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A NONLINEAR ADAPTATIVE MULTIRESOLUTION
METHOD IN FINITE DIFFERENCES

WITH INCREMENTAL UNKNOWNS (*)

by Jean-Paul CHEHAB O

Communicated by R. TEMAM

Abstract. — In this article, we propose a new method well suited for the calculation of
unstable solutions of nonlinear eigenvalues problem. This method is derived from the classical
Marder-Weitzner scheme (MW) which can be seen as a nonlinear Richardson method. First we
adapt to (MW) the usual extension of the classical Linear Richardson scheme (LR) which
consists in computing the relaxation parameter in order to minimize the itérative residual in a
suitable norm. This method is then generalized with the utilization of the Incrémental Unknowns
(LU.) inducing the minimizing relaxation parameter in the embedded hierarchical subspaces.
We obtain in this way both generalizations of the MW and the LR algorithms. The numerical
illustrations we give allowing comparisons between the différents LR schemes (for linear
problems) and some versions of the MW method (for nonlinear eigenvalue problems), point out
the better speed of convergence of the new algorithms.

1. INTRODUCTION

The Incrémental Unknowns, introduced in [11], is a multiresolution
method well adapted to the solution of nonlinear problems when finite
différences are used. It is related to the nonlinear Galerkin method [8] [9] and
it can be seen as the analog of the Hierarchical Basis Finite Eléments Method
for finite différences. Using several levels of discretization, the LU. method
générâtes different structures or scales in distinct points of a grid. The
différence of magnitude of the several unknowns leads us to treat them
differently, according to the grid level associated, in a given scheme. This
idea introduced bv the Nonlinear Galerkin Method was applied in \2] for the
solution ot nonlinear eigenvalue problems and gave etticient generalizations
of The Marder-Weitzner Method (MW). These new methods were based on
substituing the scalar relaxation step of (MW) by a matricial multirelaxation
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452 J.-P. CHEHAB

step : each grid Ie vel unknown was relaxed by an appropriate parameter. The
drawback of the scheme proposed in [2] was in the fact that one must choose,
at the begining of a program, the relaxation matrix and keep it fixed, while it
would be more efficient to change it along the itérations (the MW scheme is a
local method).

This article is a continuation of [2]. Our aim here is to transform the MW
scheme in order to calculate automatically, along the itérations, the
relaxation matrix adaptating it to the current approximation. For that
puipose, we point out a very simple tuiaiogy between MW ana the classical
(linear) Richardson method (LR) comparing the propagation error équations.
We adapt to MW the usual extension of LR consisting of replacing the
relaxation parameter by a current relaxation parameter which minimizes at
each step the error, then the residual, in a suitable norm. MW is the modified
by the <"nrresponding adaptative caîulus of the relaxation parameter.

This paper is oiganized as foliow s : first, and atter a brief présentation of
the basic methods, we establish an analogy between MW and LR via their
respective propagation error équations. We then show that the MW method
is nothing but a nonlinear Richardson method. Af ter that, considering the
usual extension of LR (LRA), we define, proceeding again by analogy, a
new generalization of MW where the scalar relaxation parameter is, as in
LRA, calculated along the itérations such as to minimize the current residual.
In section 4 we consider a multilevel discretization using the LU. method and
we extend the « minimizing » relaxation step to each grid level. The
relaxation step is then completed with a diagonal matrix in the LU. basis=
This extension gives generalizations of both LRA and MW. Finally, in
section 5, we present some numerical results. They concern two type of
problems :

• a linear problem where, comparing LRA and its multilevel extension we
point out a better speed of convergence ;

• a nonlinear eigen value problem where, comparing our new MW scheme
with the classical one and those introduced in [2], we observe a much better
speed of convergence for a comparable CPU Computing time.

2. THE MARDER-WE1TZNER AND THE RICHARDSON METHODS

2.1. The Richardson scheme

Let us consider the linear problem :

JFind X G lRn such that M .X = b ( 1 )

1 where M is an n x n positive definite matrix .
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A NONLINEAR ADAPTATIVE MULTIRESOLUTION METHOD 453

One of the simplest methods to solve (1) is the Richardson scheme which is
defined as follows :

Let X° be an initial guess
For k = 0, ... Ç2\
Xk+l =X

k + a(b-M .Xk)
where a is a nonnegative real parameter .

Let us examine the propagation error équation of (1). We set sk = Xk — X,
the error at the kth step. We have

ek+l - (/ - aM) ek (3)

where ƒ is the n x n identity matrix. It is well known that a necessary and
sufficient condition of convergence of the scheme (1) is

2

and the optimal relaxation parameter is given by

2

where p (M) (resp /x (M)) is the larger (resp. the smaller) eigen value of the
matrix M.

2.2. The Marder-Weitzner scheme

Let us consider now the following nonlinear problem :

JFind XeIRn such that X = T(X) (4)

[where T : IRn -> IRn is a nonlinear mapping ,

We recall that the Marder-Weitzner Method is a fixed point method
consisting of a three steps scheme generalizing the Picard Itérâtes (PI) ; it is
well suited for the calculation of unstable solutions (unlike PI). In particular,
we can apply MW to the calculation of a solution af ter a bifurcation (see [7]
and [10]). We define it as follows.

Let X° be the initial guess, assumed to be close enough to X, a local
solution of (4). The séquence Xk is defined by :

m) (5)
Xk+ = X k + k m k 2B

where a is again a nonnegative real parameter.

vol. 29, n° 4, 1995



454 J.-R CHEHAB

Now, as for the Richardson method, we analyse the propagation error
équation of MW. Denoting by W the jacobian matrix of J at X we have :

sk+l = ( ƒ _ « ( ƒ „ ¥f)ek+o(ek). (6)

Hence, setting M = (I - V )2, we see that the linear (dominant) part of (6) is
nothing but (3). Furthermore we recover here the same conditions on the
relaxation parameters. They are given by the following Theorem due to M.
Sermange [10].

THEOREM 1 : Assume that T is Fréchet differentiable at the solutions of
(4). We dénote by W the Fréchet differential. Assume that the eigenvalues of
ty are reals and different of 1 at X a solution X of (4).

Then for 0 < a. < a c, there exists a neighborood Va of X such that if
X° G Va and Xk is defined by (5),

Xk + iB-^X when k -> oo i = 0, 1, 2 .

Moreover if we write a = sup 11 — )> | and b — inf 11 — y\, we

have the following values of the critical and the optimal relaxation
parameter :

a^ = -— and
al al + bl

The analogy of the two methods presented above shows that MW is a
nonlinear Richardson Method. It is then natural to try to adapt to MW the
usual extensions of LR.

3. THE MINIMIZING RESIDUAL RELAXATION PARAMETER

3.1. The Richardson method case

A classical extension of (1) consists of replacing a fixed relaxation
parameter a by a variable parameter which dépends of the current iterate and
which minimizes the residual in a suitable norm. The scheme is :

Xk+1 =Xk + ak(b~M .Xk).

Setting rk = b - M .Xk, the residual at the kth step and || . || the euclidian
norm, we easily find that

rk+l - rk - akM . rk
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and that the ak which minimizes | | r t + 1 | | is given by

k (M .r\M .rk)

where ( . , . ) is the euclidian scalar product.
Now, we shall adapt this extension to the MW scheme.

3.2. The Marder-Weitzner method case

We consider again the problem (4) and we introducé the following
notations :

M = (ƒ - V f
N =1 - 1P
r*=Xk~T(Xk)

where Xk is defined by the MW scheme (5) and we dénote again by
X a local solution of (4).

First, we relate the error to the residual. By the définition of e\ we have

r* = X+ ek- T(X+ ek)
= N . ek+o(sk)

because X = T(X). But

rk = Xk-Xk+m.

Then multiplying on the left by TV each side of (6), we find

rk+i = (/ _ ak,M)rk + o{rk)

and the parameter ak which minimizes | | ^ + 1 | | is given by

ak~ (M . r*, M.rk)'

Remark 1 : It is not precisely a minimization of the residual : we minimize
only the linearized part of the itération operator of MW.

For the détermination of a^ we need to known, at each itération of MW,
the vectors rk = Xk — Xk+ ! / \ which can be calculated along the itérations of
MW and M . rk which can not be deduced of the séquence Xk + ii3. For this
reason we introducé a supplementary Picard iterate. We set

V = k 2B

vol. 29, n° 4, 1995



456 J.-R CHEHAB

The vector we want to deduce is

M .rk = (I - W f rk = (I - 2 V + V2) rk

Hence, we need to evaluate Wrk and W2}*.
Evaluation of W2 rk

We have

V = T(X+ V2 ek + o(ek))

and then

V =X+ V3 sk+o(ek).

Thus

y _ x^ + 2/3 = ty3 ek — W2 ek + o(sk) .

Consequently

y -. xk + 2/3 = — ̂ 2 (7 - ^O £^+ ö(e*) ,

that is to say

Hence

Now we conclude with the
Evaluation of *P r

We have

Xk+m _xk + m = T(Xk)-T(Xk+m).

Thus

Hence,

Then

and finally,

M . r^ = Z^ + 2/3 - V + 2(X* + 2/3 - X^ + 1/3) + Xk ~ Xk+m + o{rk)

M2 AN Modélisation mathématique et Analyse numérique
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A NONLINEAR ADAPTATIVE MULTIRESOLUTION METHOD 457

Setting W = 3 (X*+ m -Xk+m) + Xk - V, we find that

(W, rk)
ak (w,W)'

We note that the matrix M = {I ~ W)2 is never calculated and that the
matrix-vector products are estimated only using combinations of successive
Picard itérâtes.

This relaxation technics leads to a new MW scheme, called Al, which one
can define as follows :

The Al method

Let X° be the initial guess supposed sufficiently close to X, a local solution
of (4). For k = 0, ...

/step 1: solve
yk+l/3 T(Yk\vv — i \sv )

step 2: solve

Computation of the supplementary Picard iterate
solve

V =

Compute the vectors : (7)

rk = Xk -Xk + 1/3

Compute the relaxation parameter

(W, rk)
Œk (w, w^
Relax the Picard itérâtes to compute Xk + 1

Xk+ 1 = Xk + ak(2 Xk+m - Xk - Xk + m) .

4. THE MULTILEVEL RELAXATION

In the previous sections we have presented a method which détermines
automatically (and independentely of the program 's datas) the relaxation

vol. 29, n° 4, 1995



458 J.-P. CHEHAB

parameter in the MW scheme. This method does not take into account the
discretization technics used. As we said in the introduction, when we
discretize the problem with the Incrémental Unknowns, the unknown
solution vector to compute has a multilevel structure : its components are not
of the same order of magnitude according to the grid level they are associated
with (see [2]). In this section, we construct an adapted scheme derived from
the generalization of the MW scheme presented above. First of all let us
recall briefly the définition and the main properties of the Incrémental
Unknowns.

4.1. The incrémental unknowns. Définition and properties

The construction of the Incrémental Unknowns is composed of two steps.
For the sake of simplicity we consider first two levels of discretization for the
Incrémental Unknowns.

4.1.1. Hierarchization

The first step consists in a hierarchization of the components as a function
of the grid level they are associated with. Like the Multigrid Method one
considers a regular meshing of an open set O associated to the spatial mesh
size h. At this point we distinguish the coarse grid GH associated to the mesh
H = 2 . h, and the fine grid Gh associated to the mesh h. The hierarchization
consists in arranging in a vector (which represents for instance the
approximation of a function at the grid points) first the components lying in
GH and after that those lying on Gh\GH with the Standard lexicographie order
in each family of components.

•OXOXOXOXO'

Figure . — Dimension 1, O = ]0,1 [. x : GH points, o : Gh\ GH points.
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Figure 2. — Dimension 2, O = ]0,1 [2. x : GH points, o: Gh\GH points.
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A hierarcb^d vector U is written U = (Uc, U f)* with Uc = Y e GH and
Uf e Gh\GH.

4.1.2. Change of variable

The second step of the construction of the Incrémental Unknowns consists
in a change of variable which opérâtes only in Gh\GH. We can express it in
the form :

RY (8)

where R : GH -> Gh\GH is a second order interpolation operator and then,
according to Taylor's formula, the unknowns of Gh\GH are of order
O(h2). The numbers Z are the incrémental unknowns. We can, of course,
repeat recursively the process described above, using / levels of discreti-
zation defining then / Z-levels.

We introducé now the following notations :
We shall say that a grid has a Cktl configuration if it is obtained with

/ dyadic refinements of a grid composed of k points in each direction of the
domain. The fine grid is thus composed of 2' (k + 1 ) - 1 points in each
direction. Then denoting by S the transfer matrix, we have

uf

\Uf,l

= 5

\

\2il

with obvious notations.

4.2. The multilevel Richardson methods

We assume that the fine grid is decomposable into a C u grid and that we
have discretized the problem with / + 1 nested grids. Let us consider the
following bloc décomposition of the matrix M in function of the hierarchical
décomposition of the approximating space V :

Mo

M -

Moj\
M, , /

\M / ,o M /, / - i M,

(9)
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460 J.-P. CHEHAB
/

We consider the splitting of V = VQ © W. where Vö is the subspace

associated to the coarsest grid and the W} are the subspaces associated to the
successive complementary grids. Hence, the subspace corresponding to

j hierarchised grids, j < l, is V. - VQ © W/n. The question now is how to
m= 1

approximate the minimizing residual relaxation parameter, introduced in
section 3 and defined on the finest grid, on the subspace Vj. We recall that
this parameter is defined on the fine grid by

(M ,r\ rk)
ak =

(M . r \ M . rk)

where rk and M. rk are written in the V basis as

rk = (rl rk, ri ..., rky and M . rk =

A natural way to adapt this parameter to the subspace Vj is to consider in the
previous formula the projection of the vectors on this subspace. We dénote
by Pj(rk) (resp. Pj(M.rk)) the projection of / (resp. of M. rk) on
Vji and we define the relaxation parameter on Vj by

«ƒ =
l Pj(M.rk))

where (. , . ) is still the euclidian scalar product on V. We have taken the
modulus of the expression in order to obtain a positive relaxation parameter.

We conclude by pointing out that Zj e Wj c V} and then the relaxation on
Wj can be realized with ak. Moreover it is clear that the (multi)relaxation
method described above is applicable on all kinds of Richardson methods
and then in particular on both the linear (L.R.) and nonlinear (MW) ones. In
the following we set for convenience Pj(rk) = rk and P}(M . rk) = (M . r*);-.

4.2.1. A multivel linear Richardson method
We consider the linear problem :

JFind X G IRn such that A . X = b
Iwhere A is an n x n positive definite matrix .
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A NONLINEAR ADAPTATIVE MULTIRESOLUTION METHOD 461

We assume that the grid is a Ck , one and we hierarchize (11). The unknown
solution vector of the problem has the structure

uf
ufl

Introducing the Incrémental Unknowns by the transfer matrix S we obtain a
multistructural solution vector related to the previous one by

/ I Y
Vf A

\ufj

= s
Z1 \
z2

U/
with obvious notations.

The linear problem to solve, which is equivalent to (11), is

Find X G IRn such that A . SX = b . (12)

Multiplying on the left every term of (12) by 'S, we obtain the equivalent
problem

Find X G IRn such that MX ='Sb = b , (13)

where M = 'SAS,
Using the formula (10) we can define the following generalization of the

linear Richardson Method with the minimizing residual relaxation parameter.
Algorithm MLR

Let X° be an initial guess. For k — 0, ...

Compute Wk = M . Xk

Compute rk = b - Wk

¥orj = 0, ..., / (14>

7L+ l

«M.rk)p

where we have set for convenience Zo = Y.

vol 29, n° 4, 1995



462 J.-R CHEHAB

Remark 2 : We have multiplied on the left each term of (12) by
lS because when the matrix A is symmetrie and positive definite, e.g. when it
represents the discretization of an elliptic self adjoint operator, one obtains
again a symmetrie definite posite matrix lSAS. This is usefull in the elliptic
case : indeed, M = *SAS has a condition number much smaller than
A and, it is well known, both the gradient and the Richardson methods have
their speed of convergence increased when the condition number of the
matrix is decreased.

4.2.2. A Multilevel nonlinear Richardson Method. A new generalization of
the MW scheme

Considering the MW method as a nonlinear Richardson method and using
the same technic of multirelaxation, we can define the following MW type
scheme.

Let us consider the discrete nonlinear eigenvalue problem

Find X E IRn such that AX = y F (X), (15)

where A is the discretization matrix of — A, written in the hierarchical basis,
F : IRn —• IRn is a C2 function such that the hypothesis on
T( . ) = yA~ 1 F (. ) are those of Theorem 1, and y is a nonnegative real
parameter. We assume that the mesh is decomposable into a Ck , grid.

Now as for the linear problem, we introducé the incrémental unknowns
with the variable change S and we let X = S . X. Hence (15) is equivalent to

Find X e IRn such that ASX - y F (SX) . (16)

Here X is the (/ + l)-level vector X = (F, Zl9 Z2, ..., Z,)' built on / + 1
nested meshes.

Multiplying on the left every term of (16) by *S so that the linear operator is
positive definite, we obtain :

Find X e IR" such that 'S ASX = y'SF (SX). (17)

We set A = 'SAS.
Now we can define the algorithm MWIUa (MWIU adaptative) for which

the relaxation matrix is determined as in the MLR method.
Let X° be the initial guess supposed sufficiently close to X, a local solution

of (17).
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The MWIUa Algorithm For k = 0, . . .

/ step 1 : salve

Â X k + m = y ' S *

step 2 : sol ve

ÂXk + m = y'SF{SXk+l/3)

Computation of the supplementary Picard iterate
solve

ÂV = y ' S

Compute the vectors:

r* = X*-X*+1/3and

(18)

Multirelaxation
For7 = 0, ..., /

«ƒ =
rj)

ak(2 Zkk+m - Z)) .

Remark 3 : The CPU Computing time per itération for MWIUa is the same
as for A1IU (the Al scheme written with IU). Modulo / supplementary
divisions, the détermination of the relaxation parameter(s) involves the same
opération.

5. NUMERICAL RESULTS

In this section, we illustrate the efficiency of the adaptative multirela-
xation. We give some numerical results allowing comparisons between the
several versions of both the linear and the nonlinear Richardson methods. For
the linear problems, we compare the adaptative Richardson methods in the
classical case and in the multilevel case. For the nonlinear problems, we
compare the classical MW algorithm and its generalizations introduced in
[2], using LU., with the new adaptative nonlinear Richardson algorithms
built in the previous section.

5.1. The linear case : solution of the Dirichlet problem

We consider the classical Dirichlet problem

- AM = ƒ in f2 = ]0, 1 [2

M = 0 on dI2 , (19)
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which is discretized by the usual five points scheme in finite différences on a
Ckj grid. We arrange the unknowns in the hierarchical order and we
introducé the Incrémental Unknowns via the transfer matrix S. The discrete
problem to solve is then

AS . X = F (20)

where A is the discretization matrix of — Â written in the hierarchical basis.
After the symmetrization of (20) by multiplication on the left of each term by
rS, we obtain the symmetrie system

fSAS . X = tSF = F , (21)

M. Chen and R. Temam have shown in [4] that the condition number of

Â is Cx . ( / + 1 )2 = Cl . f Log2 ( -r ) ) which is much smaller than

K(A) = —- where C x and C 2 are positive numbers independant of the mesh
h

size. This property points out an obvious advantage of solving the discrete
problem under the form (21) rather than in the usual nodal basis, in particular
when one uses a conjugate gradient method (see [3]). It is well known that
the speed of convergence of this method is related to \/W(A). One recover
this improved speed of convergence with the LRA scheme. We have indeed
(see [5])

(rk + \A'lrk+i) / K(A)~~ 1

(r\A-lrk) \K(A)+1

For this reason we did not compare the Richardson methods involving
Incrémentals Unknowns with the corresponding schemes in the nodal basis
where the convergence is very slow.

The numerical results we present hère correspond to F = 0 : there is no
loss of generality in taking a null source term.

We have chosen as initial data X° = sin (16 . x . y . (1 - x) . (1 - y )).
In the figures (3) to (5), one can compare the évolution along the itérations

/ I!Xk — Xli \
of the relative error f — - 1 and the residual for the LRA and the

MLR schemes. As one can see, the number of itérations is reduced by about
30 % for the MLR method as compared to the LRA scheme. This proportion
seems to be independent of the fine grid mesh size. The new linear
Richardson Method can not be considered as a powerful elliptic solver but it
gives a natural illustration of the efficiency of the multirelaxation technics
proposed in section 4. We think that it is a useful step for the extension of the
technics in the nonlinear case.
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Schemes MLR and LRA /grid 63x63/ERR=F(ITER)

465

Schemes MLR and LRA /grid 63x63/RES=F(ITER)

100 150
itérations

Figure 3. — Comparison between the LRA and MLR Methods. The relative error and the
residue are plotted against itérations. The grid is C, 5.

5.2. The nonlinear case : solution of a nonlinear eigenvalue problem

5.2.1. The model problem

We consider the following problem : we want to calculate some unstable

vol. 29, n° 4, 1995
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Scheir.es MLR and LRA / g r i d 127xl27/ERR=FiïTER)

100 150
itérations

Schémas MLR and LRA /grid 127xl27/RES=F(ITER)

Figure 4. — Comparaison bel ween the LRA and MLR Methods. The relative error and the
residue are plotted against itérations. The grid is Cl6.

solutions of

- Au = y u - v | u | e u in fl = ]0, 1 [2

u = 0 on a/2 ,
(22)

with y and v > 0 and 0 < e ^ 2.
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Schemes MLR and LRA /grid 255x255/ERR=F(ITER)

467

150 200
itérations

Schemes MLR and LRA /grid 255x255/RES=F(ITER)

150 200
itérations

Figure 5. — Comparison between the LRA and MLR Methods. The relative error and the
residue are plotted against itérations. The grid is C17.

It is well known that such a problem exhibits bifurcations everytime the
parameter y crosses an eigenvalue of — A. We easily verify that the
hypothesis of theorem 1 are satisfied, and that, consequently, the MW
scheme is well suited to compute unstable solutions of (22).
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5.2.2. Properties of the solutions and choices of the initial datas

Let APt q = TT 2(p2 + q2), p . q ^ O, be an eigenvalue of - A and let
# P t 9 = sin (p-rrx) sin (qiry) be the corresponding eigenfunction. We recall
the following results (see [1] and [6] for the dimension one) :

— When y < Alt u the trivial solution, u = 0, is the onlv one and it is
stable.

— When ytj x < y ^ Ax 2, the trivial solution becomes unstable and there
exist two stable solutions, denoted by K(l, 1 ) which are déformations of the
eigenfunction <P x i (i.e. the set of zéros and the extremas are at the same
points).

— When APt(f*zy, p2 + q2 > 2, all the solutions (including the trivial
one) are unstables except the K(l, 1) type ones. Let a and b be such that
a2 + b2 ^ p2 + q2. These unstable solutions are déformation of basically two
kinds of functions :

• The eigenfunctions of — A, the &a b. The corresponding unstable
solutions are of K(a, b) type. Then, to compute them, we take Ü7O = k . <Pa h

as the initial guess.
• The functions 0a h = sin (ÖTTJC) sin (bny)Z(x, y), where Z(x, y) vanis-

hes on a segment parallel to the lines of équation y — x and y — — x. These
solutions are said to be of A(a, b) type. To compute them, we take
Uo = 0a b as the initial guess.

5.2.3. The MW schemes used

We first discretize the model problem by finite différences and using the I.
U., we obtain the discrete non linear problem :

ÀX = 'SF (SX) = 'S(ySX- v\SX\* SX). (23)

Now, we introducé the following MW schemes which we shall compare with
those constructed in the previous sections.

First we recall the définition of the MWIU method introduced in [2] and
which may be seen as the multilevel version of the classical MW algorithm :
the relaxation parameters are fixed once for all at the begining of the
program.

The MWIU method

Let Ù0 be the initial guess supposed sufficiently close to X, a local solution
of (23). For * = 0, ...
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step 1 : solve

ÂXk+m - ylS

step 2 : solve

ÀXk + 2B = ylSF(SXk+m)

step 3 : multirelaxation

Xk+ 1 - Xk + F(2 Xk+m -

Or equivalentely
For; = 0 , ..., /

\ Z) + 1 = Zk 4- aj(2 Zk+ m -

(24)

Xk)

- Zk)

where /* = DIAG (aQj a1} ..., a z ) is the diagonal multirelaxation matrix. In
[2] we have proposed a method for the construction of this matrix pointing
out, with the help of numerical observations, that the a- must be chosen as an
increasing séquence in j with the first grid levels parameter closes to the
relaxation parameter used in the MW for the same problem and the same
datas of course.

The stoping test

The several MW schemes considered hère are itérative methods. It is then
necessary to define a numerical criteria which indicates that the current
iterate is accurate enough. We then introducé two residuals :

• ThA itérative residual at the (k + 1 )th step :

X*+1 - A * ||
x k + \

I I * *
It measures the relative progression of the process at the (k + 1 )th step.
Looking at the relaxation step of MW, we have

X«+L -Xk = a {2.X•k 4- 1/3 -X' k + 2/3 -Xk),

and then a (2 . Xk + m - Xk + 2/3 - Xk) is the correction added to Xk to compute
Xk+l. Taking the relative value of this correction, it is reasonable to consider
that the algorithm has converged when cok+ 1 is smali. Moreover it indicates
that the solution computed is nontrivial. To be sure that this is a solution of
the problem, we use also

• The classical residual defined by

r * = \\A.Xk-F(Xk)\\.

In gênerai, the first residue suffices to measure the accuracy of the process.
We then choose a small real parameter 77 and the itérations will stop when
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Calculation of a K(2,2) solution

Values of the relaxation parameters

For the classical MW scheme a =0.117.
The matrix F is

ao = 0.117 ax = 0.7099 a2 = 0.99899
a3 = 1.08907 a4 - 1.1505 a5 - 1.2505
<*6 = 1.28907 .

Figures (6) and (7) represent the évolution of the residuals along the
itérations and the CPU time. As one can remark, the incrémental schemes,
say MWIU, A1IU and MWIU have a much better speed of convergence. We
note also that A1IU is more efficient than Al althrough these algorithms are
the same but written in a different way. This is probably due to the number of
condition of M = (I — & )2 which may be smaller when it is preconditionned
with the I.U. The accuracy is for all methods 5.10"8.

For a better analysis of the relative efficiency of the methods, we have
compared in figures (8) and (9) only the incrémental algorithms, say MWIU,
MWIUa and A1IU. The accuracy is for all methods 5.10' 9. We note that the
multirelaxation methods (MWIU and MWIUa) have a much better speed of
convergence with a regular réduction ratio per itération (2 for MWIU and 4
for MWIUa). The convergence is obtained by MWIUa in less CPU time than
by MWIU. This gain is not very important but it is signifiant because the
relaxation is « automatically » provided in MWIUa.

We recover comparable results in dimension one for the calculation of
bifurcated solutions of the Chafee-Infante équation.

6. CONCLUSION

Thanks to the several analogies between the classical Richardson Method and the original
MW scheme, we have built two efficient families of generalizations of MW involving the
incrémental unknowns :

• When the relaxation parameter(s) is (are) given at the begining of the program, the
nonlinear multirelaxation associated to the LU. yields a much better speed of convergence and
an important gain of CPU time for about the same bassin of attraction (see also [2] and compare
MWIU with MW).

• When the relaxation parameter(s) is (are) deduced of the itérâtes, the numerical results
point out again a better speed of convergence obtained by the incrémental schemes (compare Al
with AlIU, A HU with MWIUa).

According to the numerical results, the more efficient scheme built is the MWîUa. It is
associated to a minimizing residual process and to a multilevel relaxation. This new aïgorithm is
a new powerful tooi for the calculation of unstable solutions. It can be also used for the
détermination of bifurcation branches (with no turning point).
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Schemes A1IU, MWIU, MWIUa, Al and MW / grid 127xl27/RES=F(ITER)

MWIUa •
A1IU •
MWIU •

Al nodal •
W3 usual •

100 150
itérations

Schemes A1ÏU, MWlü, MWIUa, Al and MW / grid 127xl27/RES_ITER=F(ITER)

MWIUa
A1IU
MWIU

Al nodal
MW usual

I 'H.

100 150
itérations

Figure 6. — Comparison of the methods MWIU, MWIUa, A1IU, Al nodal and MW. The
évolution of the residue and the itérative residue are plotted against the itérations. The grid is
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Schémas A1IU, MWIU, MWIUa, Al and MW / grid 127xl27/RES=F(TCPÜ)

MWXUa •
A1IU •
MWIU •

Al nodal •
KW asual •

200 400 600 800
Cpu computing time (in sec.)

Schemes A1ÏU, MWIU, MWIUa, Al and MW / grid 127xl27/RES_XTER=F(TCPU)

-A
MWIUa
A1XU
MWIU -

Al nodal
MW usuai

400 600 800
Cpu computing time {in sec.)

Figure 7. — Comparison of the methods MWIU, MWIUa, A1IU, Al nodal and MW. The
évolution of the residue and the itérative residue are plotted against the CPU time (in seconds).
The grid is C16 ; y = v = 120, E = 2.
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Schemes A1IU, MWIU and MWIUa / grid 127xl27/RES=F(ÏTER)

473

Schemes A1IU, MWIÜ and MWIUa / grid 127xl27/RES_ITER-F(TCPU)

20 30 40 50
Cpu Computing time (in sec.)

Figure 8. — Comparison of the methods MWIU, MWIUa and A1IU. The évolution of the
residue and the itérative residue are plotted against the itérations. The grid is Cl6 ;
y = v = 120, e - 2.
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Schemes A1IU, MWIU and MWIUa / g r i d I27xl27/RES=F(TCPU)

20 30 40 50
Cpu computing time (in sec.)

Schemes A1IU, MWIU and MWIUa / grid 127xl27/RES_ÏTER=F(ITER)

Figure 9. — Comparison of the methods MWIU, MWIUa, A1IU. The évolution of the residue
and the itérative residue are plotted against the CPU time. The grid is C16 ; y — v — 120,
e = 2.
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