the discrete gradient to the
discretized continuous gradient. From définition (38) of the discretized
continuous gradient, and from the convergence of the finite element scheme
(see theorem 3), it is easy to prove the following result :

PROPOSITION 5 : Let be $ a function of the space A. We dénote by :

• <f>h its interpolated spline function on the space Ah ;
• <Pd the vector of degrees of freedom, associated with <j>iv

We suppose that ;

• the functions <f> belongs to the space W4> °° (/ )

• the functions u* and p^ are regular, i,e. :

M ^ , ^ e H2(I)xH3(I).

Then it exists two constants D > 0 and hQ^0 such that :

~Dh \\Shl\\ 3iQ0 , for all h e ]0, ho[.
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Proof : The function <f> being regular, we have the estimation :

hence, because of the expression of the energy a{<f> ; . , . ), which is V-
elliptic :

and, consequently, by using the Bemadou-Ducatel's results ([2]), we have :

| | * | | and

and on the same way, we can then prove that :

\\Pk-P*\\v=O(h) and \\ph-p*"\

Let us bound below the partial derivatives of the energy, which appear in the
expression of the différence between the « exact » differential and the
discrete gradient, Le. :

Ah = | | {<t>h ; A p*>) • Sh, - | | (<f>„ ; uh, ph) • Shl .

We write Ah as follows :

A* = I f ^h ; u*"> p*h ~Ph) •Si" + ̂ {<f>h ; u*h -u"' p")-s'"-
From the expression of the energy of the arch, we have the estimations :

— (<f> ;u h~p h-Ph)-Shl c9<£

-2- (<f> ; i / A - «A, p A ) • S h, ^ C || <̂
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Finally, we deduce that :

On the same way, we can estimate the other terms, which appear in the
expression of the différence between the discretized continuous gradient and
the « exact » differeotial. •

The difficulty then îs to compare the discrete gradient to the « exact
differential ». For that, we use the mixed formulations.

4. COMPARÏZON BETWEEN THE DISCRETE GRADIENT AND THE DISCRETIZED
CONTINUOUS GRADIENT

To compare the discrete gradient to the « exact gradient », the idea is to
write the discrete gradient and the « exact gradient » with the « mixed »
variables.

4.1. Another formula of the « exact » gradient

To simplify the notations, we suppose first that we minimize the energy of
the arch. So, the cost j is equal to :

From the relations (9) between the direct displacement u^ = (wj, u2) and the

« mixed » displacement um = (-a, fi \ 0, e):

ai + Pj = M 1 F ( ^ ) + M 2 H ( ^ ) , 9 = 0{<f> ; M * ) , S = e(<f> ; JI*

we can write the costy" (<£) with the mixed variable um as follows :

where (um, À ) e Vm x Xm is the only solution of the mixed problem and
Jm hère is equal to the linear form M.

The test spaces Vm and Sm being independent of the geometry, we can
differentiate the mixed problem.

PROPOSITION 6 : We suppose that the mapping : <f> -> Jm(<f> ; -) : Whm x
Vm -• R is C 1 and the mapping M : Wh °°(/ ) x Vm -• R is diffèrentiable.

Then the mapping : <f> -> j (<f>) is differentiatie, and :
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for all 4>, tfr e W3* °°(/ ), where the adjoint state (pmJ r})is the solution of the
mixed problem

Vm X

; 77, vm} = (<fi ; um) - vm , for all vm G Vn

Here, the adjoint state is equal to the direct state, but we shall not use this
equahty.

Proof We write the mixed problem (6) on the equivalent way :
Fmd

xm = (um9 A)sVmx Xm such that : k{<f> , xm, zm) =

= n(<f>;zm) for all zmeVmxXm, (39)

where :

; ym, zm) = c(<f>, t?m, wm) + b(<f> ; v, wm) + b(4> ; t , t?m)

n(4> >zm) = M(<t> ; w m ) ,

for all functions ym = (fw, ??) and zm = (<wTO, O belongmg to the space
y m x -sm.

Thus, the cost j is equal to .

where the couple xm = (um, X) eVmx Sm satisfies the équation (39).
We can then apply the theorem 4, which implies :

where xm = (um, À ) and the adjoint state ym = (pm, 17 ) is the solution of the
équation *

ymeVmx X, k(4> , ym, zM) = r - 2 (* ; «„) • »m » for all vmsVm.
dVm

From the définitions of the forms k and n, we obtam the resuit. D
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Consequently, for ail vectors <Pd of the space Rm, we have obtained the
equality :

jL (4>h). Shl = - 1 1 ( ^ ; uh
m, P

h
m) • shl -

+ —(<f>H;Ph
m)-Shl + dj~(d>h;u

h
m).Shl (40)

where :
• 4>h is a function on the space Ah

• (KJ,, À *) 6 V m x Xm is the only solution of the mixed problem :

{c(4>h ; uh
m, vm) + b{4>h ; A \ vm) = M{<t>h ; 4 ) . vm, for all um e Vm

| ; / t , u*) = 0 for ail M e ^ m .

(ph
m, 7]h) e Vm x Xm is the only solution of the mixed problem :

c{<t>h ; Pi vm) + b{4>h ; 17 * vm) = —= ( ^ , ; «*) . t;m, for ail vm e Vh ; Pi vm) + b{4>h ; 17 vm) = —= ( ^ , ; « ) . t;m, for ail vm e Vm
dVm (42)

h ; M, P«) = 0 for ail M e Sm .

4.2, Another formula of the discrete gradieni

To simplify the notations, we again minimize the energy of the arch. So, the
cost j is equal to :

and it is approached by :

jh(4>h) = Lh{4>h ; uh) .

To calculate the discrete gradient, we have introduced a cost : j d : R
m -• IR

which is a function of the vector of degrees of freedom. Hère, we work like
in the continuous case, by using the mixed formulation, in order to compare
the discrete gradient to the discretized continuous gradient. Indeed, we have
shown that the finite element method of Bernadou-Ducatel is equivalent to
the discrete mixed formulation. To be précise, the displacement of the beams
uh is given by :

uh = Gll{umh),
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where umh is the « discrete mixed » displacement. Thus, the formula (28) :

Lh($h;vh) = M($;Gh{vk))9 for all vheVh(<Ph),

implies :

where (umh, Xh) s Vmh x Xmh is the only solution of the mixed problem :

c ($h ; umh, vmh) + &(<?*;** vmh) = M(<ph; vmh\ for all vmh e Vmh

b{j>h ; t*h, umh) = 0 for all ph e Xmh .

Like in the mixed continuous problem (see proposition 6), and, by differen-
tiating the equality (35) :

we obtain :

d<P
bc ,7 . c

db / r \ \ o ^^ /2 \ o
^T- O A ' A / i ' PmA> ' Shi - JT K<t>h * Vk* Umh) * ^hi

7 X ( * * ; Pmh) 'Sh>+-^ {<t>h 'Umh) " 5*« - ( 4 3 )

where the « discrete mixed » adjoint state (pmh, Vh) G Vmh x %mh is the
solution of the discrete mixed problem :

', Vh, Vmh) = ^~ (4>h 1 *mk) ' *mh> f™ ^ Vmh ^ Vmh

b(4>h ; /*A, Pmh) = 0 for all /*„ e ^mA.

(44)

Now, from the formulas of the discrete gradient and of the « exact
gradient », we can easily compare the discrete gradient to the discretized
continuous gradient.

4.3. Comparizon between the discrete gradient and the discretized
continuous gradient

By applying the method used to prove proposition 5, we obtain the
following result :

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



A NEW FORMULATION FOR ARCH STRUCTURES 899

PROPOSITION 7 : Let be <f> a function of the space A. We dénote by :

• <f>h its interpolated spline function on the space Ah

• 4>h its interpolated spline function on the space Ah

• <Pd the vector of degrees of freedom, associated with <f>h and

We suppose that :
• the function <f> belongs to the space W4' °° (ƒ )

• the functions u? and p^ are regular, i.e. :

u^.p* sH2(I)xH3(I),

Then it exists two constants C > 0 and hö ̂ > 0 such that :

d<P,
( * , ) • * , -D.C.G.(<Pd)-e, :Ch\\Shl\\wXea forallh

Proof : On the one hand, as the hypothesis of regularity on the function
implies that :

we can prove that, because of the expression of the energy a(<f> ; . , . ) >
which is V-elliptic :

and, on the same way for the mixed solutions :

| K - 4 | | F m + II A - A h \ \ S m = O(h).

On the other hand, the assumptions :

implies, thanks to the relations (9) :

um, Pm e H2(I) x H2(l) x H2{I)x Hl(I).

As, from the remark 2, A belongs to the space Hl{I)x H](I), and on the
same way, 17 too, we can apply theorem 2, and so :

II «m»-"». II „_+ \ \ * h - * \ \ S m = O(h), when /*->() ,

and :

\\Pmh-Pm\\Vm+ \\vn-v\\Sm = O(h), when / Ï - » 0 .
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Consequently, from the equalities (40)-(43) and from the estimation :

we deduce the convergence, by applying the way used in proposition 5 :

-M~^<pd)^i-^(<t>h)-Shl =O{h), when *-> 0 .

Thus, from the « convergence » of the discretized continuous gradient :

^ . C . G . ( ^ d ) . C | . - ^ - ( ^ ) . S w | =O(h), when h -> 0 ,

we deduce the theorem. •

5. CONCLUSION

Consequently, we can use hère the discretized continuous gradient in the
descent algorithms, when the step h is sufficientiy small. So, we avoid to
differentiate the rigidity matrix, and we can use the finite élément code as a
black box. The numberical calculât!on, made by Habbal [6], who uses the
discretized continuous gradient, gave satisfying results.

Let us notice that the mixed formulation given hère has been used to
compare the discrète gradient to the discretized continuous gradient. But, we
can also use it to build new finite élément schemes, which allow us to
approach the displacement of the arch.
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