@article{M2AN_1995__29_4_421_0, author = {Dai, Hua}, title = {About an inverse eigenvalue problem arising in vibration analysis}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {421--434}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {29}, number = {4}, year = {1995}, mrnumber = {1346277}, zbl = {0842.65023}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1995__29_4_421_0/} }
TY - JOUR AU - Dai, Hua TI - About an inverse eigenvalue problem arising in vibration analysis JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1995 SP - 421 EP - 434 VL - 29 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1995__29_4_421_0/ LA - en ID - M2AN_1995__29_4_421_0 ER -
%0 Journal Article %A Dai, Hua %T About an inverse eigenvalue problem arising in vibration analysis %J ESAIM: Modélisation mathématique et analyse numérique %D 1995 %P 421-434 %V 29 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1995__29_4_421_0/ %G en %F M2AN_1995__29_4_421_0
Dai, Hua. About an inverse eigenvalue problem arising in vibration analysis. ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 4, pp. 421-434. http://archive.numdam.org/item/M2AN_1995__29_4_421_0/
[1] Linear algebra and its applications, Academic Press, New York. | MR | Zbl
, 1980,[2] Numerical methods in finite element analysis, Prentice-Hall, Englewood Cliffs, New Jersey. | Zbl
and , 1976,[3] Modal testing and modal refinement, American Society of Mechanical Engineers, New York.
, 1983,[4] Theory of incomplete models of dynamic structures, AIAA J., 9 pp. 1491-1487.
and , 1971,[5] Optimal weighted orthogonalization of measued modes, AIAA J., 16, pp. 346-351.
and , 1978,[6] Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA J., 16, pp. 8-10. | Zbl
, 1978,[7] Stiffness matrix correction from incomplete test data, AIAA J., 18, pp.1274-1275. | Zbl
, 1980,[8] Optimal correction of mass and stiffness matrices using measured modes, AIAA J., 20, pp. 1623-1626.
, 1982,[9] Improvement of a large analytical model using test data, AIAA J., 21, pp.1168-1173.
and , 1983,[10] Optimal correction of stiffness, flexibility and mass matrices using vibration tests, J. of Vibration Engineering, 1, pp.18-27. | MR
, 1988,[11] Stiffness matrix correction using test data, Acta Aeronautica et Astronautica Sinica, 15,pp. 1091-1094.
, 1994,[12] A kind of inverse problem of matrices and its numerical solution, Mathematica Numerica Sinica, 9, pp. 431-437. | MR | Zbl
, 1987,[13] The solvability conditions for theinverse problem of symmetric nonnegative definite matrices, Mathematica Numerica Sinica, 11,pp. 337-343. | MR | Zbl
, 1989,[14] A class of inverse problems of matrix equation AX = B and its numerical solution, Mathematica Numerica Sinica, 12, pp.108-112. | MR | Zbl
, 1990,[15] The best approximation of symmetric positive semidefinite matrices with spectral constraints, Numer. Math, - A.J. of Chinese Universities, 14,pp. 78-86. | MR | Zbl
and , 1992,[16] Matrix analysis, Cambridge University Press, New York. | MR | Zbl
and , 1985,[17] The algebraic eigenvalue problem, Clarendon Press, Oxford. | MR | Zbl
, 1965,[18] Applied functional analysis, John Wiley, New York. | MR | Zbl
, 1979,[19] Computing a nearest symmetric positive semi-definite matrix, Linear Algebra Appl., 103, pp. 103-118. | Zbl
, 1988,[20] Handbook for automatic computations, vol. II, Linear Algebra, Springer-Verlag, New York. | MR
and , 1971, , 1993,