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A NEW FORMULATION FOR ARCH STRUCTURES.
APPLICATION TO OPTIMIZATION PROBLEMS (*)

by Véronique LoDSs (1)

Communicated by P -G CIARLET

Abstract — To mumimize costs, which depend on the displacement of a loaded arch, studied
by following the Budiansky-Sanders’s model, we use optimization algorithms The design
variable s the shape ¢ of the arch The difficulty 1s to calculate the descent directions A
method, used for example by Habbal and Moriano [6, 8], consists in approximating the exact
dervative of the cost Here, the aim 1s to justify these calculation of the descent direction For
that, we introduce a mixed formulation, equivalent to the state equation and the coefficients of
which only depend on ¢ and on its first dervative, while the coefficients of the usual state
equation depend on the third derivative &" of the shape of the arch By using this nuxed
formulation, we can compare these descent directions to the gradient of the approached cost

Résumé — Pour mimimiser des coiits, qui dépendent réguliérement du déplacement d’une
arche chargée, étudiée sous le modéle de Budiansky-Sanders, on utilise des algorithmes de
descente La variable de conception est la forme ¢ de I’arche La difficulté ic1 est de calculer les
directions de descente Une méthode, utilisée par Habbal et Morwano [6, 8], consiste a
approcher la différentielle exacte du coiit Le but i1ct est de justifier cette démarche L’idée est de
comparer cette direction de descente avec le gradient du cofit approché, dit gradient discret
Pour cela, on introduit une formulation mixte, équivalente a I’équation d’état, et dont les
coefficients dépendent seulement de ¢ et de sa dérivée premiére, alors que les coefficients de
I’équanion d’état sont fonction de la dérwée troisiéme de la forme ¢ de I’arche

INTRODUCTION

We consider an elastic loaded arch, studied by following the Budiansky-
Sanders’s model. The coefficients of the usual state equation depend on the
third derivative ¢ " of the shape ¢ of the arch. We presently give a mixed
formulation, the coefficients of which only depend on ¢ and on its first
derivative. This mixed formulation is equivalent to the state equation.
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874 V. LODS

Then, like Bernadou-Ducatel [2], we approach the arch by beams, linked
by rigid hinges. By correctly choosing the discrete mixed spaces, we can
prove the equivalence between the discrete equation of Bernadou-Ducatel
and the discrete mixed problem, which is conforming. Then, we show the
convergence of the discrete displacement, already proved by Bernadou-
Ducatel, with another method.

Now, we wish to numerically minimize costs, which regularly depend on
the displacement of the arch, the design variable being the shape of the arch.
We use descent algorithms. The difficulty is to calculate the descent
direction. The idea is to approach the exact differential of the cost, which
depends on the displacement and on an adjoint state, by using a finite
element code. Thust, we obtain a descent direction, which is called
discretized continuous gradient. We can hence use the finite element code as
a black box, and avoid calculating the gradient of the rigidity matrix. But, the
convergence of descent algorithms has been proved only if the descent
direction is equal to the discrete gradient, which is, by definition, equal to
the gradient of the approached cost. Numerically, we can observe that the
discretized continuous gradient is not equal to the discrete gradient. So, in
the general case, if the step & of the finite element method is too large, the
optimization algorithm may give wrong results, if the descent direction is
choosen equal to the discretized continuous gradient. By using the mixed
formulation, we here show that the difference between the discretized
continuous gradient and the discrete gradient converges to zero. So, we can
here use the discretized continuous gradient in our optimization problem.
Numerical results obtained by Habbal are correct.

1. THE CONTINUOUS PROBLEM
1.1. The state equation
The shape of the arch is given by a function ¢ belonging to the space :
A= {¢ e W), suchthat: ¢ (0)=¢(1)=0},

where I = ]0, 1[. If / denotes the length of the arch, we define the
midsurface of the arch by :

w={(xyz2)eR, xel, z=¢x), yel0,I[}
and thus the arch {2 is given by :

0 = {m+x3ﬁ(m),m6m,x3e]—%,%[},

M? AN Modélisation mathématique et Analyse numérique
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A NEW FORMULATION FOR ARCH STRUCTURES 875

where 7 (m) denotes the unit vector normal to @ and e denotes the thickness
of the arch, which is assumed to be sufficiently small, compared to the
curvature of w, in order to apply the usual approximations of the Budiansky-
Sanders’s model. The loading of the arch is assumed to be invariant with
respect to y, so that the displacement vector belongs to the (x, z) plane. The
problem is then two dimensional. The local basis (7 (m), n(m)), denoted
also by (7 (x), (x)), is given by :
- 1 2 . 2 - 1 , > 2
t(x)=m {l + ¢ (x)]} and n(X)ZW {—‘f’ x)1i +J} ,
where S(¢) = V1 + ¢’ and (?', f) is the canonical basis of R2.
According to the Kirchhoff-Love hypothesis, the displacement vector of
the arch can be calculated from the displacement field of the points belonging
to the midsurface . The displacement of a point of w is given by its pair of
tangential and normal components u(x) = (#,(x), u,(x)) on the local basis
(f (x), n(x)). The arch being embedded, the pair # = (u,, u,) of components
belongs to the space :

V =H{I)x HI).

From the virtual work principle, the displacement «*, which depends on
the shape function ¢, satisfies the elliptic state equation ([1], [4]) :

u® eV, a(¢p;u®,v)=L(¢;v), forall veV, )
where :
e the energy a of the arch is given by :

1
a(¢;u,v)=J {Ce(p;u)e(p;v)+Dr(d;u)x(ep;v)} S(d)dx
0
with :

3
C=Fe and D=E -1% where E is the Young modulus

and the ¢ membrane energy and the « bending energy are equal to :

=L
S(4)

’

8(4’?”):%”1'*1%@% and « (¢ ;v)

{6(s;0)}’

where the curvature of w and the rotation of the normal vector

_1
R(¢)
6 (¢ ; v) are defined by :

1 __ ¢u and 0(¢v)= U, v
R(¢) S(¢) ’ R(¢) S(¢)
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876 V. LODS

e the virtual work of the external load L(¢ ;. ) is a linear form on the
space V, which is here choosen equal to the self weight of the arch :

1

L(¢$;v)= “J pe(d' vy +v,)dx

\]

where p denotes the density of the material.

In the state equation appears ¢ " (because of the derivative of the
curvature). We look for a variational formulation for the arch, with
coefficients that depend only on ¢ and its first derivative.

1.2. The continuous mixed formulation

When the arch is approached by beams, we impose the continuity of the
displacement vector and of the rotation of the normal vector at each node.
The idea here is to choose the components («, 8 ) of the displacement vector

on the fixed basis (i, j_"), and the rotation @ of the normal vector as the new

variables. But, to find again a mixed finite element scheme equivalent to the
finite element scheme of Bernadou-Ducatel, we have to introduce too the
£ membrane energy as a new unknown. Finally, the new unknown is :

U, = (@, B, 0,e)eV,,=H\I)x H\I) x HYI) x L*(I) .

The following lemma gives the relations between the four variables

(a, B, 0, ¢).

LEMMA 1 : Let ¢ be a function of the space W> ®(I).
1) Let v = (vy, v,) be an element of the space V, then we have the
equalities :

a'=0¢"+c and B'=—0+¢' e, )
in the space 3, = L*(I) x L*(I), where :
ai +B] =v,7(¢)+0,7i(p), 0=0(p;v), e=c(d;0). (3)
2) We define the space :
W(¢)= {v,= (a, B, 0, e)eV,, suchthat :b(¢ ; n,v,) =0,
forall pelx,},

where the continuous bilinear form b(¢ ;.,.): 3, x V, —» R is given by :
1

b(d;n,v,)= J. {mi(a"~ 00" —e)+ puy(B' '+ 60 —9' )} dx. (4)
0

M2 AN Modélisation mathématique et Analyse numérique
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A NEW FORMULATION FOR ARCH STRUCTURES 877

Then the mapping : G(¢):V - W(P):v = (v, v,) > v, = (a, B, 0, &),
defined by the relations (3), is an isomorphism.

Proof : 1) By differentiating the equality o = v, 7 (¢) + v, (), We
directly obtain :

— U'
(ﬁ<¢),§§) R? =S(¢){“Rz;)+S(;)} —_S(#)0(e;0),

v

. vy
(t(rb),j—z) R? =S(¢){—W2ﬁ—)+3ﬁ—)} =-8()e(d;v).

We deduce the relation (2) by using the equality ¥ = @i + Bf, where the
basis (i, j ) is fixed.

2) Letv,, be an element of the space W (¢ ). We define v = (v, v,) by the
relation :

0, F(¢) +0,7($) = ai + B .
It is easy to verify the equalities :

veV, 0=0(¢p;v) and e=¢€(¢;V).

Then, v,, = G(¢ )(v) and consequently, G(¢) obviously being an injection,
we deduce that it is an isomorphism. O

By using the isomorphism G (¢ ), we deduce that the state equation (1) is
equivalent to find the function u, = (a, B, &, 8) € W(¢) such that :

c(p;u,v,)=M(¢;v,), forall v,eW(o) (&)
where :
C(¢;Mm, vm)=
_ Jl {ng +Do' g — 2}S(¢)dx, with v, = (a, B, & 8)
0 S(¢)
and :

1
M(¢;v,,,)=—J peS(¢) B dx,
0

and we have the relations :
Uy, = G(¢ )(u¢) .

To find the mixed formulation, we characterize u,, as the solution of the
optimization problem :

minimize%c(:ﬁ 3Ums V) — M (& 50,)

vol. 28, n° 7, 1994



878 V. LODS
under the constraint v,, € W(¢ ), which is equivalent to :
b(¢p;p,v,)=0, forall pel,.

By writing the Euler’s equation of the Lagrangian :
1
(o5 p,v,)= —2—C(¢ 3Ums V) =M (b5 0,) +b(d 5 1, 0,),

we obtain the mixed formulation :

find (¢, A)€V, x 2, suchthat:

c(¢p;u,,v,)+b(d;r,v,)=M(¢;v,), foral v,eV, ©)
b(¢; m, u,) =0 forall ez, .

Let us observe that the shape function ¢ and its first derivative only appears
in this formulation.

We now prove that the state equation is equivalent to the mixed problem.
As the state equation is equivalent to the equation (5), it is enough to show
the equivalence between the equation (5) and the mixed problem. For that,
we apply Brezzi’s theorem [3]. We have then to verify that :

1) the continuous bilinear form c(¢ ;.,.) is elliptic on the space

W(d),

2) the continuous bilinear form b(¢ ;. ;.) satisfies the L..B.B. condition
31
inf sup b(¢p;pm,v,)=0.
nez, v, €V,

“”’"Em=1 ”vm“V,,l=l

PROPOSITION 1 : Let ¢ be a function of the space :
A, = {¢p € Wh2(I), such that: ¢ (0) = ¢ (1) =0} .

The properties 1 — 2 are satisfied. Moreover, let n be an element of the
space 2,,, there exists :

v, = ((1, ﬂ, 0, £)E Vm
such that :

(i) @is P, on [0, 0.5 and on [0.5, 1], € is constant on [0, 1],
(i) a"=0¢"+e+u), B'=—0+¢" e+ pu,,
(i) b(¢; m, v) =R S DN lls Nonlly

where R is a strictly positive rational fraction.
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A NEW FORMULATION FOR ARCH STRUCTURES 879

Proof : 1) Let u,, = (a, B, &, ) be an element of the subspace
W (¢ ) of the space V,. We have to bound below the form :

1

= |

C 2+DB’2—1——}S(¢)dx.
o{ ° S )

By applying to 6 to the Poincaré’s inequality, we obtain the existence of a
constant F > 0, that depends on the function ¢, such that :

1
c(d sy, uy)=F j {2+ 6%+ 0"} dx. )
0

From the definition of the space W (¢ ) and from Poincaré’s inequality, we
deduce the existence of a constant F'’, which depends also on ¢, such that :

el <F {00+ lellz} and Bl <F' {102+ l2ll2} -8

Then, from inequality (7), we deduce the ellipticity of the form c(¢ ;., . ).
2) Let u be an element of the space 3,. We define v,, = (a, B, @, ¢) as
follows :

1 1 1
0=¢j‘ }llzdx, 8=—J /.le.x—J- 0¢,dx,
0 0

0
a(x)=Jx(9¢’+8+ul)dx, B(X)=JX(—0+¢’6+uz)dx,
0 0
with :
y(x)=4x on [0,0.5], 4(1—-x) on [0.5;1].

Thus, the function ¢ satisfies :

1
¢0)=¢(1)=0 and j gdx=1.
0

From these definitions, we immediatly deduce (i)-(ii), and, after a brief
calculation :

Vo€V, = HYI)x HYI) x HY(I) x L*(I) .

Moreover, it follows from the definition of the mapping b and from the
relation (ii), that :

b(# ;5 1y V) = |1 ll}2gy

vol. 28, n* 7, 1994



880 V. LODS

and we can easily verify the existence of a strictly positive polynomial
function C, such that:

[ "vm =C (¢ llg=lml g,

by applying Poincaré’s inequality to the functions a and B. Finally, we
obtain the inequality (iii), and so the L.B.B. condition is obvious. a

Remark 1 : If we choose :
V =H{I)x {H*d)NHy(I)} and V, = Hy(I ) x HyI) x H'(I) x L*(I),
the properties (1) — (2) are still verified [7]. (]

Finally, we have proved the following theorem.

THEOREM 1 : Let ¢ € A. Then the state equation (1) is equivalent to the
mixed problem (6), and we have the following relation between the solution
u? of the state equation and the mixed solution (u,, A):

ai +B] =u T () +uyi(¢), 0 =0(d;u), c=c(d;u), (9
where

u, = (a, B, 0, ¢c) and u® = (uy, uy) .

Remark 2 : e For elastic shells, Ph. Destuynder and M. Salaun [5] have
obtained a quite complex mixed formulation, which also depends only on the
shape of the shell and on its first differential.

e Let us notice that the Lagrange multipliers A = (A}, A,) can be
calculated from the mixed displacement u,,. In particular, we have the
relations :

A{=0 and A;=epS(e),

which are obtained from the first equation of the mixed problem, by choosing
test functions v,, = (a, B, 8, ¢) such that 8 = 0 and ¢ = 0. 0

We now discretize the state equation.

2. THE FINITE ELEMENT METHOD
2.1. The usual discrete equation

We choose to approximate the displacement by using the finite element
scheme of Bernadou-Ducatel [2]. At first, let us introduce, for each step

M? AN Modélisation mathématique et Analyse numérique
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A NEW FORMULATION FOR ARCH STRUCTURES 881

h, a regular subdivision (x,), _g, ., of the closed set I = 1[0, 1], and let
us denote :

K =[x,x .1, forall i=0,..,m.

The principle of this scheme is to approximate the arch by beams. Thus, we
define the finite element space A, of functions ¢, such that :

® &,k belongs to P (K,), for all i =0, ..., m

° d? » 18 continuous on the closed set I =10, 1]

® $,(0)=4,(1)=0

Now, we have to define the finite element test space. The arch being
approximated by beams, linked with rigid hinges, the finite element test
space depends on the geometry. To be precise, with each function

é , of the space Ah, we associate the discrete space :
V(b n) = {5,, € v, U, satisfies compatibility conditions}

where the space ¥, is the space of functions ¥, = (¥, U,,) such that :
® D,k belongs to P (K,), foralli =0, ..., m
® 5,,(0)="7,(1)=0
. 5h2|K, belongs to P;(K,), foralli =0, ..., m
® ,,(0)=0,(1)=7;,0)=0,,(1)=0

The compatibility conditions require the continuity of the displacement
vector and of the rotation of the normal vector, at each node :

3

{5’” ?h + 5,!2 ﬁh} IK,_l (xl) = {5)11 ?h + 5’,2 ﬁh} |K, (x‘) N (10)

and

1 - 1 ~
) = ' ), an
{S(m)”“} i {S(¢h)”'”} i &

foralli =1, ..., m,
where (7, = (b)), 7y = i(é 1)) denotes the local basis of the approximating

arch.
Since :

V,(é,)isnotincludedin V and A, is not included in W>*® (/) ,

these approximations are non-conforming. So, we have to introduce :

vol 28, n° 7, 1994



882 V. LODS

e a new energy, which is equal to the sum of the energies of each beam :

- o~ 1 ~y = ~
Up Oy + D 4"}’1’2”}’:’2 S(,) dx

ah(‘l;h;ﬁha Uy) = Z J. {C
Kl

S(4) S(é5)
(12)
e the new external work, which is equal to:
-~ ~ 1 i~ ~
L(¢y;0,) =— J pe(d; by +V)y)dx. (13)
0

Finally, the discrete displacement satisfies the elliptic equation (2) :
i, € Vi(by) an(by; iy 0y) =L(d,;b,), forall b,eV,(é,).(14)

To simplify the notations, we here did not mention the dependence of

ﬂh on $ he
2.2. The convergence of the finite element scheme

Let us recall the method used in [2]. Let ¢ be a function belonging to an
open set @ of the space A, and let ¢ » be its interpolated function on the space
A,. The finite element scheme being non conforming, how can we prove the
convergence of the discrete displacement #, ? The idea of Bernadou-Ducatel
is to define a function u, of the space V, calculated from the function
u, of the space \7,,(4;,,). The scheme will be convergent because of the
estimate : |u, — u®| - 0, when h - 0.

To define the function u,, Bernadou and Ducatel introduce a bijection
F, from the space 17,,(4; ») into a subspace V, of the space V. The subspace
V, is the space of the functions v, = (v, v;,) such that:

— Uy k, € P1(K,), for alli =0, ..., m,
— 0,,(0) =v,(1) =0, _
— vy, is continuous on the set /,

— gk, € P5(K,), forall i =0, ..., m,
— 0p(0) = 0)p(1) = 9;5(0) = vj(1) = O,
— vy, is C! on the set 1.

The bijection F, is given by :

F @) =v,

M2 AN Modélisation mathématique et Analyse numérique
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where the function v, = (vy;, v;,) is defined from the pair v, = (¥, ¥,,) as
follows :

O T (@) + Uy (D)X, = By £ + Dy 1) (x,) (15)
Ui

o<¢;uh)<x,>=—( - )(x,), (16)
S(én)

foralli =1, ..., m.

From Bernadou-Ducatel’s results [2], we can prove, under the assump-
tions :

e the function ¢ belongs to the space W* ®(I),
e the functions u? is regular, i.e. :

u® e H*A)x H* (),

that :
”uh—u"’“V=0(h), when 250,

where u, = F ,(i,) and #, is the only solution of the elliptic equation (14).

2.3. The discretized mixed formulation

The aim is again to recover the finite element scheme of Bernadou-
Ducatel, by discretizing the mixed problem. So, we don’t derive here the
« best » finite element method of the mixed problem.

Naturally, we here still approach the arch by beams. But now, observe that
the approximation of the geometry is conforming (for the mixed formulation),
because the space /~1,, is included in the space W' ®(I).

The discrete test space is chosen to derive again the scheme of Bernadou-
Ducatel. So, we define :

Vi = Vot X Vs XV ia XV i3

where :
e V.1 is the space of functions «, such that:
— a1k, € P3(K), foralli =0, ..., m
— 2;(0) =a,(1)=1
— a, is continuous on the set /.
e V, ., is the space of functions 6, such that:
— 0“,(‘ €eP,(K,), foralli =0, ...,m
— 0,(0) = 6,(1) = 1
— 8, is continuous on the set /.

vol. 28, n° 7, 1994



884 V. LODS

e V, .3 is the space of functions g, such that:
— &1k, € Po(K;), forall i =0, ..., m,
and :

o 3., =2, %X 2, where the space ¥, is space of functions u, such
that :

— Mk, € Py(K;), foralli =0, ..., m.
Let us recall that we choose these discrete test spaces in order to derive the

finite element scheme of Bernadou-Ducatel, but other choices can be more
interesting.
Then these approximations are conforming because the spaces V,, and

3., are respectively included in the spaces V,, and %,,. So, the discrete mixed
problem is :

find (u,,, A,) € V,, x 2, suchthat:

C(Pp s Uppy Vo) + D(D 5 A, U,) =M (P, 5v,,) forallv,,eV,, an
b(dys sy Upyy) =0 forallu,e 3,,.
To prove the existence of one and only one solution of this discrete mixed

problem, and the convergence of the discrete mixed solution to the mixed

solution, we apply Brezzi’s theorem. From proposition 1 and from the
definition of the mapping b, we can easily verify the following lemma.

LEMMA 2. Let &, be a function of the space A,

1) The space :
W, (b,) = {v,,,h € V. such that - b(d,; ty 0,) =0,

forall p,ez,} (18)

is the space of functions v,,;, = (a,, B,, 0, €,) such that :
a)=0,b,+e and Bl=—0,+ ¢, ¢,. (19)

Consequently, the space Wh(qg,,) is included in the space W(}).

2) The bilinear form c(¢,;.,.) is uniformly elliptic on the space
W, (b4).

3) The bilinear form b(q§h i« . ) satisfies the L.B.B. condition :

inf sup b(ép; My Vo) =R ( “4;/1“Lw) .

Ky € Zpy, Vun € Vi
Benll spp=1 Nomnlly,, =1

where R is a strictly positive rational fraction.
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A NEW FORMULATION FOR ARCH STRUCTURES 885

Finally, from Brezzi’s theorem and some calculation, we can now prove
the following result.

THEOREM 2 : Let ¢ be a function of the space A, N W> () and let
d;h be its interpolated function on ﬁh.

® The mixed discrete problem (17) has one and only one solution
(Umns A p)-

e [fwe suppose that the mixed solution (u,,, A) of the system (6) satisfies :

Uy, = (a, B, 0,e)= {H\I)>xH'U), re {H'U))?
then :
it — sl + 12 = 245 = OGh).

® The discrete mixed problem (17) is equivalent to find u,,, € Wh(q’;h) such
that :

By Uppr V) = M (b, 0,,), forall v,,eW,(d,). (20)

Let us notice that A belongs to the space {H'(/)}?, from remark 2.

Now, we can prove the equivalence between the discrete mixed problem
(17) and the finite element scheme of Bernadou-Ducatel. Thus, from
theorem 2, we shall deduce the convergence of the discrete solution
i, of the discrete equation of Bernadou-Ducatel to the solution u®.

2.4. Equivalence betweer: the discrete mixed problem and the finite element
scheme of Bernadou-Ducatel

From theorem 2, the discrete mixed problem is equivalent to equation (20).
So, we have only to prove the equivalence between this equation and the
discrete equation (14).

PROPOSITION 2 : Let &, be an element of the space A,. We define the
mapping :

Gy:0y= By, Upp) € Vh(‘i;h)—’ Vi = (@py Bps Opy £4) €V

by:
api + By =B i($y)+ 0 i(dy), @1)
1 .,
ah = - ,_ vh2 s (22)
S(éy)
1
€p = ——Up (23)
S(¢p)
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886 V. LODS
The mapping G, is an isomorphism from the space V(b ») onto the space
Wi($1)-
Proof : At the first, let us verify that:
OV = G, (@) EV,y, forall ,eV,(d,).

From the definition of the space V(¢ »), the functions ¥,; and ¥, respec-

tively are P, and P; on each closed set K,. So, from the definition of
G,, the functions «,, B, are P,;, while 6, and ¢, respectively are
P, and P, on each closed set K,. The boundary conditions being satisfied,
we have only to verify that the functions «,, 8, and 6, are continuous on the
set I. Or, conditions (10)-(11), which are satisfied for all ¥, of the space

V(& ,), ensure the continuity of the displacement vector and of the rotation

of the normal vector. Then we deduce, from relations (21)-(22), the
continuity of the three functions «,, B8, and 6, at each node, and then on
1.

So, the mapping G, is well defined. It is obvious that G, is an injection.

Thus, to prove that G, is an isomorphism from the space ‘7,,(q; ») onto the

space W,(&,), we have just to verify the equality :
Gu(Vi($1)) = Wi(dn) -

At first, we prove that the space G,,(V,,(q;,,)) is included in the space

W,($,). Let 5, = (¥,,, D)) be an element of the space V,(&5), and let us
denote :
Vo = (@4 By 01, €4) = G, (@)

From lemma 2, to prove that v,,, belongs to the space W, (¢,), we have only
to verify the equality :

aii+Bij =S@{ent (1) - 0,7 (1)} - @4)

For that, we differentiate equality (21) and we thus obtain, the function
&, being P on each closed set K, :

api +Bhj =0y t(dy)+ Dppn(d,).

We deduce equality (24) by using relations (22)-(23). We have thus proved
the inclusion :

Gh(V 1 (61)) = Wy (d) .
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We now verify the second inclusion :
Wi(b1) = GV, (d4)) -

Let v,, = (ay, B,, 8,, ¢,) be an element of the space Wh($h). We define
then ¥, = (), 7,,) by the equality :

@i +BuJ =V 1(by) + P fi(d). (25)
We have then to prove that :

v, € Vh((f;h) s

1 =
0, =— — Upa» (26)
S(¢b,)
| T
&p=——"Upn, @7
S(én)
to have the equality :
G (By) = Vpy, -

At first, formulas (26)-(27) are immediately obtained by differentiating the
equality :

@y i+ Bh; =y ?(<5h) + Opy ’_’i(‘;h) >
and by using lemma 2, which gives the relation :
ahi +BLj =S@){ent (1) — 0,7 (1)} .
Let us verify that ¥, belongs to the space Vh(q§ »)- From the equalities :

_ 1
S(é,)

[F% 5}’,1 and ahi +th =ﬁh1 t(¢h)+5h2n(¢h),

we deduce that the function 7, is P, on each set K, and that the function
U,, is P; on each set K,. On the other hand the functions «,, B8, and

#, being continuous on the set /, we deduce, from equalities (25)-(26), the
continuity of the displacement vector and of the rotation of the normal vector
at each node. Consequently, the function ¥, belongs to the space

Vi(dh)
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Finally, we have proved the desired inclusion, and so, the equality :
Gh(Va(En)) = Wi(dy) .

Thus, the mapping G, is an isomorphism from the space Vh(d; ») onto the
space Wh(q;,,). O

Now, we can prove the equivalence between the finite element scheme of
Bernadou-Ducatel and the discrete mixed formulation.

PROPOSITION 3 : Let ¢, be a function of the space /~1,,.

The discrete mixed problem (17) is equivalent to the discrete
equation (14), and we have the relation :

Uy = Gy(Uy) .

Proof : From Brezzi’s theorem [3], we already know that the discrete
mixed problem is equivalent to equation (20) :

Uit € Wi(D1) s (B Upps Opu) = M (b3 0,y), forall v, € W,(db,).

Then, we have to prove the equivalence between this equation and the
discrete equation :

i, € V(b)) ay(dby;: iy, 0y)=L(b,; 0, forall ¥,e V,(é,).(14)

The mapping G, being an isomorphism from the space 1% W (P ») onto the space

W,l(d; »), it suffices to verify the equalities :

@ (13 O W) = ¢ (13 Vo W) a0d L5 By) = M(S 5 0,p) ,(28)
where :
U = G4(@y) and  w,, = G, (W),
for all functions ¥, and w, belonging to the space ‘7,,(4; n)

Let ¥, and W, be two functions belonging to the space V,(¢,), and let be
Vi = Gp(0y), W), = G, (W)
From the definitions of the mapping G,, we directly obtain the equalities :

ah(‘;h;ah, wy) = Z {CE;, g, +D 8,85t S (Ggh)dx

=0 UK, (8,
and :

-~ l -~
L,(¢y; ﬁh) = - f p ey, S(by) dx ,

0
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where we have denoted :
UV = (@, By, Oy, €,) and  w,, = (ay, By 94 &) -
Consequently, we deduce equalities (28). O

From theorem 1 ans proposition 3, which give the equivalence, on the one
hand, between the continuous mixed problem (6) and state equation (1), and,
on the other hand, between discrete mixed problem (17) and discrete
equation (14), we find again the results of convergence of the discrete
displacement of Bernadou-Ducatel :

THEOREM 3 : Let ¢ be a function of the space A and let &, be its
interpolated function on /~1h. We suppose that the solution u® = (u,, u,) of
state equation (1) satisfies :

u® e H* () x H*(I)
then the discrete displacement u,, which is the solution of the discrete
equation (14), « converges » when the step h — 0, as follows :

® iy T (by)+ lpp Ti(dy) > up () + up i($) in the space H' (I).

0(d,, i) — 6 (¢ ;u®) in the space H'(I).

° e(d;h, i,) > (¢ ; u®) in the space L*(I).

We now study an optimization problem.

3. THE OPTIMIZATION PROBLEM
3.1. The continuous optimization problem

The design variable is the shape ¢ of the arch, which belongs to an open
set @ of the space A. We want to minimize costs, which regularly depend on
the displacement. We write these costs on the following way :

J()=J(¢;u®) 29

where J: ® xV - R is a C! mapping. We choose, for example, to
minimize the energy of the arch, and so, from the state equation, this cost is
equal to:

j(#)=L(s, u®).

Our purpose is to minimise numerically the costj (¢ ), by using descent
algorithms. At each step of the descent algorithm, we have to calculate the
descent direction. The descent direction can be derived by two strategies. In
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one strategy, we first approach the cost, by discretizing the state equation,
with a finite element scheme, and then, we calculate the gradient of the
approached cost, called discrete gradient. In the other strategy, we calculate
an approximation, called discretized continuous gradient, of the exact
differential of the cost. The advantage of the second method is to use the
finite element code only at the last step, while we have to differentiate the
rigidity matrix to calculate the discrete gradient. Otherwise, the discrete
gradient seems safer, because the convergence of optimization algorithms is
then well known. Before describing the two strategies, we recall the
following result, ([1], [9]) :

THEOREM 4 : We suppose that the mapping : ¢ - L(¢d ;.): @ > V' is
differentiable, where V' is the dual of the space V. Then the mappings :

é>u: (DWW U)oV and ¢ —»j(d): (PcW>*U) >R

are differentiable, and :

C/A = 0T s 8. L s e

(30)
where p®, which belongs to the space V, is the only solution of the adjoint
equation :

a(¢ ;p®, v)= g% (¢ ;u®).v, forallvof the spaceV . @31

Let us notice that the adjoint state p? is equal to u®, when we minimize the
energy of the arch.

3.2. The approached cost

To use the optimization algorithm, we have to approach the costj (¢ ),
which is, for example, equal to the virtual work L of the self weight of the
arch. In this case, we naturally approach the function j by the function

J» defined on the space /1,, by :
Jn(@n) = Ly(by s 0y) - (32)

For another cost, we introduce a mapping Jj, : 4, x U, - R « approaching »
the map J, and we let:

Jn(bn) = Tu(dy s ily) - (33)
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Usually, we write the discrete cost with the degrees of freedom of the
geometry é » and of the displacement #,. The vector of degrees of freedom of

a function ¢ » of the space /~1,, is:

Dy = (6,(x1), 64(%2), oes Bp(X)) s

which belongs to the space R™.

The function &, being given, the displacement u,, which satisfies the
discrete equation (14), belongs to the space Vh (¢ »)- Let us recall that this
space is isomorphic to the subspace V, of the test space V. Consequently, the
dimension of the space V,(é,) is independent of the geometry, and it is
equal to 3 m. Thus, the discrete equation can be written as follows :

Ki(@) Uz =Ly(P,), (34)
where K;(®,) is the rigidity matrix, U, is the vector of degrees of freedom of
the displacement #,, which belongs to R*™, and L,(®,) is the vector of

R*™, associated to the linear form Lh(d; » 5 -)- The calculation of the ridigity

matrix and of the vector L,(® ,), which depend on the vector @ ,, are detailed
in [6], [8].

Finally, we write the approached j, (& ») on the following way :
@) =@y, 35)
where j, is given by :
Ja( @) =Jy(Py;Uy),

the mapping J,; being defined by the relation :
J D@y V) =J(b,:0,), forall V, of R*™,

where V, is the vector of degrees of freedom of the displacement
.

The optimization algorithm, which can be used as a black box, allows to
minimize the cost j,(®,). For that, at each step, a simulator requires the
calculation of the cost and of the descent direction. We now give some
details about the calculation of the descent direction.

3.3 The discrete gradient

The discrete gradient is equal to the derivative of the approximated
costj,(®P,). To calculate it, we work like in the continuous case, (see
theorem 4). We then obtain the following result :
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PROPOSITION 4 We suppose that the mapping @,— L;(P,,)
R™ - R*™ 15 differentiable and that the mapping J; R™ x R*™ SR s
Cl

Then the mappings

b, -U; R'"SR'™ and @,-55,(P,) R" SR

are differentiable, and, the components of the discrete gradient, on the
canonical basis (e,), ., ,, of the space R™, are given by

) € =— rﬁd(¢d)'ez> Uy, Py R3”‘+

aJ,
(¢d, d)- e, + (¢d,Ud) e,

MYy

where P € R*" 1s the only solution of the adjoint equation

aJ,
KPPV Ipom = 57“‘ (@,,Up)-Vy, forall V,eR™, (36)
d
and (., .)pin is the scalar product into the space R*™

It 1s not difficult to calculate this discrete gradient, but 1t requires to
differentiate the ngidity matrix, and so, to know very well the finite element
code To avoid such heavy calculation, we prefer here to use the discretized
continuous gradient

3.4. The discretized continuous gradient

At each 1teration, we have to calculate the descent direction at a vector
@, of the space R™, which 1s the vector of degrees of freedom of a function
é, of the space A, The method consists 1 approaching the exact

differentiall of the cost 7, by using the finite element scheme as a black box
The approximation of the geometry being non conforming, we can’t use

the formula (30) with the function q; » The idea of S Mormano [8] 1s to
construct a function ¢, belonging to a subspace A, of the space
W3 @ (I), from the data of @, The subspace A, 1s chosen equal to the splines
of five degrees, satisfying the boundary conditions at the points x = 0 and
x = 1 Thus, 1t 1s 1somorphic to the spaces R™ and ;1’1 Consequently, at each
vector @, of R™, we associate

e a function ¢, of the space Ah c A,
e a function ¢ » of the space Ah
The vector of degrees of freedom of these two functions 1s @,
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Finally, we will replace the function ¢ by the function ¢, in the
formula (30). Let us now to detail the calculations of the direct state and of
the adjoint state :

— At first, from the data of vector @, the finite element code provides
the vector U,. Then, by interpolation, we obtain the direct state it,, which is
the only solution of the discrete equation (14) and the function u, = F ,(u,,).

— Secondly, to obtain the adjoint state, we use the same finite element
scheme, which give us the vector P, of degrees of freedom of the function
Dy, Which is the only solution of the discrete adjoint equation :

P € Vh($h)’ ah((gk 3 Dps Up) =

YA o
=g~—’(¢h;ah)-5h, forall B,e V,(é,). (37)
Up

Then, we calculate the function p, = F ,(p,).

All these calculation are detailed in [8].
Finally, the components of the discretized continuous gradient, calculated at
the point @, of R™ are given by :

D.C.G.(D,)-e, =

d oL oJ
= — ﬁ (D45 up py) - S, + Yy (Dh:01) - Sp + EYS (Prsup)-Sp»> (38)

where S,, is the spline of the space A,, associated with the vector of degrees
of freedom e,. We propose now to compare the discrete gradient to the
discretized continuous gradient. From definition (38) of the discretized
continuous gradient, and from the convergence of the finite element scheme
(see theorem 3), it is easy to prove the following result :

PROPOSITION 5 : Let be ¢ a function of the space A. We denote by :

® ¢, its interpolated spline function on the space A, ;
o @, the vector of degrees of freedom, associated with ¢,
We suppose that :

® the functions ¢ belongs to the space W* ® (I)
e the functions u® and p? are regular, i.e. :

u®, p? e H*(I) x H3(I) .

Then it exists two constants D >0 and hy > 0 such that :

D.C.G.(®,)-e, —;_fﬁ (@) S| <Dh Sullyseg - forall he 10, kol
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Proof : The function ¢ being regular, we have the estimation :
” ¢ - ¢h”w3-"°(1) = O(h) ’

hence, because of the expression of the energy a(¢ ;.,. ), which is V-
elliptic :

by

|u? —u =0("h),

Iy
and, consequently, by using the Bernadou-Ducatel’s results ([2]), we have :
up — u?||, =O) and |u, - u‘“||v —0(h),

and on the same way, we can then prove that :
lp—p¢ll, =0@) and ||p,-p™|, = 0.

Let us bound below the partial derivatives of the energy, which appear in the
expression of the difference between the « exact» differential and the
discrete gradient, i.e. :

da by da
Ahzﬁ(m;u " p ”)-Sm‘ﬁ(‘/’h:umph)'shz-

We write A, as follows :

da ¢ ¢ da ¢
Ah=£(¢h;u h,P h~ph)'sh1+£(¢h;u h—uh’ph)'sht'

From the expression of the energy of the arch, we have the estimations :

=

da ¢ & da b, ¢
L |£(¢h;u " p h—Ph)'Shz—£(¢§u P " —Pr) Sk

=C I|¢h - ¢ ”wlw([) "u

¢h”v ||p¢h —ph"v ’

o =

=

da ¢ da ¢
W(‘/’h;u h—uh,Ph)'Sm—w(ﬁb;u " — Up i) - Sh

<C |61 — @ a0, IPally Hu'p" — u"“v ,
0
o |28 @5 ut - p* = p S| < C 18 lypeg, 1, 0% - 2all, -

=C |¢llps=q llPally, ||u¢"—u,,"V ’

da ¢
® NQW’;“ " —uy, Pr) - S
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Finally, we deduce that :
A,=0(h).
On the same way, we can estimate the other terms, which appear in the

expression of the difference between the discretized continuous gradient and
the « exact » differential. O

The difficulty then is to compare the discrete gradient to the « exact
differential ». For that, we use the mixed formulations.

4. COMPARIZON BETWEEN THE DISCRETE GRADIENT AND THE DISCRETIZED
CONTINUOUS GRADIENT

To compare the discrete gradient to the « exact gradient », the idea is to
write the discrete gradient and the « exact gradient » with the « mixed »
variables.

4.1. Another formula of the « exact » gradient

To simplify the notations, we suppose first that we minimize the energy of
the arch. So, the cost j is equal to:

@)=L ;u®).
From the relations (9) between the direct displacement u? = (uy, uy) and the
« mixed » displacement u,, = {(a, B ; 0, €):
ai +B] =w I ($) +u,7i($), 6=0(b;u), &=c(d;ut),
we can write the costj (¢ ) with the mixed variable u, as follows :
(@) =Jn(d3u,),

where (u,, A)eV, x %, is the only solution of the mixed problem and
J,, here is equal to the linear form M.

The test spaces V,, and 3, being independent of the geometry, we can
differentiate the mixed problem.

PROPOSITION 6 : We suppose that the mapping : ¢ — J, (¢ ;.): Wh® x
V,,— R is C' and the mapping M : W" () x V,, — R is differentiable.
Then the mapping : ¢ — j(¢) is differentiable, and :

4 —_ % (4 AL o
%(¢)'¢_ a¢ (¢7um’pm) !/’ a¢ (¢7A1pm) ‘/’

b . . M , ., S
—5?;(‘75,ﬂ,um)-l//'*‘w(d”Pm)"//'*'g(d"um)“/l,
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forall ¢, ¢ € W> ®(I), where the adjont state (D> M) 1S the solution of the
mixed problem

(pnv n)evmxzm?

aJ,
c(P;Pm V) +b(P;m, v,) = 30

(¢ ;uy)-v,, forall v, eV,
b(¢;/1"pm)=0 forall /.Lezm-

Here, the adjoint state 1s equal to the direct state, but we shall not use this
equality.

Proof We write the mixed problem (6) on the equivalent way :
Find

Xy = (Up, A)EV, x 3, suchthat: k(¢ , x,, z,,) =
=n(¢;z,) forall z,eV,x3,, (39
where :

{k(qb S Ym Zm) = C(b, Uy W) + b(d 51, wy,) +b(d 50, 0,)
n(¢ ,z,)=M(¢ ;w,),

for all functions y,, = (v,, n) and z,, = (w,, ¢) belonging to the space
Vo X 2,
Thus, the cost j 1s equal to.

J(@)=J,($;u,),

where the couple x,, = (u,, A) €V, x %, satsfies the equation (39).
We can then apply the theorem 4, which implies :

Gy B Y I .
dd) (¢) '/,"‘ a¢ (¢5xm)))m) ¢’+a_(£(¢aym)"ll+w(¢aum)'¢s

where x,, = (u,,, A) and the adjoint state y,, = (p,,, 7) 15 the solution of the
equation °

aJ,,
YmEVux 2, k(b , Y zm)=aT(q5;um)-vm, forall v, eV,.

From the definitions of the forms k& and n, we obtain the result. O
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Consequently, for all vectors @, of the space R™, we have obtained the
equality :

dj ac
5 (1) Su =32 ($usup Ph) - Sh—
ob ab
=3¢ @ni AN PR S =55 (@ain’ up) - S,
oM 3,
+ % (Bhs0h)- Sy + EYy (bh5 up) - Sh (40)

where :
® ¢, is a function on the space 4,
e (U, A"y eV, x 3, is the only solution of the mixed problem :

C(bnsuly 0,)+b(dys A% v,) =M(¢,;ul). v, forallv, eV,

“4n
b(db); 1, ) =0 forallp € 3, .

e (P!, »" eV, x 3, is the only solution of the mixed problem :

K h o A
C(PysPm V) +b(dy5m% 0,) = Fo (pp;ut).v,, forallv, eV,

42)
b(é,; 1, ph) =0 forallu e 3, .

4.2. Another formula of the discrete gradieni

To simplify the notations, we again minimize the energy of the arch. So, the
cost j is equal to :

j(@)=L(¢;u®)
and it is approached by :

Jn(@n) =Ly(dys ily) .

To calculate the discrete gradient, we have introduced a cost: j,: R” - R
which is a function of the vector of degrees of freedom. Here, we work like
in the continuous case, by using the mixed formulation, in order to compare
the discrete gradient to the discretized continuous gradient. Indeed, we have
shown that the finite element method of Bernadou-Ducatel is equivalent to

the discrete mixed formulation. To be precise, the displacement of the beams
uy, is given by :

~ -1
Uy, = Gh (umh) ’
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where u,,, is the « discrete mixed » displacement. Thus, the formula (28) :
Li($,:0,) =M (& ;Gy(@,)), forall ¥,eV,(é,),
implies :
Jn($n) = M(@ 5 upm) .,
where (4, A,) € V,;, x 3, is the only solution of the mixed problem :

(s Upps Opp) + B(Bp s Aps V) = M (b3 V), forallv,, € V,,
b(Dis Mo Ump) =0 forall s, € Sy, -

Like in the mixed continuous problem (see proposition 6), and, by differen-
tiating the equality (35) :

Ja( @) = ju(bn)

we obtain :
dj4 oc , =~
d¢d (qjd) e, = - '5—(; (¢h > Umhs pmh) ‘ Shl -
ab -~ ab , ~
~ 3% (D45 X Pon) * S — FYy (Dns Mis Upn) * Sh
M~ s O o s
+w (¢h;pmh)'th +3¢T (¢h;umh)'shl ’ (43)

where the « discrete mixed » adjoint state (P, 1) € Vo X 2, is the
solution of the discrete mixed problem :

- - aJ, -
C(¢h 5 Pmns Umh) + b(¢h s Mo vmh) = a—v—m (¢h 5 wmh) - Ushs for all Vmn € th
m

b( P Bu D) =0 forall u, € %,,.
(44)

Now, from the formulas of the discrete gradient and of the «exact

gradient », we can easily compare the discrete gradient to the discretized
continuous gradient.

4.3. Comparizon between the discrete gradient and the discretized
continuous gradient

By applying the method used fo prove proposition 5, we obtain the
following result :
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PROPOSITION 7 : Let be ¢ a function of the space A. We denote by :

® ¢, its interpolated spline function on the space A,

) n its interpolated spline function on the space /~1h

® &, the vector of degrees of freedom, associated with ¢, and
b
We suppose that :

® the function ¢ belongs to the space W (1)
e the functions u® and p* are regular, i.e. :

u®, pt e H*()x H*(I).
Then it exists two constants C >0 and hy= 0 such that :

djg
— (Py)-e,—D.C.G.(D,)-e,| <Ch|S, “w3-"°

o, forall h e 10, #,{.

@’

Proof : On the one hand, as the hypothesis of regularity on the function
¢ implies that :
¢ = ¢ullyswg, = Oh)

we can prove that, because of the expression of the energy a(é¢ ;
which is V-elliptic :

X

Ju® —u®, = 0@,
and, on the same way for the mixed solutions :

st = umll, + 02 = 2%, =0®).
On the other hand, the assumptions :
u®, p® e H* () x H3 (),
implies, thanks to the relations (9) :
Ups P € H*I) x H* (I ) x H*(I)x H'(I) .

As, from the remark 2, A belongs to the space H'(I) x H'(I), and on the
same way, 7 too, we can apply theorem 2, and so :

Vs — el + 24— Ally = OGh), when k=0,

and :
Ilpmh_pm||vm+”77'1_’7“2,,,=0(h)’ when A2 0.
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Consequently, from the equalities (40)-(43) and from the estimation :

I = Gullypwg, = 0@,

Wl'm(l
we deduce the convergence, by applying the way used in proposition 5 :

dj 4 dj | .
r%(‘@d)'ei—ﬁ ((ﬁh)-S,,il =0(), when h-0.

Thus, from the « convergence » of the discretized continuous gradient :
dj
d¢

we deduce the theorem. ]

lD.C.G.((Pd)-e,- - (@1) - Sy

=O0(h), when h->0,

5. CONCLUSION

Consequently, we can use here the discretized continuous gradient in the
descent algorithms, when the step 4 is sufficientiy small. So, we avoid to
differentiate the rigidity matrix, and we can use the finite element code as a
-black box. The numberical calculation, made by Habbal [6], who uses the
discretized continuous gradient, gave satisfying results.

Let us notice that the mixed formulation given here has been used to
compare the discrete gradient to the discretized continuous gradient. But, we
can also use it to build new finite element schemes, which allow us to
approach the displacement of the arch.
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