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MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 29, n° 2, 1995, p. 235 à 257)

TWO-DIMENSIONAL MODELS OF FABRICS (*)

by Denis CAILLERÏE and Hervé TOLLENAERE (l)

Communicated by E. SANCHEZ-PALENCIA

Abstract. — The aim of this work is to study different two-dimensional models of a fabric
(coated or uncoated) where shearing between warp and weft is taken into account.

In the first section, a model is described, in which we introducé two two-dimensional
displacement fields in the areas where warp and weft are superposed.

The second section shows in a classical study of functional analysis that, if warp and weft
interact through e las tic forces, the boundary value problem has one unique solution, wether there
are Neumann, Dirichlet or periodicity boundary conditions on the e dg e of the sample.

The third section is devoted to the homogenization method ofperiodic media which is applied
to the considered modeL ïtyields different macroscopic models according to the strength of the
coupling between warp and weft and the possible présence of coating.

The last section sums up briefly the previous ones and gives future possibilities of development
from this work.

Résumé. — Le but de ce travail est d'étudier différents modèles bidimensionnels de tissés
(enduits ou non) prenant en compte le glissement entre fils de chaîne et fils de trame.

Dans le premier paragraphe, on introduit un modèle bidimensionnel à deux champs de
déplacement dans les zones de contact entre chaîne et trame.

Dans le deuxième paragraphe, une étude d'analyse fonctionnelle classique permet de montrer
que, pour une interaction chaîne-trame modélisée par un rappel élastique, les problèmes aux
limites correspondant à des conditions de périodicité, de Neumann ou de Dirichlet sur le bord
de l'échantillon sont bien posés.

Le troisième paragraphe est consacré à Vapplication de la méthode d'homogénéisation des
milieux périodiques au modèle considéré. On obtient ainsi différents modèles macroscopiques
fonctions de l'intensité du couplage chaîne-trame et de la présence éventuelle de résine.

Le dernier paragraphe résume brièvement les précédents et énumère les prolongements qu'on
peut donner à ce travail.

(*) Manuscript received May 2, 1994.
C1) Laboratoire Sols-Solides-Structures, BP 53X, 38041 Grenoble Cedex, France.
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236 Denis CAILLERIE, Hervé TOLLENAERE

1. THE TWO-DIMENSIONAL MODEL INCLUDING INTERACTION BETWEEN WARP
AND WEFT

1.1. Introduction

The aim of this work is that it takes into account the shearing between warp
and weft in a model which remains two-dimensional. To this aim, we consider
two displacement fields in the area of contact between warp and weft. To say
that the model is two-dimension al means that the balance and constitutive
équations are set in a plane and that the considered displacement fields are
two-dimensional.

We consider the case of small déformations. Fibers and coating are sup-
posed to be linearly elastic. Furthermore, the forces between warp and weft are
modelled by a linear elastic springback.

1.2. Description of the model

1.2.1. Coated fabrics (CE)

The medium is described on the figure 1.

x
Figure 1. — Modelling of a coated fabric.

The sample of fabrics occupied a domain D of R2. ûï and Q2 are composed
of strips parallel to X2 and Xx axes, they have a not empty intersection called
Q.

Qx\ set of fibers parallel to X2 (warp)
Q2 : set of fibers parallel to Xx (weft)
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TWO DÏMENSIONAL MODELS OF FABRICS 237

Q3 : coating (disjoined from Qx and Q2)
Qx r\ Q2 = Q (common area of Qx and Q2)
rie = Ü} n Ü3 (common boundary of Qx and Q3)
F2e = Ü2nQ3

F]l = dQl n Q2 = ai2j n 3Q (Fu represents the part of the boundary
of Qx which is also a part of Q2).

x
F2i = dQ2 r\Qx = dQ2 n dü

l r 2 e

With the assumption of linear elasticity and small perturbations, the con-
stitutive model of each constituent (warp, weft and coating) noted with the
figure n (n = 1,2,3) is:

elAu)=±\1~ + -~} \nQ ( « = 1 , 2 , 3 ) (2)

a is the stress tensor and e_ is the strain tensor. The elastic moduli d[.kh meet
the usual conditions of symmetry and coercivity which are :

aijkh = aijhk = akhij '

And:

3a so that : Vy,y ( y.. - yjt ) aijkh ykh ytj ^ aytj y..

The problem involves three displacement fields u ,u , u (defined respec-
tively in Qv Qv Q3), As Q{ and Q2 have a not empty intersection Q, the
déformations of the fabric in Q are described by two displacement fields u
and w2. The interaction between warp and weft is modelled by a linear elastic
springback i.e. by the density of surface force equal to kJuj — u ). We
extend kr to zero outside Q. Then, the balance équations are :

d4éL + f\e + ki^u2-u)) = 0 inQ, (3)
dXj

-fo- + f]e + kij(u) -u*) = 0 inQ2 (4)

^ + f.e = 0 inQ,. (5)
nY l J

The quadratic form associated to the matrix [kt] is supposed to be positive.
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238 Denis CAILLERIE, Hervé TOLLENAERE

Furthermore, the fields wrt, £w ( n = 1, 2 ou 3 ) meet transmission équations
and boundary conditions on tïïe interfaces between £2V Q2 and Q3 :

a]jnj = 0 onf1 ' u =u and a\n. =a\n} onFle (6)

cr?.n. = O onT2 '" w2 = w3 and o^nj = alnj on f 2 ' . (7)

1.2.2. Uncoated fabrics (U.E)
The case of uncoated fabrics (U.F.) is described nearly like coated fabrics

(CF.). The différence is that we consider only two domains Qx and Q2 and
then two displacement fields w1 and w2 respectively defîned in Qt and Q2. Then
for U.F., the balance équations are the same as 3 and 4 and the third équation 5
vanishes. On the other hand, the équations 6 and 7 become the boundary
conditions :

o\nj = 0 onrli and F1 e (8)

alrtj = O onF2i and T 2 e . (9)

2. WEAK FORMULATIONS. EXISTENCE AND UNIQUENESS

2.1. Introduction

The aim of this section is to prove by using the theorem of Lax-Milgram,
which is applied to weak formulations, that the problems of this modelling of
fabrics with usual boundary conditions (Dirichlet, Neumann, mixed condi-
tions, periodic conditions) are weil posed.

We shall see that, in the weak formulations, there are the usual bilinear
forms of elasticity ror each part of the fabric (warp and weft for U.F., warp,
weft and coating for CF.). For Dirichlet problems, the coercivity of these
forms is a conséquence of the Poincaré's inequality, and then the term
corresponding to the; elastic springback between warp and weft is unessential
for the existence and uniqueness results.

On the other hand, for U.F with Neumann boundary conditions, the elastic
springback is important because the domain D where the équations are set is
not connected (unlike what is usual for problems of elasticity) and the
coercivity of the bilinear form is not so obvious.

The problem is similar for U.F. with periodic boundary conditions or for
problems with mixed boundary conditions. In this latter case, if on each fiber
there are boundary conditions for displacements, then the coercivity is a
conséquence of the Poincaré's inequality. Otherwise for other conditions, the
coercivity dépends in a very important way of the elastic springback.
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TWO-DIMENSIONAL MODELS OF FABRICS 239

For CF., in a way, the coating makes the domain D connected and the
problem is nearly the same as this of classical linear elasticity.

Then, the « non-connectivity » of the domain D yields many different cases
of problems with different boundary conditions. We shall not study here all
these cases, and we shall only consider a problem in a simplified domain D
which présents however the main characteristics of the problem of existence
and uniqueness. This simplified domain is shown on the figure 2. It is
composed of two fibers Qx and Q2 parallel to X2 and Xx axes. For CF., we add
the coating, that is the third domain ü3 disjoined from Qx and QT

U.F

\

l2
X

r 2 i

r l i

p2e

r l e

,•2

y

\
p2i

r l i

p2e

r l e

Figure 2. — A simplified model of a U.F. and a C.F.

The domains O, D and the boundaries F1 e, F1 \ F2e and F21 are defined in
a same way as in the beginning of the section 1.2. In this section, we define
also l2 as the left part of the boundary dD n dQ2 and r2 as the right part of
the boundary dD n dQ2 (seefig. 2). For CF., we define also l3 as the left part
of dQ n dQv The rest of dQ n dQ3 is called r3.

In the next paragraph, we give the weak formulations of the problem for
periodic boundary conditions and mixed conditions in the case of coated and
uncoated fabrics.

2.2. Weak formulations

2.2.1. Uncoated fabrics with mixed boundary conditions

The strong formulation of the problem is made up of the balance équa-
tions 3, 4, the constitutive law 1 and the transmission équations 8 and 9.
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240 Denis CAILLERIE, Hervé TOLLENAERE

We have to add boundary conditions, for mixed boundary conditions they
may be for instance :

u = 0 on f

ai rij = F] on ? and a\ n. = F) on dD n dQx .

With these conditions, the weak formulation of the problem is :
Find M G Vum (w for uncoated, m for mixed boundary conditions) so that :
V" e Vum

2 f «
n — 1 v Qn

With

Vum = {v = (v\ v2) so that (vn
v vn

2) e [Hl(Qn)f n = 1, 2 and v2 =0 on l2} .

2.2.2. Coated fabrics with mixed boundary conditions
In this case, the strong formulation is made up of the balance équations 3

to 5, the constitutive law 1 and transmission équations 6 and 7.
For CF., we consider the mixed boundary conditions :

M2 = 0 on l2 u = 0 on f

a), rij = F) on dD n dQt

With these conditions, the weak formulation of the problem is :
Find u e Vcm (c for coated, m for mixed) so that :
Vv G V

cm

n = \ v QH

= 1

M2 AN Modélisation mathématique et Analyse numérique
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TWO DIMENSIQNAL MODELS OF FABRICS 241

With Vcm = {v = (v\v2,v3) so that £n = (vn
v v

n
2) e [Hl(Qn)f n =

1,2,3; v1 =£3 on T l e , £2 =£3 on r2e ; £2 = 0 on l2 and £3 = 0 on
z3}.

2.2.3. Periodic boundary conditions for U.F. and CE
We can also consider periodic boundary conditions so that :
um and o™ (m = 1, 2 for U.F., m =1,2,3 for CF.) have the same values

on opposite sides of dD n aöw (m = 1, 2 for U.F., y» = 1, 2, 3 for CF.). And
then a™ n- has opposite values on opposite sides of dD n dQm (m = 1, 2 for
U.F., m = 1, 2, 3 for CF.). (12)
With these conditions of periodicity, the weak formulation of the pi'oblem is :

Find M G V (p for periodic) so that :
Vi> e Vp

3 f f
n-\ïün J O

vn
tdx (13)f

(/? = 2 for U.F., p = 3 for CF. ).
With, for U.F. :

£n = (vn
v vn

2)

£n has the same value on opposite sides of dD n dQn n— 1,2}.
And, for CE :

£ = £ on F e, £ = £ on F e ; v_n has the same value on opposite sides
of dD n dÜnn= 1,2,3}.

2.3. Existence and uniqueness

The weak problems 10, 11 and 13 can be written in the following way :
Find u e V so that Vv e V,

The définition of the space V dépends on the boundary conditions and on the
possible présence of coating (see section 2.2).
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242 Denis CAILLERIE, Hervé TOLLENAERE

To prove the existence and uniqueness of the solution of the problems 10,
11 and 13, we use the theorem of Lax-Milgram. In order to use this theorem,
we need to prove that the bilinear and symmetrie form a(v, v) involved in
these different problems pro vides the spaces V with a structure of Hubert
space.

In the following, we shall use some theorems and results of functionnal
analysis, the terms of which may be found in any treatise of functionnal
analysis (see for instance 2 and 5).

2.3. L Coercivity of the bilinear forms a(u, v)

In order to prove that VÖ(Ü, V) provides the spaces V with a structure of
Hubert spaces, we shall use a classical theorem of functionnal analysis, the
terms and the proof of which are recalled hereafter.

THEOREM : Let L and E be two Hubert spaces for the norms || || L and
|| || E such that :

— E a L algebrically.
— \/v e E | |t?| | |= IMl£ + a(v>v) where a(v, v) is a positive

quadratic form on E.
— The injection x e E —> x G Lis compact.

Let W be a closed subspace of E so that \\v\\x = Va(u, v) is a prehil-
bertian norm on W.

Then on W, \\ || 1 is a norm equivalent to || || E and consequently, W
equiped with the norm || || t is an Hubert space.

Recall of the proof
It is clear that :

We have just to prove that :

3 M e Rs.t. : V u e W \\v \\L ^ M\\v || x .

Let assume that this inequality does not hold true. Then :

Vn3w r t e WsJ. : | | w n | | L ^ n||wB | | , •

Let set :
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TWO-DIMENSIONAL MODELS OF FABRICS 243

Then :

Vn3vnsJ.:\\vn\\L=l and ||i>"||x «£ ± .

The séquence vn is bounded in E, indeed :

\ \ v n \ \ \ = \ \ v n \ \ l + \ \ v n \ \ ] * £ 1 + ^ * 2 f o r n > l .
n

As E is an Hilbert space, there is a sub séquence extrac ted from vn and v
belonging to E so that vn —> Ü weakly in £ when n —» » , As W is a closed
vector sub space of E, it is closed too for the weak topology and as vn belongs
to W, the limit v belongs to W. As a conséquence of the weak convergence of
vn to v, we have :

l i m i n f | | D " | | £ = l i m i n f V l l » " l l i + II»"II?
n —> °° n —> °°

Now, the injection E —> L is compact, then vn converges to v strongly in L
and :

Furthermore :

Then:

= 1 and | | » | | B « 1

That is :

And necessarily :

Now, v G W and necessarily u = 0, which is impossible for || t? || L = 1.
The theorem is then proved.
We have now to consider the different cases of uncoated and coated fabrics.

vol. 29, n° 2, 1995



244 Denis CAILLERIE, Hervé TOLLENAERE

Uncoated fabrics :
For this case, we have :

L=[L\Q1)]
2X[L\Q2)]

2

And the injection E —» L is compact.
It is clear that :

Vum = {v G E s.L £2 = 0 on î2}
and Vup = {veE s.t. tf has the same value on opposite sides of
8D n d£2n n = 1,2} are closed subspaces of E.

The usual norm on E is such that :

Assuming that the matrix ( k- ) is definite positive and bounded and using Korn
lemma, it is easy to prove that || v || E defined by :

2 f
+ > ^ k { v ^ — v l - ) ( v — v . ) dx

n = 1 io

is an Hilbertian norm which is equivalent to the usual one. Let define
a( M, v ) as :

2 f « n 2 f
n= Î Jo„ ' n = \ JQ

We are now almost under the hypothesis of the previous theorem, in order to
use it we have just to prove that Va(v, v) is a norm on the spaces Vum and

It is clear that || || { = \/a( v,v) is not a norm on V . Indeed for
v = (£, £ ) (where £ is a constant vector of R ), we have :
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TWO-DIMENSIONAL MODELS OF FABRICS 245

This circonstance is usual for boundary value problems with periodic condi-
tions (see 1( 6) and it is usual then to study the problem in C^ , the orthogonal
space of Cu in E where :

Cu — {v e E s.t. v = ( c, c), c is a constant vector} .

The space C^ is then :

C^ — [v e. E s.t. ü" has the same value on opposite sides of

\ v } d x + \ v?dx = O}.dDndQnn=lt2and

But we may state :

LEMMA : If the matrix k~ is positive definite, then Va(u, v) is a norm on
both spaces :
Vum = {v G Esx.v^ = 0ont2}
and C^p = {v e E s.t. v_n has the same value on opposite sides of

dD ndQn n = 1, 2 and v_l dx -f v_2 dx = 0}.
Ja, JQ2

Proof of this lemma : It is clear that the only point to prove is that :

N o w II v II j = 0 =>

f e{v} )e(vl)dx = 0 (14)

e (i>2 )eJv2)dx = 0 (15)

f kij(v
1
j-v]Xv]-v*)dx = O. (16)

From the équations 14 and 15, we can say that v_l and v2 are solid body
displacements. So :

v1 = a1 + è1 A x

v2 = a2 + b2 Ax.
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246 Denis CAILLERIE, Hervé TOLLENAERE

The matrix ktj is supposée to be definite positive. Then, from the relation 16,
we get :

v2 -v_l = 0 on Q .

And necessarily :

We then study separately the spaces Vum and V . For the space Vum, the
boundary conditions on l2 yield :

a=b=Q.

And then :

v2 =Oa.e. inQ2 and v_l = 0 a.e. in ^ . (17)

For the space Cup, periodic boundary conditions yield :

b = 0.

And then :

v = (v\v2 ) = {a,a) .

So v e Cu. As v is assurned to be in C^ , it is equal to zero.
For periodic conditions, as usual, in order L( v ) (deflned as the right hand

side of the weak formulation 13) to be a linear continuous form defined on
C^p, the forces f_ne ( n ^ = l , 2 ) have to be such that L(c)=0 where
c = ( £ , c ) , i.e. :

2 f fedx = O.
n= 1 J Qn -

Then we use the previous theorem and state.

PROPOSITION : If the matrix ktj is definite positive then :

1. The problem 10 (mixed boundary conditions) has an unique solution.

2. If 2 fnedx = Q, then the problem 13 with p = 2 (periodic
n = l J Qlt —

boundary conditions) has an unique solution up to an additive constant
c= ( C , C ) ( C < E R 2 ) .
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TWO-DIMENSIONAL MODELS OF FABRICS 247

Coated fabrics
The study for coated fabrics is near the same as for uncoated fabrics. For

this case, we set :

L=[L2(Q1)['

E=[Hl(Q})]
2X[Hl(Q2)]

2X[Hl(Q3)f.

And the injection E ~-» L is compact.
The spaces Vcm and V have been defined as :

V^ = {v e E s.t. £] = £3 on F1 e, £2 = £3 on F2e ; £2 = 0 on /2, £3 = 0 on l3}

Vcp = {v e E s.t. £] = £3 on F1 e, £2 = £3 on F2e ; £n has the same value
on opposite sides of dD o dQn n = 1, 2, 3}.

As the trace operators on F1 e and F2e are continuous, it is clear that the
spaces Vcm and V are closed subspaces of E.

Contrary to the case of uncoated fabrics, the coerciveness of the bilinear
form involved in problems 11 is not a conséquence of the positive defîniteness
of kr but of the continuity conditions 6 and 7.

Then we define here :

n = 1 v Qn

And it is clear from Korn Lemma that :

defines an hilbertian norm on E equivalent to the « cannonic » one.
As for uncoated fabrics, we may state :

LEMMA : V Ö Ö M O is a norm on hoth spaces :

Vcm = {v € E s.t. £1 = v3 on F1 \ v2 = v_3 on F2e ; £2 = 0 on /2, £3 = 0 on l3}

and C^p ={v e E s.t. v_l = £3 on F]e, £2 = £3 on F2e ; îf has the same
value on opposite sides of dD n dQn n = 1,2, 3 and

f vldx+\ £2^x+| u3dx = 0}.
JÛ, JQ2 JQ3

Proof of this lemma : The only point to prove is that :

vol 29, n° 2, 1995



248 Denis CAILLERIE, Hervé TOLLENAERE

As for U.C., IMI, =0=>

vl = a + bl Ax

v3 = a3 + b3 Ax.

As v1 and £3 satisfy the continuity condition v^ = u3 on 7"1 e, we get :

V x e Fle a+b1 Ax = a+i Ax.

And then :

In the same way :

Now we study separately the spaces Vcm and V .
For Vcm, the boundary conditions on l2 and / yield :

And then :

v=Q.

For V , periodic boundary conditions yield :

6 = 0 .

And then :

v = (a.a.a) .

So v G Cc. As for U.C., v is assumed to be in C1' then it is equal to zero.
For periodic conditions, as usual, in order L(v) (defined as the right hand

side of the weak formulation 13 with p = 3) to be a linear continuous form
defined on C^, the forces fne ( « = 1 , 2 , 3 ) have to be such that
L ( c ) = 0 where c = (c, c, £),~i.e. :

i f r dx = 0.

Then we use the previous theorem and state :
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O, Y 2

249

b 2

a 2

/

•co-

O a t bj c , '

Figure 3. — The basic cell Y.

PROPOSITION : If the matrix ( k~ ) is positive (but not necessarily definite)
then :

1. The problem 11 (mixed boundary conditions) has an unique solution.
3 r

2. /ƒ 2 ,fne ^ = 0> ^^w ^ ^ problem 13 w///z p = 3 (periodic

boundary conditions) has an unique solution up to an additive constant
c =(£,£,£)(£ e Œ2).

3. HOMOGENIZATION

3.1. Introduction

The aim of the method of homogenization is to replace a finely heteroge-
neous medium by a macroscopic equivalent medium. As our fabric is periodic,
we shall use the method of two scale asymptotic expansions (see l and 6) . It
assumes the existence of a small parameter e which measures the size of the
period, each of these periods being the homothetic of a basic cell Y of
dimensions comparable to the dimensions of the medium (see the figure 3 for
C.R To represent U.C., the coating, i.e. the domains Q3 and cov has to be
removed).

cox = ]avb{[X]0,c2[
co2= ]avb2[ X]0, Cj[
co = col n co2 = ]av b{[ X]a2, b2[
yl e = co[ n co3 (common boundary of œl and CÜ3)
y2e = cb2n œ3

y11 = dcol n a>2 = 8o;1 n dco (yïl represents the part of the boundary of
col which is also a part of the boundary of co)

y2t = dco2 n cü] - dco2 n dco

vol. 29, n° 2, 1995



250 Denis CAÏLLERÏE, Hervé TOLLENAERE

We look for displacements u( and stresses <r» as two scale asymptotic
expansions :

uf = uf(x, x/a ) + eu?(x, x/e) + e2 uf(x, xle ) + ... ((18))

^ " ! U ^ ) + <r?(xx/e) + ... ((19))

m — 1, 2 for U.F. m = 1, 2, 3 for CF. JC is the slow or macroscopic variable
and y (y = x/e) is the quick or microscopic variable.

Then, these expressions 18 and 19 are replaced in the balance and consti-
tutive équations (1 to 4 for U.E, 1 to 5 for CF.). By identifying équations
(which contain the variables x and y) at each order of e, an equivalent
mechanic characteristic of the fabric can be found, Le. a balance and consti-
tutive équation of the homogenized medium (which depend on the only
variable x). It will be seen that the obtained macroscopic models depend on
the order of magnitude of kt with respect to e.

3.2. Asymptotic expansions and macroscopic models
Two types of fabrics (coated and uncoated) are considered as well as three

dependances of e of kt : kt = kip kt = ktj it, kt = kg is
2, It will be seen that

the macroscopic models may be different for coated and uncoated fabrics with
the same kt.

3.2.1. Assumption kt = ki,
The problcrn defined with the folio wing équations is considered :

1. Equations 1 to 5 and conditions 6, 7 for C.R
2. Equations 1 to 4 and conditions 8, 9 for U.F
With the boundary conditions (for example) :

um = 0 on dD n düe
n (n = 1, 2, 3 for CF. n = 1, 2 for U.F. ) .

Carrying the asymptotie expansions 18 and 19 in the expressions of -^~

(m = 1, 2 for U.F, m = 1, 2, 3 for CF.) and ex
kh(u

m) (see équation 2) yields :
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Using these expansions in the balance and constitutive équations 1 to 4 for
ILE, 1 to 5 for CE, and identifying them at each order of e yields the
following équations in the cell Y :

<;"1 = v,4(«'1 0) (20)

</ = <J4(M"0) + ̂ («n1)] (21)

(22)

(23)

'V

In œn (n = 1, 2 for U.E and n = 1, 2, 3 for CF.). And :

ty + axi +*ly(Mj ~U} ) + / i " ° mÛ>1 (24)

21 20

^ L + ^f- + / ? e = 0 incÜ3(onlyforC.F.). (26)

With
•

a = -
•

transmission
For

• 1 ,

For

CF. :

0, L
U.F.:

équations

ï on y \

)on/\

*

u2a =

and o]/n, = ala
nj on y'e (27)

and ala ny = a\}" ns on y2 e (28)

a^n^Q on yme and yml (m = 1, 2 a - - 1, 0, 1 ) . (29)

And periodic boundary conditions on the boundary of F :
u™b and a"m ( a = — 1, 0, 1 b = 0, 1,2) have the same values on opposite

sides of dYndœm (m = 1 , 2 for U.E, m = 1 , 2 , 3 for CF.). And then
<7yïû n has opposite values on opposite sides on dY n dœm (m = 1,2 for U.E,
m = 1,2, 3 for CF.). (30)
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The study of the section 2 for CF. may be applied hère with ktj - 0 and
the solution of the problem (20, 22) with transmission équations ((27, 28) for
CF., 29 for U.F.) and periodic boundary conditions 30 is :

a"j~l=0 (31)

uf = uf(x) (n = 1, 2 for U.F., n = 1, 2, 3 for CF. ) . (32)

For CF., using the transmission équations allows to conclude that :

10 20 30 0/ ^

u = u = u = u (x) .

For U.F, nothing else can be said about M10 and M20.
From 32 and the linearity of the équations 20, 21, 22 and 23, the displace-

ment M*1 ( £ = 1 , 2 for U.F, £ = 1 , 2 , 3 for CF.) can be looked under the
form :

uf =xfmex
lm(î/)) + u)(x). (33)

It may easily be proved (see section 2) that the vectors xnkh (n — 1» 2 for U.F,
n = 1, 2, 3 for CF.) are solutions of the problems : ~

-nkh n v / „ n*fc\

drnkh da"
( « = l,2forU.F.,n= 1, 2, 3 for CF. ) .

With transmission équations (adapted to the vectors #"*ft) 6, 7 for CF., 8, 9
for U.F. and periodic boundary conditions 30. ~"

The weak formulation of this problem is :

and /* = tf »?»,£*) forC.F.

Find xkh e W so that Vu e W,

n = l v (o„ ~~ n = 1 v (Dlt

dy (34)

(p = 2 for U.F., p = 3 for CF. ).
With :

= {t> = (H 1 ,^ , £3) sothatt/1 = (vn
v vn

2) e [H[(con)]
2 ;
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v_n h a s t h e s a m e v a l u e o n o p p o s i t e s i d e s o f dY n dcon n = l , 2 , 3 a n d
v_l = £ 3 on yx\ v2 =v3 on y2e} for C.F.

\ 2 ^ 2
And = {v = (v_\v2 ) so that £n = (vtl

v i/|) e £n has the{ _ £ v | J £
same value on opposite sides of 87 n dcon n = 1, 2} for U.F.

Taking the average on con (n = 1, 2 for U.F., /? = 1, 2, 3 for C.F.) of the
balance équations (24 and 25 for U.F., 24, 25 and 26 for CF.), the macroscopic
équations of the medium are obtained for the assumption kE

tj = kéj. Here, the
case of CF. and U.F. will be different because the results are not the same if
the fabric is coated or not.

• Coated fabrics
The model takes only one displacement field w° into account. It is a model

of linear two-dimensional elasticity which is governed by the équations :

n - 1 v co.. ~

Where ƒ\ and CT° are the means over Y of j \ and CT°, that is (for <r° ) :

2 f °t(*>

(35)

• Uncoated fabrics
The model is a model of linear two-dimensional elasticity. It includes two

displacement fields w1 and u both defined in D which satisfy the following
coupled équations :

— Problem 1

dâw
CO

-10 1 f , 1 , 1 v / 1 */Ï\ \ » x ( 10 >

|_i il i/o, - j

— Problem 2

[ I 2l Ja ,
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fWhere f"e and à f are the means over con (n = 1, 2) of ƒ"' and af, that

So, in this case, the fabric behaves like two elastic slicks occupying all the
surface of the sample and being in interaction with coupling forces which are
proportional to the différence of the displacements of each slick.

3.2.2. Assumption ki = ki} /e
The balance équations 23, 24, 25, 26 defined for k]j = k{. become in this

case :
• In œl :

da]? da);

• In œ2 :

10

^20 ^ 2 , - 1

a 2 0

d ( J
; 7 . . , 11 21 v , ^ ^ ^

• In co3, for CF. only :

da30 da
+ —f = 0 (40)

da30 da3 '"1

dyj

do* da30
 3

- r - ^ + V ^ + Z = ° - ( 4 1 )
a ^ . ÔXJ

 Ji K J

The équations 20, 21, 22, 27, 28, 29 and 30 remain the same.
As in the previous section, it has been shown that :

un0 = M'I0(X) a"j~{ =0 (n = 1, 2 for U.F., n = 1, 2, 3 for CF. ) .

For CF., there is also :

10 20 30 0/ v

u - u = u = u (x)
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10
o is a periodic function of y (see the conditions 30). Furthermore, at' is
zero (see 31) and the quadratric form which is associated to the matrix [ki ]
is supposed to be positive. Because of these three reasons, we can say that for
U.F., integrating on y the équation 36 yields :

Looking for u in a similar way as in the équation 33, the same problem as
34 has been obtained for the set of vectors #*\ wether the fabric is coated or
not. The macroscopic équations have exactly the same form as 35 for C.F. For
U.F., these équations become :

-r-2 + ƒ* = O

dXj J l

2 f
n = l v coH

Where j \ and er° are the mean over Y of ft and a°, that is (for a° ) :

Ö>]Y\

*:<*>=i?r (x9y)dy

mkhHere, as in the case ktj = ktj for CF., the vector fields / (m = 1, 2, 3 for
CF., m = 1, 2 for U.F.) do not depend on the coupling term k and so do the
homogeneous elastic moduli. For CF., the reason is that the coating compels
the displacements in warp and weft to be near, and as the coupling matrix
[klf] is rather weak, the interaction between warp and weft becomes negligible.

3.2.3. Assumption kE
tj = k /e

The balance équations 22, 23, 24, 25, 26 defined for k] = kt become in this
case :

• In co, :

(42)

(43)

(44)

k l J ( u j - u } ) = 0

10

W -«") + ƒ. =o
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• In co2 :

10 20 >

^ 21 - 20
dCT Ö(J 1 2 22 2 e

, y -f , y + k (u — u ) + ƒ = 0 . (47)

In o>3, for C F . o n l y :

d<Tl"] ' (48)

V + ï = 0 (49)

da3'
( 5 0 )

It may be proved that the solutions of the problem made of the équations 42,
45, 48, 20 and conditions 27, 28, 30 for CF., 42, 45, 20 and conditions 29,
30 for U.F. are so that M10, M20, U30 depend only on x and are equal :

/• 10 20 30 N / 0 / \ 0 / \ 0 / N \ r ,-> T-

( M , W , M ) = ( M ( X ) , M (X), U (X)) f o r C F .

(M
10, u20)=(u\x),u0(x)) for U.F.

On the other hand, the weak problem for %** is :

Find xkh e W so that Vu e W,

= " S <**( 1 ^ ) ̂  (/» = 2 for U-F' P = 3 for C R ) <5 !)
n = 1 v CD,, \ Ji /

W is defined in the same way as in the case k] = k .
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Finally, the macroscopic équations can be written in a similar way as in the
équation 35. Thus, it may be seen that, in this case, the elastic moduli depend
on the coupling term ktj through the vectors ^mkh ( m = l , 2 for U.F.,
m = 1, 2, 3 for C.F.) which are solutions of the problem 51.

4. CONCLUSION AND PERSPECTIVES

This study gives macroscopic models of fabrics with flat fibers under
different assumptions about the coupling coefficient ke

t- which characterizes the
linear elastic springback between warp and weft.

For a coated or uncoated fabric with a high coupling term, the coating or
the high coupling term between warp and weft make that the fabric can be
modelled with only one displacement field which satisfy two-dimensional
linear elasticity équations. The elastic moduli can depend on the coupling
term. For an uncoated fabric with a small coupling matrix, the fabric is
modelled with two coupled displacement fields. So it's equivalent to two
superimposed slicks being in interaction with a linear elastic springback.

The elastic moduli of warp, weft, coating and the coupling matrix being
known, a numerical computation using the finite element developped for this
modelling may give the macroscopic equivalent coefficients.

In the present paper, only elastic behaviours have been studied ; it is
possible to consider other behaviours as viscoelasticity, as well for the
different materials as for the coupling between warp and weft, or Coulomb
friction between warp and weft.
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