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MATHEMATICAL HODELUNG AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 29, n° 3, 1995, p. 339 à 365)

AN OPERATOR METHOD FOR A NUMERICAL QUADRATURE FINITE
ELEMENT APPROXIMATION FOR A CLASS OF SECOND-ORDER ELL1PTIC

EIGENVALUE PROBLEMS IN COMPOSITE STRUCTURES (*)

M. VANMAELE (!) and R. VAN KEER (*)

Communicated by R. TEMAM

Abstract. — We consider a second-order elliptic eigenvalue problem on a convex polygonal
domain, divided in M non-overlapping subdomains. The conormal derivative of the unknown
function is continuons on the interfaces, while the function itself is discontinuons. In this paper,
we study the finite element approximation without and with numerical quadrature of this
eigenvalue problem by means of the perturbation theory for linear, compact, s elf-adjoint
operators, see [13, § IV.2-IV3, § V4.3] and [9]. We refine the method, developed in [18], by
incorporating some bas ie ideas of [4] and [9], This improved method is then extended to the
underlying multi-component structure with discontinuities at the interfaces. Furthermore, in
contrast to [3] and [4], which are dealing with a Dirichlet eigenvalue problem on a one-
component domain, discretized by a triangular mesh, we allowfor a rectangular mesh, for mixed
Dirichlet-Robin boundary conditions and for a more gênerai second-order differential operator.
Finally, in contrast to [18], we also consider finite éléments of higher degree (quadratic,
biquadratic,...).

Crucial to the finite element analysis is a non-standard variational formulation to the
eigenvalue problem, similar to the one in [11] for some classes of parabolic problems. The
emphasis of this paper is on the error analysis of the approximate eigenpairs.

AMS classification : 65N25. 65N30, 65D30, 65N15.

Key words : eigenvalue problem, multi-component domain, operator method, numerical inté-
gration, finite element approximation.

Résumé. — Nous considérons un problème elliptique spectral du second ordre sur un domaine
convexe polygonal, divisé en M sous-domaines disjoints. La dérivée conormale de la fonction
inconnue est continue sur les frontières intérieures, tandis que la fonction même y est discontinue.
Cet article est consacré à l'étude de l'approximation de ce problème spectral par des méthodes
aux éléments finis sans et avec intégration numérique, en employant la théorie de perturbation
pour des opérateurs linéaires, compacts et auto-adjoints, voir [13, § IV.2-IV3, § VA.3] et [9]. La
méthode, développée dans [18], est raffinée par l'incorporation des idées fondamentales de [4]
et [9], Puis, cette méthode ainsi améliorée est étendue à la structure multi-composante avec des
discontinuités aux frontière s s intérieures. Par opposition à [3] et [4], où un problème spectral
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340 M. VANMAELE, R. VAN KEER

de Dirichlet sur un domaine single-composant est discrétisé par un maillage triangulaire, nous
tenons compte en outre d'un maillage rectangulaire, des conditions aux limites mêlées de type
Dirichlet-Robin et d'un opérateur différentiel du second ordre plus général. Finalement, contrai-
rement à [18], nous considérons aussi des éléments finis de degré plus élevé (quadratique,
biquadratique, ...).

ha formulation variationnelle non standard du problème spectral, similaire à celle de [11] pour
des classes de problèmes paraboliques, est essentielle pour les méthodes d'éléments finis.
L'accent est mis sur l'analyse d'erreur des couples de valeurs et de fonctions propres approchées.

1. INTRODUCTION

Let Q c: R2 be a bounded convex polygonal domain with boundary dû.
Assume that dQ = Fx KJ F2KJ AV where Fx and F2 are open and consist of
an integer number of sides, Fx n F2— 0 and meaSj Ax = 0. Further, let
Q be divided in M non-overlapping, open, convex, polygonal domains
Q^czQ, 1 ^ i ^ M. We dénote by Jf t c {l, ..., M] the set of integers
a for which meaSjCd^. n dQa) > 0. We set Fia = dQi n dQa for
a G Jf.t 1 ^ i ^ M. We assume that F. a<~^F.} p- 0 when

Then we may write

M M

' m e a S l AÏ =

Finally, dénote Jf(F.) ={i:l ^ i ^ M and {measj(/} n d£2() > 0},
.7=1,2, and Fj = F. n 3Qi9 i e JT{F.), j = 1, 2. In what follows, when
writing F1^ we will sometimes delete the restriction z' e JV(F.), of course
taking F] - 0 when ie ^{F)
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ELLIPTIC EIGENVALUE PROBLEMS IN COMPOSITE STRUCTURES 341

This paper deals with the eigenvalue problem (EVP) of determining the real
numbers X and the corresponding functions u : Q. —> IR, 1 ̂  i ^ M, which
obey, in a weak sense, the following coupled System : the second-order
differential équations on the respective domains Qi

i n a'

the transmission conditions (TCs) on the interfaces

- a' dv w' = h'- \ u' - u" ) on T. a , (1.2)

a'dvu' =aadvu
a onfu, (1.3)

and the homogeneous boundary conditions (BCs) on parts of the boundary
dü

«' = 0 onr,, (1.4)

a'av«' + fli«' = 0 onr2. (1.5)

The conormal derivative in (1.5) is given by

a'dvu
l= Y, aL¥~Vt

t.fil tmdXml

with v̂  the £-th component of the unit outward normal vector v to 7^. The
conditions (1.2)-(1.3) have to be understood similarly, v being the unit normal
vector to Fi o and pointing from Q. to Qa.

In this problem dim, a0, huu and a\, 1 ̂  £,m ^ 2, ere ^"(.,
l ^ i ^ M, are given space dependent functions, which are sufficiently
regular, as specified below,. Note that on account of (1.2), the TC (1.3) is
equivalent with the symmetry condition hly<T = ha'1 on Ft a = Fa r

In this paper we study the approximation of the EVP (1.1)-(1.5). We leave
from a non-standard formally equivalent variational formulation in an abstract
setting, similar to the one in [11] for some classes of parabolic problems. We
lean upon the perturbation theory for linear, compact, self-adjoint operators,
see [13, §IV.2-IV.3, § V.4.3] and [9].

EVPs of the type above have practical relevance, e.g. in the context of heat
transfer problems in multi-component domains (« non-perfect thermal contact
problems »), see for instance [15].

An outline of the paper is now in order. The précise variational and operator
formulation of the EVP (1.1)-(1.5) are stated in Section 2, together with some
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342 M. VANMAELE, R. VAN KEER

preliminary results conceming the involved function spaces and the bilinear
form. In Section 3 we first introducé suitable approximation spaces and next
the elliptic projector. The consistent mass finite element method (FEM) is dealt
with in Section 4, while the numerical quadrature FEM is discussed in
considérable detail in Section 5. Finally, in Section 6 we formulate some
conclusions.

2. VARIATIONAL AND OPERATOR EIGENVALUE PROBLEM

2.1. Notations and assumptions (see also [19])

Let Hx{Qt) be the usual first order Sobolev space on Q. with norm
|| . || u f t, 1 ^ i ^ M, and let V* = {w e Hl(Q.) : w = 0 on r[\. We recall
that 7^ = 0 when i £ JV{FX). Then, we introducé the product space

V={v = (v\...,vM):vi <= V\ 1 ^ Ï ^M}

and we identify v e V with a scalar function v : Q —» U for which
v\Qi = vl on Qp 1 ^ i < M. Similarly, we introducé the product space
H = L2(Q1) x -— x L2(QM) with inner-product (.,.) and associated norm
| . | given by

M Ç

(i?,w) = 2 v'w'dx, |ü|=VÖMÖ, Vu,we/ / . (2.1)

Further, we dénote

42 2 f ^

and

a(v,w) = sf(v,w) + âi(v,w) + <&(v9w) , Vy, w G V. (2.2)
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ELLIPTIC EIGENVALUE PROBLEMS IN COMPOSITE STRUCTURES 343

We will also use the product space
Hm(Q)= Hm(Ql ) x — x Hm(QM)9 m<E Mo, and its (product) norm
|| . || #H and (product) semi-norm | . |#»(ö), both defined in the natural way.
For m= 1, the product norm is simply denoted by || . ||.

Throughout this paper, the data are assumed to fulfill the hypotheses
(H1MH2) :

( 1 ) 4m> ao e L ~ ( ^ ) ; aL = "Lt a-e- in Öi f, m = 1, 2, 1 S i *£ M ;

(H2) (l)The matrices a'= (al
im)t 1 ^ / ^ M, are positive definite, i.e.

2

3 a > 0 : V ^ e R 2 , 2 ajm(jc) ^ ^m ^ a\Ç\2 a.e. in fi., 1 ^ i ^ M ;
f , m = l

(2) 3a0 > 0 : 4 ^ «o a- e- i n Qi » 1 ^ / ^ M .

These hypotheses guaranty the ellipticity of the EVP (1.1)-(1.5).

2.2. Variational and operator formulation

The weak or variational EVP associated with (1.1)-(1.5) reads :

Find(2, u) G RxV,u* 0 : a(u, v) = A(w, v) , Vv e V, (2.3)

where (.,.) and a(.,.) are defined by (2.1) and (2.2) respectively.
The data H, V and a(.,.) have the following properties, cfr. [19],

PROPOSITION 2.1 : (1) The spaces H and V are Hubert spaces, V being
compactly and densely imbedded in H. (2) The bilinear form a(.,.) :
Vx V—> R, (2.2), is symmetrie, bounded and strongly coercive.

Hence, the exact EVP fits into the gênerai abstract framework of [14].
With these data we define the exact solution operator T by

T:H^> V,a(Tf,v) = (f9v) V/e H,\/v e V. (2.4)

From the strong coercivity of «(.,.), T is easily seen to be bounded.
The corresponding exact EVP reads :

Find jje R, u e V : Tu = /nu . (2.5)

This is the operator formulation of the variational EVP (2.3) with

We recall, see e.g. [14],
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344 M. VANMAELE, R. VAN KEER

PROPOSITION 2.2 : Let i : V -> H be the imbedding operator, Then the
operator Tr = T\ v = To i : V —> V is positive definite and self-adjoint w.r.t,
a(.,.). As i is compact, also Tr is.

Hence, the spectrum sp(Tr) consists of an infinité séquence of eigenvalues,
ail being strictly positive and having finite multiplicity, with zero as accumu-
lation point

We arrange the eigenvalues as JJX ̂  JJ2 ̂  —- ̂  /Jn ̂  •••• —» 0, where
each eigenvalue occurs as many times as given by its multiplicity.

In what follows we often write T instead of Tr when the meaning is clear
from the context.

3. PRELIMINARY RESULTS

We consider a regular family of triangulations ( ST̂  )A., see e.g. [6], of each
component Q., 1 ^ / ^ M, consisting of either triangular or, when Qi is a
rectangle, of rectangular éléments. Hereby we assume that the triangulations
in each pair of adjacent components Qi9 Qo match in the sensé that the
interface Ft a consists of non-overlapping segments, each of them figuring as
a common side of an element K e ST̂  and an element K' e 2T^.

With a triangulation ST̂  , we associate the finite-dimensional subspace
Xl

hi of tf^O,.), Xl
hi ={vl G' ̂ (Q.) : V(\KG P(K), VAT e ST)}, where ht is

thc rncsh parameter and P(K) is given by

Î
if ^ i s triangular,

Qk{ K) if A" is rectangular,

Pk stands for the set of polynomials of degree ^ k and Qk for the set of
polynomials of degree =S k in each variable.

Finally, we consider the product spaces

XA = {i; = ( ü 1 , ..., vM):vl G Xl
hi, l ^ i ^ M} czHl

Vh = {v G Xh : v
l = 0 on r j , 1 ^ f ^ M} c V,

where /i = m a x 1 $ / 4 M /z. is the overall mesh parameter, taken to be suffi-
ciently small in what follows.
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ELLIPTIC EIGENVALUE PROBLEMS IN COMPOSITE STRUCTURES 345

We also introducé the foliowing notation for r ^ 1,

(Trivially, | |u|li i ï r fc= IMI for u E XA.)
In what follows C dénotes a generic constant not depending on h (even

when it is not explicitly stated).

3.1. Inverse inequality

From now on, we assume that each regular family of triangulations
(^A,-)A,-> 1 ^ Ï ^ Af, is «quasi-uniform» in the sense of [6, (3.2.28)].

Then, [6, Theorem 3.2.6] implies for m e No

K > (33)

where C is a constant independent of K e 2T̂  and of hr

Further, we assume that the families ( ?rl
h )h are mutually « quasi-uniform »

too, i.e.

3v Ss 0 : A *£ vA., VA(, 1 ^ i ^ M. (3.4)

3.2. Density and approximation property

PROPOSITION 3.1 : [19, Proposition 3.1]

(1) H2(ü) n V is dense in V
(2) The finite element space VhaV satisfies the approximation property

V u e r ^ ) n V , l ^ r ^ k . (3.5)

3.3. The elliptic projector

We define the elliptic projector P : V —> V̂  by

a(u - Pu, w) = 0 , Vu e V, VW<E Vft. (3.6)
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346 M. VANMAELE, R. VAN KEER

From (3.5), the elliptic projector P satisfies the following property, cfr. [19,
§ 3.4] :

\v-Pv\\ =S Chr\\v\\Êr+X{Q) Vue Hr+\Q)r^V, 1 ^ r ^ k . (3.7)

PROPOSITION 3.2: Consider regular families of triangulations (2T^ )h_ of
Qp 1 =S i =S M, satisfying the mutual quasi-uniformity (3.4). Then

Vue . (3.8)

Proof: The case r = 1 directly follows from (3.6) and the properties of
<z(.,.). For r ^ 2, we first consider the standard Lagrange interpolator
7/ ,̂ : ^ ° ( ^2.) —> X^. This operator has the well known properties, see e.g. [6,
Théorem 3.2.1],

Vwe Hr(a.). (3.9)

From (3.9)x and the triangle inequality, we get

First applying (3.2), (3.4) and the triangle inequality and next invoking (3.7)
and (3.9)2, we have

r,9-A '-'>2

From (3.1)2 this estimate implies (3.8). D
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Remark 3.1 : In the case of a triangular mesh on
\ for all Ke Thr

4. CONSISTENT MASS FINITE ELEMENT METHOD

We consider the operator Th, defined by

Th:V^Vh,a(Thf,v) = (f,v) V/eV,Vi;eVfc, (4.1)

as an approximation to the operator Tr. Then, from the définition of the elliptic
projector P, (3.6), it is easily seen that

r. (4.2)

The associated EVP reads :

F ind Mh eM,uheVh: Th uh = juhuh. (4.3)

This is the operator formulation of the variational consistent mass EVP

FindAA( = ffh
l)e R,uhe Vh : a{ u„ v ) = kh{ uh, v ) \/v e Vh.

From the formai équivalence of the variational formulation of the EVP on
a multi-component domain and of an EVP on a one-component domain and
from the properties of the approximation space Vh and the elliptic projector,
we may expect similar results for the convergence and error estimâtes for the
eigenpairs of the consistent mass EVP (4.3) as in [2, Chap. II], [10] and [14,
Chap. 9].

For further référence, we quote explicity some of the auxiliary results
without proof. As the proof of Theorem 4.1 below or of its analogon for an
EVP on a one-component domain appears not to have been given before in its
present form, we deal in some detail with this proof.

Before studying (the rate of) convergence of the approximate operator Th to
Tr, we define the BVP (2.4) to be regular when the exact solution operator T,
(2.4), has the properties

T:H^VnH2(Q)md3C>0: \\Tg | | # ( f i ) * C\g\ , V^ G H. (4.4)

PROPOSITION 4.1 : For the operators % (2.4), and Th, (4.1), we have
(1)

Iir r-r*| | = s u p { | | ( r - r V n ^ v, \\v\\ ^ i } ^ o as h-*o. (4.5)

vol. 29, n° 3, 1995
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(2) Under the condition (4.4) we have

\\Tr-T
h\\ *kCh. (4.6)

Let IJL be an (L + 1 ) -fold exact eigenvalue of (2.5). Further, let d be its
isolation distance, i.e.

d = d(ju) = min { \JJ - v\ ; v e sp (T), v v* ja} , sp (T) = spectrum of T,

and set

d£ = | z e C : |z - ju| = f } <= ̂ es ( T)t res ( T) = résolvent set of T. (4.7)

From (4.5) and [14, § 8.5] follows
LEMMA

for which

\fi~fitth\ ->0 as h^>0, ö ^ t ^ L . (4.8)

Further, we have dB <z res (Th). Hence we may define the spectral projector
9>h : V -> Vh by

with

Let wr, 0 ^ r ^ L, be eigenfunctions of 7, (2.4), corresponding to JJ and
being orthonormal in H. The space spanned by these eigenfunctions is denoted
by S.

Further, let ur A, 0 ^ r ^ L, be eigenfunctions of 7 \ (4.1), associated
with fur h, 0 ^ r ^ L, also being orthonormal in H.

Set <ffA = span (M0 h,..., uL k)9 then we have, see [14, § 8.5], [13, § IV 3.4-
3.5], 0»A(V) = «ff\*

LEMMA 4.2 : For w e S we have,

\\w-@>hw\\ <C\\(T-Th)w\\ . (4.9)

Moreoven let S c Hlc+l(Q). Then it holds that

\\w~0>hw\\ ^ Chk\\w\\ . (4.10)
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COROLLARY4.1 : We have

gh) = sup{</(w, ëh ) ;we ë, \\w\\ ^ 1} -> 0 as h ~> 0 , (4.11)

where

</(w,«fA) = i n f { | | w - i ; | | ;ve ëh} . (4.12)

Moreoven let ë a # * + 1 ( * 2 ) , tfien

ö(ê,gh) < Chk, (4.13)

THEOREM 4.1 : Let ut h, 0 ^ t < L, be eigenfunctions of (4.3) orthonor-
malized in H and associated with%\xt h, which satisfy (4.8), 0 ^ t < L, Then,
there exists a set ( Wt(h))ö^t^Lof exact eigenfunctions of (2.5) correspond-
ing to ju, such that

\\Wt(h)~ uth\\ - > 0 as ft-»0, O ^ f ^ L . ( 4 . 1 4 )

Moreover, when ë <z ffi* (Q), we have

\\W,(h) - uth\\ ^ Chk , O^t^L. (4.15)

Proof: Defining 5{Sh,S) analogously to (4.11)-(4.12), we have for
ulh<= 8h, 0 « t ÏS L, that

d(uth,ê)=ird{\\uth-w\\ ; w e S) ^ ö{Sh,S)\\uth\\ . (4.16)

Combining (4.1) and (4.3) with the strong coercivity of a(.,.) and next using
(4.8) and \ut h\ = 1, we easily see that

\ \ u t h \ \ ^ C , O ^ t ^ L .

Since ^ is finite-dimensional and hence the infimum in (4.16) is attained, there
exists an exact eigenfunction Wt(h) e ë, 0 ^ t ^ L, which satisfies

Finally, we recall that, cfr. [14, § 8.5, Remark 1], ô(ë\ ë)=ô(ëyë
h) and

invoke Corollary 4.1. D

5. NUMERICAL QUADRATURE FINITE ELEMENT METHOD

5.1. Preliminaries (cfn [6, § 4.1], [8, § 2.7, § 5.6], [17, § 2.1] and [19, § 5.1])

Consider the (affine invertible) mapping

FK : K (référence element) -> K : x »-» x = FK(x) ~ BKx + fex, det 5^ > 0 ,
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350 M. VANMAELE, R. VAN KEER

with BK e lR2x2 and bK <= U2x\ KG Thr

Next, introducé a quadrature formula on K

where bx and œx > 0, r = 1,..., N(X), are the quadrature nodes and weights
respectively, and where X — L or X = G refers to the quadrature formulas
having degree of précision 2 £ - l o r 2 / : + l respectively. The quadrature
error is

Putting (p(x) = <p(x) whenever x = FK(x), f e l , we define the
corresponding quadrature formulas on K by

(5.2)

In a similar way we approximate the line intégrais on a side dtK of K, using
a one-dimensional Lobatto (X = L) or Gauss-Legendre (X = G) quadrature
formula

i /3

where the quadrature point g x (characterized by their arc length) correspond
with the Lobatto or Gauss points in the interval [- 1, 1] respectively. This
quadrature formula has précision 2 A: — 1 or 2k + 1 respectively, see
[8, § 2.7].

According to (5.1) we put <p(s) = q?(s) whenever 5 = FK\d^(s),
s e dtK. The quadrature formula on a side dt K of an element K is defined by

Y meas dt K Y *
a'K(<P)= measdjC B*(<Py ( 5 3 )
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We refer to [1, § 3] and to [6, pp. 181-184], [7, § XII 1.5, p. 780], [12,
pp. 2.100-2.104] for examples of quadrature formulas on a rectangular and a
triangular element K respectively.

5.2. Approximation to (.,.) and to a (.,.)

We define the discrete 77-inner-product and the associated norm in Xh by

M

( Ï ; ) W ) / I = ^ V 2 I*K(V1 W*) » \v\h = V ( ü » v)h Vv,w G Xh. (5.4)

PROPOSITION 5.1 : [19, Proposition 5.1] The équivalence of the norms
| . |A, (5.4), and | . |, (2.1), on the space Xh is uniform w.r.t. h.

Introducing the notations

= {j: 1 ^j ^ NiQ;) and dj abside of Q^

( N( Qt ) number of sides of Q. )

= {^ e ^ : 3r : df tf c a. Of} J

with Ï G {1,2,3,4} when K is rectangular and r e {1,2,3,} when K is
triangular, we may décompose a line intégral on F\ and on F( G into line
intégrais on suitable sides dtK, K e 9"^, similarly as in [19, § 5.3].

In what_ follows, we assume that dïm, d0 e <&0(Q.)9 îy m = 1, 2,
/i''ff€ «°( r , i ( , ) , e r e / , , and ^ e <<go(T2)9 l ^ i ^ M. The discrete
analogon of the bilinear from «(.,.), (2.2), on Xh x X̂  is defined by

ah(v, w) = sth(v,-w) + mh(v, w) + Vh(v9 w) , Vüf w G Xh , (5.5)

where

M

E 4 2 ^ ^ « ^ „ w ' + ̂ ü'-w'), (5.6)

M

'K6êt'-" (5.7)
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PROPOSITION 5 .2 : [19, Proposition 5.2] aA(. , .) (clearly) retains the sym-
metry property of a(.,.). Further, ah(.,. ) is uniformly bounded and strongly
coercive w.r.t h in the H (Q) —norm.

53. Estimate of the total errors of quadrature

The approximate inner-product (5.4) and bilinear from (5.5) induce the
respective quadrature errors

M

£L(i;,w) = (u,w) = 2 S EL^vfW)t \/v,weXh. (5.9)
'•=1 K*Thi

jé % 9 % v , w ) 9 V ü , w e Xh (5.10)

where Ex^, Ex
m and JE^. are given by expressions similar to (5.6), (5.7) and

(5.8) respectively, in terms of EX
K and Ex

 K, i.e. the errors of quadrature on an
element K and on a side of K.

These last (local) errors are estimated in [19, Propositions 5.3, 5.4, 5.5]. We
add hère the analogon of [19, (5.14) and (5.17)] for a rectangular element K,
which is proved in a similar way as [16, Theorem2.1].

PROPOSITION 5.3 : Let Kbe a rectangle. For the quadrature formula (5.2),
X — L, we have for 2 ^ r ^ k,

\EL
K(dpq)\ *Ch

W e Wr'°°(K),Vp,qe Qk(K) . (5.11)

For k = 1 we have

\EL
K(dpq)\ ^ChK\\d\\^K\\p\\hK\q\0K,

Vde Wu~(K),\/p,qe QX(K) . (5.12)

When dG W * (K), k ^ l, we have, with C independent of d,

\EL
K(dpq)\ ̂ Ch^WdW^JpW^xWqW,^ Vp,qeQk{K). (5.13)

In these estimâtes the constant C > 0 is independent of K, white hK stands
for the diameter of K.
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These estimâtes for the local errors lead to the estimâtes of the total
quadrature errors (5.9) and (5.10).

THEOREM 5.1 : [19, Theorem5.1] For the total error of quadrature
EL(.,.), (5.9), we have

\EL(v,w)\ *Ch2\v\#{û)\w\#(Q)9 \fv,weXh. (5.14)

THEOREM 5.2 : (cfr. [19, Theorem 5.2])
(1) Let a\m e W*+*'~(^)> l, m = 1, 2, al

0 e W*-"(O,) and
hUa e w * + , , ~ ^ ^ a e jf^ \<ki<kM. Further, let

a\ e Wk + S'°°(rl
2), i e ^V(r2). Hère, s - 1 when dealing with a rectangular

mesh and s = 0 for a triangular mesh. Then,

\E°(v,w)\ <Ch\\v\\ \\w\\ , Vv,weXh. (5.15)

(2) Let al
(m, ^ e W*-(O,.), t, m = 1 , 2 , ^ f f e W*--(^_„), a e J ,

1 s; i « M, and let a\ e W**~( J ^ ) , i e ^ " ( r 2 ) . 77ien, / o r f/ie case of a
triangular mesh, we have

\EL
a{v,w)\<Ch\\v\\\\w\\, V ^ W G X , . (5.16)

Remark 5.1 : For the case of a rectangular mesh, Proposition 5.3 will not
lead to the analogon of estimate (5.16).

5.4. Approximate eigenvalue problem with numerical quadrature

With the operator Tr we associate the approximate operator fh defined by

) = (fv)„ Vf9ve-Vh9 (5.17)

where ah(.,.) and (.,.)A are respectively given by (5.5) and (5.4).
The corresponding EVP then reads :

Find (fih, üh) e IR x Vh : f ûh = (xhûh. (5.18)

This is the operator formulation of the variational EVP

Find ( lh, ûh)e UxVh: ah{ ûh,v) = Xh{ûh, V )h ,

VveVh, (fi^Xl1). (5.19)

From Propositions 5.1 and 5.2 it readily follows that
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PROPOSITION 5.4 : The linear operator fh, (5.17), is positive definite and
s elf-adjoint (w.r.t, to ah(.,.)) in Vh. This operator is bounded uniformly w.r.t.
h.

We want to prove the convergence and to estimate the error for the
approximate eigenpairs, i.e. the eigenpairs of (5.18). Hereto we study in the
next section the (rate of the) uniform convergence of fh to T.

5.5. Uniform convergence of th to T

First, we compare th with the operator 7 \ (4.1).

LEMMA 5.1 :

(1) Assume that the coefficients a\m^ al
Q, a\ and hua satisfy the conditions

underlying estimate (5.15). Then, for X=G and, when dealing with a
triangular mesh on Qp 1 ^ i ^ M, also for X = L, we have

\\Th-fl\\lv^suV{\\(Tk-?l)v\\ ;t>e Vh, \\v\\ ^ 1} ^ Ch . (5.20)

(2) In the case of a triangular mesh or, when k = 1, also in the case of a
rectangular mesh on Qp 1 ^ i ^ M, assume that al

?m, a0 e W '°°(I2.),
£, m= 1, 2, 1 ^ i ^ M. In the remaining case, i.e. the case of a rectangular
mesh with k ^ 2, assume that a\m, d0 e WX^{Q.), f, m = l , 2 ,
1 ^ i ^ M.

Further, let, for both situations, ti*° G Wl'°°(ri a), a e Jf ^
l ^ i ^ M and let a[ G Wl'"(rl

2)y / G ^T( r 2 ) .
Then, for X = L estimate (5.20) holds under the regularity condition (4.4).
Proof: Set w = (Th-îh)v.
Using the uniform strong coercivity of ah(.,. ), invoking the définitions (4.1)

and (5.17) of Th and f1 respectively, as well as those of EL and E*9 see (5.9)
and (5.10) respectively, we have

-Ex
a(T

hv,w),\/ve Vh. (5.21)

(1) Invoke Theorems 5.1, 5.2 and use the uniform boundedness of Th\ see
(4.2).
(2) We successively estimate the three terms appearing in EL

a{ T
h v, w ), (5.10).

1. For the terms constituting E1^ we distinguish between a rectangular and
a triangular mesh.

Rectangular mesh (P(K) = Qk(K))
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Case k 5Ï 2 : Using (5.11) (with r = 2), the notation (3.1) and (3.3) we
find

| ^ | hv\\2^\\w\\ , \fveVh

Combination of (4.2), (3.8) (with r = 2) and (4.4) leads to

Hence, we have

EL^(Thv,w)\ ^ CA|| ü || || w|| , V u e V r (5.22)

Case k = 1 : Now (5.22) readily follows from (5.12).
Triangular mesh (P(K) = Pk(K)).
In this case (5.22) may be derived in an analogous way by using [4,

Lemma 3.2 (with i = 1)].
2. For the terms constituting E^ we may proceed in a similar way, when

invoking the estimate [17, (2.23) (with r = 1)] as well as the trace inequality :

\EL
v(fv,w)\^C X E 2 MCï'VlIi.a.ikW

*Ch\\v\\\\w\\ ,

that j
noting also that

3. Recalling that huo = haj\ using similar arguments to those for E^ and

2 HLr- \v°\2

which follows from the convention introduced in Section 3 on the triangula-
tions of two adjacent domains Q. and Qa, we get

2 2 ht

sS CA II B H H w II , V u e Vh,
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From these three estimâtes just obtained, (5.10) gives

\EL
a(T

hv,w)\

Substitution of this estimate and of (5.14) into (5.21) yields (5.20). D
Next, combining the lemma above with Proposition 4.1, we obtain.

THEOREM 5.3 :

(1) Under the conditions of Lemma 5.1(1) we have

| | T - t * | | , i V , s s u p { | | ( r - f * ) » | | ; » e Vh, \\v\\ ^ l } - > 0 a s A - > 0 .

( 2 ) When moreover the regularity condition (4.4) holds, we have

\\T-Th\\lVh^Ch.

(3) This estimate also holds under the assumptions of Lemma 5.7 (2),
[including (4.4)].

Now, we deal with an alternative for the estimate of
(Th -fh)v,v G Vh, obtained in Lemma 5.1.

LEMMA 5.2 : Let a\m, 4 e Wk' ~(Q. ), £, m = 1, 2, and

hi.*G W*-~(rLa), a e JSTV l^i^M. Furthen let a\ e Wk^{rl
2),

i G *Âr(F2). Using quadrature formulas with X = L or X = G, we have for
both a rectangular and a triangular mesh

Jh \\k+ÏWi), V u e V , . (5.23)

Proof. We again leave from (5.21).
Applying [17, Theorem 2.4] (with s = 0, t = k- 1) to (5.9), we find for

both a rectangular and triangular mesh,

M

* Chk+l\v\^t\\W\\ , Vo e Vh. (5.24)

We next deal with the second term at the right hand side of (5.21).
1. CaseX = L
Rectangular mesh
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Combining (5.11) (with r = k) for k ^ 2 or (5.12) for k = 1 we obtain
for the first term of (5.10),

M

•y y ht

||,+ 1 ^ | | w | | , Vue V,. (5.25)

Using [17, (2.23) (with r = £)], we may proceed similarly as in the proof of
Lemma 5.1 (2), to arrive at

As this estimate obviously is the same as the one in (5.25), \EL
a(T

h u, w) | is
found to obey this estimate too, on account of the définition (5.10).

Triangular mesh
The same estimate for |£^( Th v, w ) | is obtained by applying [4,

Lemma 3.2] and its analogon for EL
d K.

Thus for both a rectangular and triangular mesh, this estimate for
\EL

a{Th v, w)| and the one for \EL(v,w)\, (5.24), imply (5.23) on account of
(5.21).

2. Case X = G
We may proceed in a similar way, now leaning upon [17, (2.19) and (2.22)

(with r = * - 2 ) ] for * 2s 2 and upon [17, (2.21) and (2.25)] for
k= 1. D

5.6. Convergence of the approximate eigenvalues

From the canonical convergence Vh —» V, implied by Proposition 3.1, and
from Theorem5.3, some results, obtained in [9] and [13] and summarized in
[4], remain valid for the type of EVPs under considération. For further
référence, we quote some of these results without proof.

LEMMA 5.3: Retain the conditions of Theorem5,3, (1) or (3). Let
F Œ res (T), be a closed subset of the résolvent set of % (2.4). Then,
F c res (Th), where fh is defined by (5.17). Moreoven
Rz(î

h) = (îh-z)~\ Vz G res ( f h ) , is a bounded operator in Vh,
uniformly w.r.t. z e F and h.
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As, in particular, for dB, (4.7), we have dB <z res (7^), we may define the
spectral projector 0* h : Vh —» Vh, associated with f1, by

LEMMA 5.4 : Retain the assumptions of Theorem 5.3, (1) or (3).
(1) There are (L+ 1) eigenvalues fit h, 0 ^ t ^ L, o/ f1, (5.77J,

|ju — A.Jtl —̂  ° a s ^ - > 0 , O s S ^ L . (5.27)

(2) Denoting by ût h, 0 ^ r ^ L, eigenfunctions of fh corresponding with
fit h, 0 ^ t ^ L, we set ê h = span ( w0 h, ..., ML fc). It holds that

5.7, Convergence and error estimate of the approximate eigenfunctions

Let us start with some auxiliary results.

LEMMA 5.5 : Let w e S. Retaining the conditions of Theorem 5.3, (1) or
(3), we have

^ ^ ^ l l w l l , (5.28)

with

7*)ü|| ; i ?e g\ \\v\\ ^ l } .

Proof : Choose w G ê arbitrarily. We leave from

\\w-&h0>hw\\ ^ \\w-&>hw\\ + \\&>hw-&h0>hw\\ . (5.29)

To estimate the second term, we note that, cfr. [14, § 8.5, Lemma 1],

&>hw-&h@>hw = {@>h-@h)&>hw =

= -7^-A Rz(T
h)(th-7h)Rz(T

h)0>hwdz.
1 niJ dB
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Subsequently using the boundedness of Rz(f
h) uniformly w.r.t. h and

z e dB, see Lemma 5.3, the fact that Rz(T
h) 0>h w e <ff\ the boundedness of

Rz( T
h\Vh ) in Vh uniformly w.r.t. h and z e dB, see the analogon of Lemma 5.3

for r \ implied by (4.5), and the boundedness of 0*h uniformly w.r.t. h, as
projection operator, we may find

\\0>hw-&h0>hw\\ =£ C f \\(Ïh-Th)Rz(T
h)0>hw\\ dz

l
JdB

From this inequality and (4.9), (5.29) leads to (5.28). •

LEMMA 5.6 :

(1) Under the assumptions of Theorem 5.3, (1) or (3), we have for
ê h \ defined analogously to (4.11)-(1.12) ;

^ ^ ] ^ 0 as A - > 0 . (5.30)

(2) For X = G in (5.5) or, when dealing with a triangular mesh on Qp

1 ^ i ^ M, for X = L, retain the conditions of Theorem 5.3 (1).
For the case X = L, with a rectangular mesh, assume that T satisfies (4,4)

and retain the assumptions of Lemma 5.2 [so that the conditions of Theo-
rem 5.3 (3) are implied]. Moreover, let for both situations S a Hk+l(Q).
Then, we have

S(S'ii
h) ^ Chk . (5.31)

Proof : (1) The estimate (5.30) directly follows from the définition of
ö(S,Sh) and (5.28), while the convergence is implied by (4.5) and
Lemma 5.1.

(2) To proof (5.31), we estimate the operator norms in (5.30) separately. Let
ë czHk+l(Q). Using (4.2), (2.5) and (3.7) (with r=fc)s we find

|| 7^-7**11 = \\Tw-PTw\\ ^ Cft*||w||#+i (û),
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such that, from the équivalence of norms on $,

\\v\\fjt^Q);ve f, ||v|| *S \) ^ Chk.

On the other hand, Lemma 5.2 implies

}
(5.32)

It remains to show that this supremum is bounded independently of h.
We retain the notations of Theorem 4.1 and leave from

For the first term we invoke (3.8) (with r = &+ 1) and the équivalence of
norms of S\ For the second term we apply (3.3) (with s - k), (3.7) (with
r = k) and the équivalence of norms on ë\ For the last term we use also (3.3)
(with s - k) and next (4.15). Thus we get

K J U + i , ^ C[||W,(ft)|| +1] ^ C, 0 ^ t s£L, (5.33)

where in the last step we combined (4.15) and (4.17).
L L

F o r V = 2 OLtut h e ë , w i t h | | u | | ^ 1, w e h a v e J a = \o\ ^ 1. H e n c e ,
r=q • /=o

f r o m ( 5 . 3 3 ) w e h a v e

L L

t=0 ' ' '' / = 0

and, when also using (4.3) and (4.8),

L

These two estimâtes show the supremum entering (5.32) to be bounded
independently of h. •

Remark 5.2: By applying the results of [5, §2.5.1] and those of [13,
Theorem 1.6.34] to the present context, it is readily seen that

h
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THEOREM 5.4 :

(1) Retain the assumptions of Theorem 5.3, (1) or (3). Then, there exists a
set (Ut *(h))0^t^L of exact eigenfunctions, corresponding to ju and being
orthonormal in H, such that for ût h, 0 ^ t ^ L, orthonormal w.r.t.
(.,.),,> we have

\ \ U t * ( h ) - u t h \ \ - > 0 a s / * - > ( ) , O ^ t ^ L . (5.34)

(2) Under the assumptions of Lemma 5.6 (2), there exists a set
(Ut *(h))Oss. t^ L of exact eigenfunctions, corresponding to /J and being or-
thonormal in H, such that for ût h, 0 =£ t ^ L, orthonormal w.r.t. (.,.),,, we
have

Proof: Combining the uniform strong coercivity of ah(.,.) with (5.17),
(5.18) and | w / A | A = l , we arrive at

ilû/.AII ^ ciï,k2^ c> O ^ r ^ L , (5.36)

where in the last step (5.27) is used.
Then, analogously as in the proof of Theorem 4.1, from the définition of
ö(êh,£) and (5.36) we dérive

inf {l|Ö r , fc-w|| ; w e S} ^ CÖ(i\S).

Hence, the exact eigenfunction Ut(h) e ê\ which realizes this infimum,
satisfies

\Wt(h)-Ûuh\\ ^Cô(ë\ë). (5.37)

From Lemma 5.6, Remark 5.2 and (5.36), this estimate leads to

\\Ut(h)\\ a S C . (5.38)

Moreover, as

\\U,(h)\-l\ ^ 2

we infer from (5.37) and (5.9)

\\Ut(h)\-l\ ^
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For the second term we first apply [17, Theorem 2.4 (with s = 0, t = k)]9 use
(5.36) [or Proposition 5.1] and next proceed similarly as in the proof of (5.33)
[now using (5.37)] to flnd

\EL{ûth,ûuh)\ ^ Chk\Ûth\kvh\Ûuh\ ^ Chk[\\Ut(h)\\ + 1] < Ch\ (5.39)

svhere in the last step (5.38) is used. Hence,

1| ^ C[Ö(S * ,* ) + **] . (5.40)

Furthermore, from (5.36), (5.37), (5.38) and the analogon of (5.39), we obtain
for t ^ s

\(Ut(h),Us(h))\= \(Ut(h)-ûtJl,Us(h)) +

Finally, by the Gram-Schmidt procedure we construct out of the set
( Ut( h ) )0 ̂  t ̂  L a new set ( £/,*(h ) )0 ̂  ̂  L of (L + 1 ) exact eigenfunctions,
corresponding to JJ and being orthonormal in H, For this new set we may
readily (show (5.34)-(5.35) to hold by a proof by induction on
f = 0, 1, ..., L. Here we use (5.37), (5.40) and (5.41), and finally invoke
Lemma 5.6. D

Remark 5.3 : When dealing with a triangular mesh, following the arguments
of [3], we may decrease the degree of précision of the involved quadrature
formulas by one unit to 2 k - 2 and retain the optimal rate of convergence
O(hk) for the eigenfunctions. This improvement may rest upon [6, Theo-
rem 4.1.5]. However, the analogon of this auxiliary resuit for a rectangular
mesh, see [6, Exercice 4.1.7 (ii)], only holds for a quadrature formula with
degree of précision 2 fc — 1. Thus, the technique in [3] may not be extended
to the rectangular case.

5,8. Error estimate of the approximate eigenvalues

Let X be an ( L + l ) - f o l d exact eigenvalue of (2.3) and let At h,
0 s£ t *£ L, be the corresponding eigenvalues of (5.19). We may obtain an
optimal estimate for |A —ArA|, First, we give an auxiliary resuit.

LEMMA 5.7 : Let (À,u) be an eigenpair of (2.3), with \u\ = 1. Further, let

V G Vh with

v)~l\u-v\2 + ÀEL(v, v)-E*(v9v) (5.42)
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Proof : From the définitions of EL and E*, we have

ah(v,v) - X = a(v,v) - Ex
a(vyv) - X\v\2 + AEL(v,v) ,

which may be rewritten in the form (5,42) on account of (2.3). O

THEOREM 5.5: Let dlm, 4 e W2*'°°(D.)f î, m = 1,2, / ^ f f e W2k^(Ti(f%
<7€ JKjf 1 ^ i ^ Af, am* to ^ e W 2 * ' * 0 ^ ) , *€ ^ ( F 2 ) . Furthen let
S <z Êr+ ( O ) . For X — L in (5.5), when using a rectangular mesh, we
assume in addition that T satisfies condition (4,4), Then, we have

\A-Xtth\ < Ch2\ O^t^L. (5.43)

Proof : Let ût h, 0 ^ t < L, be eigenfunctions of (5.19) corresponding to
Xt h, 0 ^ t ^ L, and being orthonormal w.r.t. (.,. V Let (/f „ be as in (5.34).
Then» Lemma 5.7 implies

\EXM,H'Kh)\- (5-44)

To estimate the second term, we now invoke [17, Theorem2.4 (with
s = t = 0)] to obtain, analogously as in (5.39),

On the other hand, combining [17, (2.20)] with [17, (2.24)] when X = G and
[17, (2.18)] or (5.13) with [17, (2.24)] when X = L, we find

where in the last step we used the uniform boundedness of \\ut h\\k+l #-,
which follows along similar lines as (5.33).

Substitution of these two estimâtes and of (5.35) into (5.44) yields (5.43).D
Adapting the arguments in [20, Theorems 3.5 and 3.7], using (5.37), (5.40),

(5.41) combined with Lemma 5.6 (1) and Lemma 5.4 (1), or with Lemma 5.6
(2) and Theorem 5,5, we may arrive at

THEOREM 5.6 :

(1) Under the same conditions as in Theorem 5.4 (1) there exist a set
(&t * )o « / « L °f fix6^ eigenfunctions of T, correspondinng to fi and being
orthonormal in H, and a séquence hj with hj —» 0, such that

0 as hj-*O, 0 ^ t ^ L.
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(2) Under the same conditions as in Theorem 5.5 there exist a set
(^/*)o!£/ï£Z, °f fixëd eigenfunctions of T, corresponding to JJ and being
orthonormal in H, a séquence h. with h. —» 0, and a number m,
0 < m =£ k, such that

6. CONCLUSIONS

The method of [4] has been extended in four respects : we consider an EVP
in a composite medium ; we allow for a more gênerai self-adjoint 2nd-order
differential operator as well as for mixed Dirichlet-Robin BCs ; finally, we also
deal with the case of rectangular meshes.

In comparison to the variational approach in [19] the most important
features of the present method are :

• By the present operator method we obtain optimal estimâtes for the
approximate eigenpairs.

• For the case of a triangular mesh, this is even true when we use a
quadrature formula with degree of précision 2 k - 1 instead of 2 k + 1 to
approximate the bilinear form, without ha ving to increase the smoothness
assumptions on the coefficients in the bilinear form.

• For a rectangular mesh, the lower degree of précision, viz. 2 k — 1,
requires the additional regularity condition (4.4) for the BVP (2.4) in order to
retain the same rate of convergence for the approximate eigenpairs.
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