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MATHEMATICAL ANALYSIS OF ELECTROMAGNETIC OPEN WAVEGUIDES (*)

by Patrick JOLY (l) and Christine POIRIER (!)

Communicated by P. G. CIARLET

Abstract. —- The study of open electromagnetic waveguides amounts to the spectral analysis
of self adjoint operators with noncompact résolvants. In this article, we are partieularly interested
in obtaining existence results for guided modes and in studying their properties. The noticeable
feature of our work is thaï we consider the case where both the dielectric permittivity £ and the
magnetic permeability fj. may vary m the cross section of the waveguide. The originality of our
approach, with respect to p rêvions works is that it takes into account the divergence-free
condition in the functional framework. In this papen we exhihit varions existence results
depending on varions assumptions on £ and fi, we study the properties of the threshalds and we
point out what happens at low and high frequencies.

Résumé. — L'étude des guides électromagnétiques ouverts se ramène à l'analyse spectrale
d'une familie d'opérateurs autoadjoints, à résolvantes non compactes. Dans cet article, nous
nous intéressons particulièrement à Vobtention de résultats d"existence de modes guidés ainsi
qu'à l'étude de leurs propriétés. La spécificité de notre travail concerne le cas où la pennittivité
diélectrique s et la perméabilité magnétique /* varient simultanément dans la section transverse
du guide. L'originalité de notre approche, par rapport à des travaux antérieurs, consiste à
prendre en compte la condition de divergence nulle dans le cadre fonctionnel. Dans cet article,
nous montrons des résultats d'existence suivant les hypothèses vérifiées par £ et /j, étudions les
propriétés des fréquences de coupure et plus particulièrement traitons ce qui se passe à basse
et haute fréquence.

INTRODUCTION

The study of wave propagation phenomena, especially of electromagnetic
waves, constitutes a very fertile field of researches in applied mathematics and
nurnerical analysis. In this vast area, the study of waveguides represents an
attractive domain frorn both numerical and theoretica! points of view, in
particular for the open problems that it raises. The electromagnetic waveguides

(*) Received Juf y 29, 1994.
C1) IXRIA, Domaine de VoEuceau-Rocquencourt, BP 105, 78153 Le Chesnay Cedex.
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506 P. JOLY, Ch. POIRIER

have applications in various domains of physics (electronic components,
optical fibers, integrated opties...) and have been already abundantly studied,
for instance by D. Marcuse [22] who is the référence in the physical literature,
or by A. Bamberger and A. S. Bonnet [2], A. S. Bonnet [7], R. Djellouli [13],
N. Gmati [17], A. Bermudez and D. G. Pedreira [5], F. Kikuchi [20], con-
cerning the mathematical or numerical studies.

A waveguide is a cylindrical propagation medium infinité in each direction,
invariant, with respect to the geometry as well as the physical characteristics
of the medium (hère, the dielectric permittivity and the magnetic permeabil-
ity), under any translation in a privileged direction, for instance the x3

direction.

From the mathematical point of view, the usual objective is the complete
spectral theory of a differential selfadjoint operator appearing in the math-
ematical propagation model. Such a study is in fact a preliminary study for the
scattering theory for locally perturbed media. Mathematically the most diffi-
cult case is the one of open waveguides. To our knowledge, the complete
scattering theory has been carried out completely essentially in the case of
stratified media that is to say media which are invariant under any translation
not only in one direction but in two space directions. For scalar propagation
models let us cite, in order of increasing generality, the works by Y. Dermen-
jian and J. C. Guillot [11], C. H, Wilcox [32], M. Ben Artzi, Y. Dermenjian and
J. C. Guillot [1], S. De Bièvre and D. W. Pravica [6] (this list is far from
exhaustive). Concerning electromagnetic waves, we mention J. C. Guillot's
work [18], the more complete référence being probably the recent monograph
of R. Weder [31]. In this paper we are specifically interested in the study of
guided modes in 3D electromagnetic media which are invariant under trans-
lation in only one space direction. In this case, even the study of the
unperturbed media raises some nontrivial questions. More precisely the aim of
the present work is to obtain existence results of guided modes and to analyze
their properties.

The outline of our article is as follows : guided waves are defined in
Section 1. We show that the problem amounts to the spectral analysis of a
family of selfadjoint operators. We détermine by compact perturbation tech-
niques, their essential spectrum (see Section 2), which is the intermediate
phase to study their point spectrum. In Section 3, we show that the essential
spectrum does not contain any eigenvalues and characterize the eigenvalues
with the help of the Min-Max principle. In Section 4, we apply this charac-
terization in order to obtain an existence resuit, which leads us to introducé the
notion of threshold or cut-off frequency. A lot of results concerning the
properties of guided modes are expressed in terms of the thresholds. This is
the reason why an in depth study of them is dealt with in Section 5. We are
in particular interested to the évolution of numbers of guided modes with
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ANALYSIS OF ELECTROMAGNETIC OPEN WAVEGUIDES 507

respect to /? and investigate conditions on the medium for existence or
nonexistence of guided modes at low frequencies.

1. MATHEMATICAL FORMULATION OF THE PROBLEM

LI. Position of the problem

We consider a 3D dielectric linear isotropic medium occupying the whole
space IR3. We dénote by (*,x3), with x = (xvx2) e IR2, the generic point of
IR3. We assume that the propagation medium has a cylindrical structure in the
sense that it is invariant under any translation in the x3 direction (seefig. 1.1).
This means that the dielectric permittivity s and the magnetic permeability
ju are functions of the only transverse variable x :

Figure 1.1. — Open Waveguide.

(i.i)

We make the usual assumption on the functions e and ju : they are measurable,
strictly positive and bounded functions. We introducé

(1.2)
B_ = inf e(x) >0 ; e+ - sup e(;c) <

H_ = inf fu(x) > 0 ; n+ = sup u(x) <
x e R- M2

vol. 29, n° 5, 1995
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Another important property of the propagation medium we shall consider is
the fact that each cross section (i.e. parallel to (xvx2)) is homogeneous at
infinity. More precisely e and /J are constant outside some bounded domain
BR (the dise of radius R centered at the origin) of the plane (JC,, x2) :

(1.3) 3R>0f \x\ 3= /?=>c(jc)=fiOQ, /LI(X)=JJOO.

For the sequel it is useful to introducé the local propagation velocity c(x) of
the medium, defined by

(1.4) c(x? = (e(jc) /j(x)y',

c(x) is clearly a bounded, strictly positive measurable function and we shall
set

_ I
(1.5) c_ = inf c(x) , c = sup c(x) , c^ = ( C ^ A O

 2 .
x e IR2 x e K2

Of course c^ is the value of c(x) at infinity : \x\ ̂  R => c(x) = c^.
The electromagnetic field is as usual described by the electric field

E( JC, JC3, t) and the magnetic field H3(x, xv t ) ( r > 0 dénotes the time) whose
variations are governed by Maxwell's équations

Vf —o-
Guided waves are particular solutions of (1.6) on the form

f E(x, x3, f) = (El(x),E2(x), - iE3(x)fexp i(cot - fix,)
(1"7) [ )rexp ((

where
• œ > 0 is the pulsation of the wave
• p > 0 is the wavenumber in the x3-direction

and where the transverse electromagnetic energy is supposed to be finite (we
set E=(EVEVE3Y and (H - (Hv Hv H3)

r)

(1.8)
Ju2

The expression (1.7) represents an harmonie plane wave propagating without
any distortion in the direction x3 with a velocity V= œip (the phase velocity).
Such a solution is periodic in the direction x3 and the period k - 2 nip is
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called the wavelength. The 2D vector fields (with values in ( R 3 ) E(x) and
H(x) describe the distribution of the electromagnetic field in each cross
section. Guided waves differ from usual plane waves in a homogeneous
medium, for instance, by the square integrability condition (1.8) which char-
acterizes the fact that a mode is guided or not. This condition physically means
that the energy of the mode remains confined in some bounded région of the
cross section : this is where the fact that the coefficients s(x) and ju(x) vary
locally plays a fundamental role. Indeed when these coefficients are constant,
it is well known that guided waves do not exist. From a theoretical point of
view the first fundamental question which naturally arises is the following
one :

(i) What conditions on e(x) and ju(x) can ensure the existence of guided waves ?
Another point to emphasize is the fact that guided modes, even when they

exist, do not exist for any values of w and ft : co and /? must be linked by some
relation co =ƒ(ƒ?) which is called the dispersion relation of the mode (the
corresponding curve in the (/?, co)-plane being the dispersion curve). As a
conséquence the phase velocity V = coip is a function of ƒ? : guided waves are
dispersive. This is the second major différence between usual plane waves in
a homogeneous medium (which are not dispersive) and guided waves. There-
fore the second natural question is :

(ii) What are the properties of the dispersion relation of the guided waves ?

These are the two questions we intend to address in this article, as well as
the question of the number of solutions and the related notion of thresholds (or
cut-off frequencies) and the problem of asymptotic results at low and high
frequency. The only case where one can answer completely to all these
questions is the case where the functions e and JJ. take two values :

{ e(x)=ari for Ijcl < R, e for Ixl 5= RU II <» II

JU(X)=JU0 for \x\<R,^ for \x\ & R .
In this case an analytical solution is available (see for instance J. P. Pocholle
[25], D. Marcuse [22]). The theory for the gênerai case is of course much more
complicated. Reeen tl y, A. Bamberger and A. S. Bonnet [2], with the help of
the spectral theory of selfadjoint operators, made a major step in the under-
standing of the properties of electromagnetic waveguides. In fact they obtained
very complete results in the spécifie case where the function jn(x) is constant
everywhere. This assumption is physically relevant in many applications and
has a very important technical conséquence : the H^regularity of the magnetic
field H as a function of x. This is the reason why the authors in [2] considered
a formulation of the problem in which H was the unknown : adding an
artificial term in the corresponding variational formulation, they got rid of the
problem of the divergence-free condition and were able to develop the theory

vol. 29, n° 5, 1995
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in the H1 functional framework. In the gênerai case where e(x) and JJL{X) vary
simultaneously, with possible discontinuities, this is no longer possible. It is
precisely one of the purposes of the present work to overcome this difficulty.
Towards this goal we shall give a new formulation of the problem in which
the divergence-free condition is included in the functional framework. With
such a formulation we can work equivalently with the electric field or the
magnetic field which allows us to take profit from the natural symmetry of
Maxwell's équations with respect to E and H. This will lead us to the
generalization of the results of A. Bamberger and A. S. Bonnet to the case
ju(x) variable. The reader will easily check that our results coïncide with those
of [2] when jn(x) =juoo. The second major interest of this new formulation
is to be preparatory for the dérivation of a numerical method for the compu-
tation of the guided modes. The présentation and the analysis of this method
will be the subject of a forthcoming paper.

1.2. Mathematical setting

Bef ore entering the rigorous mathematical treatment, we first need to dérive
the équations of our problem. Plugging formula (1.7) into (1.6) leads to the
following system of équations :

(1.10)
rot^ H = scoE
rot B E = /jcoH

where the differential operator rot^ is defined by

(1.11) u =
du2 dul

and rot^ is the adjoint of rotg, also given by rot^ = rot_ ̂ .
One can then give two formulations in terms of a symmetrie eigenvalue

problem by eliminating H or E in (1.10) :
(i) The formulation in E :

(1.12) s l rot*(/j = co2 E
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(ii) The formulation in H :

(1.13) fflTotfi(ë~ lrot*pH) =co2H.

To complete our présentation, we need a functional framework. Let us
consider for instance the £"-formulation. We introducé the Hilbert space

(1.14) HE = L2(R2)3

that we equip with the scalar product

(1.15) (w, t>)e= eu.vdx.
Ju2

In the sequel, we shall dénote for any 3D vector field
w(x) = (ul(x)iU2(x)i u3(x)) the transverse field by U = (M1, M2) SO that
we can write indifferently u o r ( u , u3). We shall also introducé

(1.16) Vc = {i«€ He/iotfiue HE} .

It is immédiate to verify that

(1.17) Ve = {II = (U, %) e H(tot;R2)xHl(M2)}

where as usual (see [15])

| H ( r o t ; R 2 ) = j u e L 2 (R 2 ) 2 / ro tu = | ^ - ^ j - e L 2(1R 2) |

l(U2)={<pçE L 2 ( 1 R 2 ) / V ^ G L2(1R2)2}.

The space Vg is an Hilbert space for the norm

(1.18) l|w||2£ = f ( | I I | 2 + |Vw3|2+ | rotu |2) dx.

Finally we dénote by Ae(jS) the unbounded operator in He defined by

(1 19) (

[Ât(p) u = e~l rot; (/i- ' rot^ u) , V» € D(Âe(p) )

vol. 29, n° 5, 1995
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Therefore the problem to be solved can be written as, for a given value of the
wave number fi considered as a parameter

{Find E e D(Â (fi) ) and w2 e M* such that

The problem (1.20) clearly appears as a family of eigenvalue problems
parameterized by fi in which co2 plays the rôle of the eigenvalue and E the rôle
of the corresponding eigenvector

Let us now introducé the differential operator

du} du0

(1.21) div^ u = j± + ^ - fiu3 = div u - fiu3 .

One easily checks that

(1.22) div^Crot* ) = 0.

Applying (1.22) to the eigenvalue équation (1.12) we obtain that, as soon as
co2 =* 0,

(1.23) divp(eE) = 0

which means that all physically relevant solutions (i.e. for which œ2 ^ 0)
satisfy the generalized divergence-free condition (1.23). Moreover defining

we have

(1.25) rotp(V /,)=0.

This proves that for any q> in H\R2), V^tp belongs to D(Â£(fi)) and
Â£(fi) Vp (p = 0. To exploit these properties, we shall use the

LEMMA 1.1 : One has the orthogonal décomposition (with respect to
( • . • ) f i )

Vi> e He v = u + Vp<p ueHs(fi), <p e H\M2)

where

(1.26) He(0) = {ue He/divp(eu) =

M2 AN Modélisation mathématique et Analyse numérique
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Proof : Introducé the unique solution q> in /^(fR2) of
divp( eVp (p ) - div^ ( ev ) and set u = v - V^ #>. This gives the décompo-
sition. The orthogonality sterns up from Green's formula, G

The interest of Lemma LI lies in the

LEMMA 1.2 :

( i ) ^ 2

(ii) £ £

Proof: The inclusion (ii) is a conséquence of (1.22). The relation (1.25)
implies that {V^<p, <p e Hl(R2)} c: KerÂ£(/?). Reciprocally, if u belongs to
Ker(Â£(/?)), then by Green's formula, we have

JK
Ap u 12 dx = O => rofy w = 0 .

Coming back to the définition of rotn (see (1.11)), we get u — Vp(p, with
(p = u3 / ƒ?, which complètes the proof. •

Combining condition (1.23) and Lemma 1.2, it is natural to consider the
restriction of the operator Ac(/3) to the space He(j3), which is a closed
subspace of Hc (and then an Hilbert space for the inner product (., . )£). We
shall consider this restriction as an unbotmded operator AE(fi) in the Hilbert
space

e / { fi(/)rot*(^1rot/ïM)e L2(U2)3}

[ Ae{p)u= jf l rot* (ff l rotp u) .

In the sequel we shall need to work with the bilinear form afi(/?;., .)
associated with AB(/3). This bilinear form is defined on the space

(1.28)

( r o t . R 2 ) X ̂ ](lR2)/cliv^ (eu) = 0}

and its expression is given by

(1.29) aE(f];u, v)=\ jf l rot(iu .ro^v dx

By Green's formula, one has

(1.30) (Ac(0)u,v\ = ac(p;u,v) V(«, »)

vol. 29, n° 5, 1995
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The fact that ae(/?;., .) is symmetrie and positive implies that A£(/?) is
symmetrie and positive. We shall see in section2 that AJB) is selfadjoint and
positive defmite. Finally, because of (1.23), problem (1.20) can be reduced to

| D(A£(/S)) , œ2 > 0

\

For each ƒ?, we have to détermine the point spectrum of Ae( ƒ?). Because of the
unboundedness of M2, the embedding of D( Ae(/?) ) in He is not compact : this
is why the existence of this point spectrum is not a trivial question. Formu-
lation (1.30) is the one we shall use for our analysis. It differs essentially from
the one of A. Bamberger and A. S. Bonnet-Ben Dhia [2] in the fact that the
generalized divergence-free condition (1.23) has been incorporated in the
functional space HC(P). This is essential in order to get some local compact-
ness. The other important remark is that although vector fields in HE(fi) take
their values in R3, He(/3) is isomorphic to a space of 2D vector fields. Indeed
from the définition (1.21) of the operator div«, we deduce immediately that the
component u3 is given from the knowledge of the transverse field
u = ( « p i*2 ) :

(1.32) W 3 = i d i v ( e u )

so that He(fî) is isomorphic to the space

(1.33) fle = {«e L 2 (R 2 ) 2 /d iv (eu)e L2(U2)} .

Of course in our présentation we have chosen to privilege the electric field E
by eliminating the magnetic field. We could have made the opposite choice
and consequently obtained the following dual formulation. First introducé the
Hilbert space

(1.34) ,

equipped with the scalar product

(1.35) (
* Ju2

By définition, the operator divjj is given by

(1.36) d i V / ï t ; = ^ + ^ + ^ 3 =
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We also introducé the spaces

'

that we both equip with the norm || • || v associated with (1.35). Finally we
introducé the unbounded operator A (/?)

(1-38) i . , o , _ , , - i • x w

= JU roto ( s vota u ) v u e

which is associated to the bilinear form

(1.39) a (fi ; M, y ) = e" ! rotl u . rot- u ^x

Then the //-formulation of our problem can be written :

, co2>0/
( L 4 0 )

This is a point spectrum problem for the operator A^fi). It is useful to notice
that to pass from one of the operators Ae(fi) or A (fi) to the other, it suffices
to exchange the rôles of e and /J and to change P into - /?. This is why the
spectral theory of A^(fi) can be easily deduced from the one of A£(/?). As an
illustration, we can emphasize the équivalence between the two point spectrum
problems (1.31) and (1.40) by the following theorem.

THEOREM 1.1 : The operators Ae(fi) and A^(fi) have the same nonzero
eigenvalues. More précisely,

(i) if E is an eigenfunction of A£(/?) associated with the eigenvalue
co2 > 0, then H = ju~ lrot^E is an eigenfunction of A^(fi) with the same
eigenvalue.

(H) If H is an eigenfunction of A (/?) associated to the eigenvalue
œ > 0, then E = e rot^// is an eigenfunction of Ae(/3) with the same
eigenvalue.

(Ui) Moreover the eigenspaces of A£(fi) and A^(/?) associated to the
eigenvalue co > 0 have the same dimension.

vol. 29, n° 5, 1995
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Proof : We shall prove only (i) and (iii). The proof of (il) is completeiy
symmetrie. First note that if E is an eigenvector of A€(fi) associated to
co2 > 0 then rot^ E ^ 0. Indeed one has the equality

fj~ l\rotfi E\2dx = co2 f e\E\2dx.
Ju2 J^2

Let us set H = fi l rot / ?£e L2(U2)3. The equality

(1.41) e roipH = co^ E

proves that H belongs to V̂ . Moreover as div^(rot^) = 0 we see that
divo (fiH) = Ö which shows that H belongs to V (fi). Finally, applying the
operator JJ~ l rot^ to (1.41) we obtain

ff l rot;i (e" l rot*pH) = œ2 H

which proves that H e D(A^(fi)) and that AJ^fi) H - œ2 H. To prove (iii),
it suffices to show that two linearly independent eigenvectors ev e2 of
A€(j3) associated to co' generate two linearly independent eigenvectors
h{= jT i rotg^ and h2~jT l xotp€2 of A^(fi) associated to oT. Indeed we
deduce the resuit from the fact that /T ] rot^e-Q and e E HE(fi) iraply
e = 0 (see Lemma 1.2). G

In the sequel we shall be led to play with the duality between A£(fi) and
AJifï). This is why we shall state most of our theorems for both operators even
after having proven them only for A£(fi).

1.3. Additional notations and useful results

(i) In 2 dimensions there exist two rotationals. The scalar one is applied to
a vector valued field u and is denoted by rot u =
du2 / dxl - dux / dx^. The vector valued one is applied to a scalar function

y/ and denoted by rot y/ — \dy/ / dx2, — dyj / dxx ). We can relate these
two operators by the duality property :

V(u, y/) e ® ( R 2 ) 2 x ® ( R 2 ) u.roty dx= \ votuy/dx.
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ït is well known that rot ( Vy ) is equaî to 0. There exists a reciprocal to this
resuît known as the Poincaré's lemma (see R. Dautray et L L. Lions chapter IX
A, p. 263 [10], V. Girault et R A. Raviart [15] for instance) :

u e L2(Q)2 f rotu = 0=>3y/ G Hx(Q)/u = Vy/

where Q is a simply connected and bounded open set.

(ii) In the sequei we shalî use a unique continuation theorem for Maxwell's
équations. For this we shall use the unique continuation theorem for the
Laplace operator that can be found for instance in [19], [21]. The précise resuit
is the following ;

Unique continuation theorem

Let Q be a connected open set of R2 and B some bail included in Q. Let
ue H2

hc(Qy (i = 2 or 3) such that

\Au\ s= C( |VM| + \u\ ) a.e. in Q

u s 0 in B

then u vanishes identically in Q.

A conséquence of this resuit is the following theorem.

THEOREM 1.2 : Assume that e is piecewise Lipschitz continuons and that
u e L^C(R2)2 satisfies

f div ( eu ) - 0

rot u = 0

u s 0 in some open bail B

then u vanishes identically in Q.

Proof: We shall give the proof only when c e W 1 ' ^ R~ ) . The gênerai case
is obtained by repeating the argument for each connected component where
s is regular. By Poincaré's Lemma rot u = 0 implies u = V<p with
<p s Hl

!oc(U
2) and div (eu) = 0 implies div (e Vç?) = 0. Therefore we have

The resuit then follows by unique continuation.

vol. 29. n° 5, 1995
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For other applications of this resuit we shall be led to make additional
regularity assumptions on the coefficients e and ju, in fact piecewise regularity
assumptions as for Lemma 3.1, that we shall refer as assumption (PR) :

{PR)

o Q, — 0 for /' ^

VO <j ^ N

KJ Wu~(R2)xW2t~(M2)/

> R}

x Wh°°(R2)

= e. in Q. = jj. in Q..

Remark 1.1 :
• In fact more gênerai unique continuation results for Maxwell's équations

have been recently obtained by V. Vogelsang in [29]. The assumptions on s and
\i are slightly weaker than those we shall consider hère but rather complicated
to describe. That is why we have chosen to restrict ourselves to (PR) for which
we are sure of our results.

• Even for applying the unique continuation resuit for the Laplace operator,
assumption (PR) is not optimal and could be weakened, provided that we
would introducé additional technical conditions on e and ju. However this
assumption is reasonable with respect to practical applications and thus
sufflcient for our purpose.

(iii) We shall also use compactness results in spaces of vector fields.
Classical versions of such theorems can be found for instance in [8] and [15].
The more sophisticated version we shall use in this paper is due to Ch. Weber
[30].

Let O be a bounded open set of IR satisfying the restricted cône property.
Let u" be a séquence of L2( Q )2 satisfying

u C, ||roturt || ^ C, ||div(eu" )|| ^ C

= 0 or un

( v dénotes hère the normal unit vector to dQ ) then there exists a subsequence,
still denoted un , such that

un in L2(Q)2

2. SELFADJOINTNESS - ESSENTIAL SPECTRUM

For proving the selfadjointness of Ae(/?)> we shall use the following
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LEMMA 2 . 1 : The bilinear farm a £ ( /? ; . , . ) is coercive in the space
V£(j3). More pree isely we have

(2.1) ap(P;u,u) ^ et e( |rot u|2 + |Vu3|2) dx + c2_ f? \ e( |u |2 +
J M2 Ju2

Proof : By définition we have

a£(/?;u,w) = ju 1 | r o t y 9 w| 2 ^= ec21 rot^ M |2 dx
iur Ju2

^ c2 s\votBu\2dx
Ju2

= d f e(|VM3-yffu|2+ |rotu|2)^x
Ju2

= ct\\ £(|Vw3|
2+|rotu|2 + ^ | u | 2 ) ^ - 2 ^ f eu.

\Ju2 Ju2

By Green's formula, since div ( e u ) = tfiuv we have

— eu.Vu3dx=\ div ( e u ) u3dx = /? €Jw3 |2tù:
J u2 Ju2 Ju2

from which the result follows immediately. n
From classical characterizations of selfadjoint operators we deduce

THEOREM 2.1 : For any p > 0, the operator A£(/?) is selfadjoint, bounded
from below. Moreover ifa(Ae({l)) dénotes the spectrum ofAE(fi), we have the
inclusion

Remark 2.1 : In f act the inequality (2.1) also proves that c2 /f2 cannot be an
eigenvalue of Ae(/?). Indeed

aE(p;u,u)-c2_ f\u\2
£> f ec2_ ( |rot u|2 + | Vw3|

2 + f\u3\
2) dx .

Ju2
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If u is an eigenfunction of Ae(/?) associated to the eigenvalue c~_ ƒ?% we see
that w3 = 0 and rot u = 0. As div ( eu ) = s$u3 we deduce that
div (eu) = 0 and thus that u e P€ n L2(Q)2, where the space P£ is defined
in (5.29). This implies that u = 0, as we will see in Remark 5.4.

COROLLARY 2.1: For any /? > 0, the operator A^fi) is self adjoint,
bounded from helow and its spectrum a( A ( /? ) ) satisfies

Moreover c__ ft" cannot be an eigenvalue of AJ^fi),
We are now going to détermine the essential spectrum of Ae(/?). When

s = s^ and fi = ^ i.e. in the case of a homogeneous medium, the
corresponding operator we shall dénote by A^{$) has a purely continuous
spectrum that one détermines very easily using Fourier transform. One
gets (j(Aoo(/?) ) = [<C/r, + oo), The idea is to prove that
<7ew(A£(/?)) = a(A^(fi)) using compact perturbation techniques. We flrst
prove the

LEMMA 2.2 :

Proof: We are going to prove that any real number A greater than c^fF
belongs to cr(Aoo(^)) by constructing explicitly an associated singular sé-
quence. The idea of the construction starts from plane waves propagating in
a homogeneous medium that we truncate and shift appropriately in order to
avoid the perturbation (i.e. the région where the coefficients are not constant).
Note that we cannot directly refer to the proof of [2] since we have to take into
account the generalized divergence-free condition. Let k = (kv fc,) e R2 and
set

uk(x) = (— & 2 e o s (k. x)Jkl c o s (k. x ) , 0 )

for which one easily vérifies that

div» uk = 0

rot* (rotp uk) = (/f -f &2) uk .

Let us choose k such that X - c^(/?2 + |&[2). Now let y/ be a cut-off function
satisfying

V 2 , 0 ^ y/
supp y/ <z{x<= R2 / R ^ |JC| < 4 R}

s 1 for 2/Î ^ |x| ^ 3 /? .
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We construct the séquence un = ( nn , u\ ) such that div£ ( eun ) = 0, by taking

As e and \x are constant outside jxj < R, it is clear that the séquence un

belongs to D(A£(fi)) for n S= 1. We choose the normalization constant
C " > 0 such as

A simple calculation shows that

\un\2dx=l .

' - , C > 0 .

It follows that | |M" | | L - \ 0 and thus, as |Mn|e= 1, that utl converges to 0
weakly in He. To conclude that c^(/T + k ) belongs to the essential spectrum
of A£( /? ) we only have to prove that

As supp w n c{ | jc | ^ R} and as div^M"-0, we deduce that
Ac(0) un = c^i- Au1 + fl2 ulï). One easily checks that the transverse and
longitudinal components of AE(fi) un - Xul are respectively :

-c i (Au n + |^|2
u

f l )=

c2 C"

dx\n

from which it is easy to show by explicit computation that

C
n '
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(The main reason is the présence of the factors in 1 / n, 1 / n2, 1 / n3 occurring
from the differentiation of the cut-off function y/Cx/n)). This complètes the
proof. D

For proving the reverse inclusion we shall use a very important décompo-
sition of the quadratic form &£(/3; M, «).

PROPOSITION 2.1 : One has

(2.2) VW e

where we have defined

(2.3)

f 2 2 2 2
? ; M , w ) ~ e(c | r o t u | +c |Vw3 | +

Ju2

*>\u,u)=0L f B(C2-C2) \u\2dx-2p\ <
Ju2 Ju2

e(c2 - et) Vw3. u dx

which have the following properties :

( 0 pe(P\u,u) ^ 0 VMG

(ii) un ^uinV£(j$) weakly => lim ce(fi ;u
n,un) = cE(fi ; u, u)

( M/? to ̂ /ze extraction of a subsequence ) .

Proof: We start from the identity (see the proof of Lemma 2.1)

a(fi\u,u) =\ £c2{|rotu|2+ |V«3 |2+ /?2|u|2} dx
Ju2

(2.4)
ec VM 3 . u dx .

We transform the last term of (2.4) as follows :

(2.5)

- ec2
 VM- - u dx - - e( c2 - c2 ) Vu,. u dx - cM £ Vw,. u

J R 2 JU2 JU2

= - \ &{c2-c]o)Vu?).\xdx + Pcli\ &\u3\
2d

Ju2 Ju2

(We have used intégration by parts and the fact that (d iv ( e u ) = /?u 3 ) .

Therefore as ec2\u\2 dx can be split into the sum of c 2 ! e|w|2<ix and
Ju2 Ju2
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e(c2-ct) \u\2 dx, the décomposition (2.2) follows from (2.4) and (2.5).
u2

As property (i) is immédiate we only have to check property (ii). Assume that
un ^u weakly in V^e), this means in particuiar that

'w^ is bounded in/ / ' (R 2 )

un is bounded in H( rot ; R2 )

iv ( eu1 ) is bounded in L2( R2 ) .

Let BR = {x/\x\ ^ /?}, as the embedding from H\R2) into L2(BR) is
compact, we can extract from u^ a subsequence, still denoted by u1^ such as

(2,6) u\ -> u3 strongly in L2( BR ) .

For un , we need another compactness result we shall state in a proposition
since we shall reuse it in the sequel.

PROPOSITION 2.2 : Let us introducé the Hubert space

(2.7)
//(rot, div£,R2) = {ue L2( R2 f I rot u G L2([R2), div(eu) e L2{R2)}

equipped with the norm

(2.8) l |u | |?=f ( | u | 2 + | r o t u | 2 + | d i v ( £ u ) | 2 ) ^ .

r/zen f/ie mapping u —> uL is compact from //(rot, div , IR2) into
L 2 ( ^ ) 2 .

Let us admit for a while this result. We can then assume that the subse-
quence un is such that

(2.9) u" -> u strongly in L2(BR)2 .

Therefore, as ( c — c^ ) h as compact support included in BR it follows that

lim f e(c2-c2)\un\2dx=\ e(c2 - c2 ) \n\2dx
« - ^ + O O J R 2 ' Ju2

lim f e(c2 - c2 ) Vw" . u" JJC = f e(c2 - c2 ) V « , . u JJC

which complètes the proof of proposition 2.1. D
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We now give the

Proof of proposition 2.2 : Let u" be a bounded séquence in
#(rot, div£, IR2). Let R'> R and <p be a cut-off function satisfying

= 1 infl^, supp0

Let vn = 0urt , we have

f | I / 1 | 2 < / J C ^ C , [ I r o t t ? " ! 2 ^ ^ C , f |div (evn)\2dx *£ C
JBR, JBR. JBR,

(n dénotes hère the unit normal vector to dBR, and the bound C dépends on
(p ). We can then use the resuit of Ch. Weber [30] (cf. Sect. 1.3 (iii)), to assert
that one can extract from vtt a subsequence, still denoted vn, such that

v in L2(BR,) strongly .

Then defining u = v | BR, we have

u" —» u in L2( BR ) strongly

which complètes the proof of proposition 2.2. •

Remark 2.2 : To apply the compactness result of Ch. Weber, it is funda-
mental to have some control on the tangential trace of the vector field on the
boundary. This is why we have used a truncation procedure on some open set
larger than BR (here BR,).

We can now prove

LEMMA 2.3 :
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Proof : Once, one has the décomposition (2.2), the positivity property (i)
and compactness result (ii). The proof of Lemma 2.3 follows an approach
which is now rather Standard (see [4], [3], [12]). We include it hère for
completeness. Let a e aess(Ac(j3)), there exists a séquence u in
D(A£(P)) such that

(2.10)

un — 0 weaklyini/E(j8)

A (ff) u - autl -» 0 strongly in H£(P)

UwL=i.

Therefore lim aE(/? ; u\ un) = er and from the coercivity result of

Lemma 2.1, we deduce that u11 is bounded in V€(P) s o that we can assume that
u11 converges weakly to 0 in V (P). By (2.2), we have

ae(p ; u\ u11) = cif + pXP ; u\ un) + c£(P ; u\ utl)

Taking the limit of this inequality when n —> + <», we get as
lim c£(P ; u\ un) = 0 (by property (ii))

a^ctp2 Va e tress(A(fi))

which yields the result of Lemma (2.3). D

Regrouping Lemmas 2.2 and 2.3 and playing with the duality between
AE(P) and A^(/?), we can demonstrate the following theorem (Note that
c^ ƒ32 does not change if we permute e and ju ) :

THEOREM 2.2 :

An immédiate conséquence of Theorem (2.2) is

COROLLARY 2.2 : The operators Ae(P) and A ( ƒ?) have the same spectrum.
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Proof : Eléments of the spectrum which are not in the essential spectrum are
necessarily strictly positive eigenvalues (for Ag(/?) as well as for (A (/?)).
From Theorem (2.2), A£(/?) and A^(/?) have the same essential spectrum. As
by Theorem 1.1 we know that they have the same eigenvalues, one concludes
immediately. a

3. CHARACTERIZATION OF THE POINT SPECTRUM

From the gênerai theory of selfadjomt operators we know that eigenvalues
of Ae(fi) are either isolated eigenvalues of finite multiplicity, i.e. éléments of
the discrete spectrum ad(A€(fi)), or eigenvalues embedded in the essential
spectrum. In fact the latter cannot exist, except possibly for the lower bound

i 2

LEMMA 3.1 : Under the regularity assumption (PR) (see Sect. 1,3), the
operators A£(/?) and A^(/?) have no eigenvalues in the interval

Proof: Let us first recall what it the regularity assumption (PR) :

(PR)

Qj r\Qt=<t> for j * l , Q0 = {x/\x\>R)

VO «£.ƒ « tf 3(e, ,u) e W2'~(M2) x
J J

W1'™^2) v Wh°°(R2) x W2'~(U2)/
e — e, in Q., u. = u. in ^2..

J J j j

We shall assume, which is not restrictive that the open sets Qj are connected
and numbered in such a way that the open sets defined by

are connected. Note that 6N = IR2.
Let u be an eigenfunction associated to some eigenvalue co2 of A£(j8), with

co > CTO p. We are going to show by induction that u vanishes in &k,
\/k e {0,..., N}. We first prove that u = O in (90. Since divp u = 0
in |JC| ̂  R, it is clear that (use the identity
rot* (rotp ) = V^div^ ) - A + /? )

= 0 for |*| ^ /? .

As w G LZ([RZ), we deduce from Rellich's theorem (see [28]) that u = 0 for
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Now assume that u vanishes in &k_v k 5= 1 then we claim that u is solution
of

rot^(^ l rot^ u) = ekco2 u in &k.

Indeed, using (PR), for v e 2$(&k), one has

JA l rot^ u . rofy vdx = jjk
 ] r

su . i> Jx = ek u .

otj M . roU î îc

vdx.

To conclude, we shall assume here that (ak,fJk)e W2t°°(U2) x W ï ïO°(R2).
Otherwise it suffices to apply the forthcoming argument to v ~ jj~ l rot^ u.
Using the formulas ((ev ev e3) dénotes the canonical basis of R3)

rot^w) =

rot^ (rot^ u) = V^(div^ u) - Au + f? u

V/<üv^«) = V / c " ! d i v / e k u ) )

we see, as M ) = 0 in 0k, that

AM - (fi2 -w2 ak jjk)u rot jak r o t u H- /uk

j - 1 J J
u} e . -

Then by elliptic regularity we deduce that u e H2
oc((9k)

3 and that

| A M ( X ) | ^ C ( | V K ( X ) | + | U ( * ) | ) a.e.jc in ©,

where the constant C dépends on I k J I ^ . - and \\jJk\\ wi,-. We can then apply
the unique continuation theorem of Section 1.3 to conclude that u vanishes
identically in Gk. •
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Remark 3.1 ; A priori c^ft can be an eigenvalue. Ho wever one can prove
that if u is an eigenfunction associated to the eigenvalue ci/?2, then for
|JC| 5= R, it admits an expansion in the form

(3.1) unsinn0)r'

where ( xx = r cos 0, x2 = r sin 0) ( ( r, Ö ) are the polar coordinates) and
M° and un are vector s in M . We shall corne back later on this point.

As a conséquence of Lemma 3.1, if we except ^jf", eigenvalues of
Ae(/?) (or (A^(/?)) belong to the discrete spectrum which moreover satisfies

(3.2)

In particular any eigenvalue in the discrete spectrum of A€(fi) is necessarily
strictly smaller than the lower bound c^/?2 of its essential spectrum. This
implies that all these eigenvalues can be characterized with the help of the
Min-Max principle that we shall state below. For this we need to introducé the
"Min-Max" associated to the operators Ag(/?) and A (ƒ?)• We shall use the
following notation :

- ^7n( ƒ?) is the set of m-dimensional subspaces of Ve(fï)

— J^£
m( P ) is the set of m-dimensional subspaces of H£( ft )

» For any subset Fof//E (̂ S) we set F 1 ^ {u e H€(fi)/(u,v)t = Q, \/v e F}

Then for any m 5= 1, we introducé the real numbers given by the two
equivalent formulas {cf. M. Reed and B. Simon [27], R. Courant and D. Hil-
bert [9]) :

(3.3)

SUP

= sup inf
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We also define, concerning the operator A ( ƒ? )

s(B)= inf sup 5
myH' E^r^P) ^ m \u\2

inf
±

= sup
f6Jfü

where ^JLP), J^^ifi) and F x are denned as above by simply replacing
e by /i. The Min-Max principle can be stated as follows for the operator

THEOREM 3.1 : The séquence sm{fi) is nondecreasing and converges to
c^p. Moreover for each m ^ 1, one has the following alternative:

(i) sE
m(fi) < c^ff : in this case Ae(/3) admits at least m eigenvalues

strictly smaller than c^ jf and {s\(fi), sc
2(0),..-, se

m(fi)} eire exactly the mfirst
eigenvalues of A£(/?)-

(ü) s)n = cl f : in this case Sj(fi) = clfî2 for any j ^ m and Ac(p) has
at most ( m - 1 ) eigenvalues strictly smaller than c^ Z?2.

Proof : The theorem is nothing but the application of the gênerai Min-Max
principle to our particular case. For a proof of this principle, the reader is
referred to [27] or [9]. D

As a conséquence of Theorem 3.1 and Corollary 2.2, we have

THEOREM 3.2 :

Proof : This comes from the f act that Ac(/?) and AJifl) have the same
essential spectrum and the same eigenvalues. Indeed assume that
£(/?)<-CC/O- Necessarily, as <(ƒ?) ^ df, s£

fn(fj)<clf which
means by Theorem 3.1 that Ae(fi) admits at least m eigenvalues strictly
smaller than c^ /?". By Theorem 1.1, these eigenvalues are also eigenvalues of
A (/?) which would mean thatÂ^(/?) has m eigenvalues strictly smaller than
•C(/0> which contradicts the Min-Max principle. Therefore
s]n(P) 2* <(/?)• Inverting the rôles of £ and ju, ^ ( j8 ) > •£(£) , and thus

Remark 3,2 : From Theorem 3.1, we deduce the rule for proving existence
or nonexistence of eigenvalues.
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(i) If one can construct a subspace E of Ve(/?)(or
dim E = m and

such that

VW

then Ae(fî) admits at least m eigenvalues strictly smaller than
(ii) If one can construct a subspace F of He(fi) (or 1

dim F = m - 1 and

f.
) such that

; «, u) - 0

then Ac(/f) admits at most m - 1 eigenvalues strictly smaller than c^/f.
This rule is the rule we are going to apply for studying the point spectrum

of Ae(P) (i.e. the guided waves). In the sequel we shall need a resuit
concerning the regularity of the functions fi —» se

m(fi)- The proof we give hère
is stlightly more complicated than usual proofs for this type of resuit because
of the f act that the space V£( ƒ?) dépends on fi.

THEOREM 3.3 : Vm
Lipschitz continuons.

1, the functions p>0 are locally

Proof: To work in a space independent of fi we first remark that
u = (u, M3) G Ve{P) if and only if ü = (u, M3) = (u, /?u3) G V6( 1 ) and
therefore that sm(fi) is characterized by

(3.5)

where we have set

(3.6)

with

\e,H

u,u)=\ 2 n 1 ( | r o t u | 2 +
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Now one computes that différence for any (/?,/T) e ffS4" xlR+ :

dx

K,\"\l,

w.2L(/f -

Remarking that we have the identity (deduced from a development of

| u [ 2 - 2 V w 3 . w ) dx
Ju2

we obtain

i W ;

Now we notice that

and that, using the coercivity of ac(fî;u,u) {cf. formula (2.1)),

So we obtain that
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Finally as

Max fp2)'
we end up with îhe inequality

( s i n c e l / ^ 2 =£ (c2
+ / c2_ ) Max ( 1 / f, 1 / f

Taking the Min-Max over u of both members of this inequality we fmd that

+2 l^ -^I^Max^^J + |/?2-^2| c\ .

As we can invert the rôles of fl and ƒ?', we easily obtain

which complètes the proof. D

4. STUDY OF THE DISCRETE SPECTRUM

From now on, we shall dénote by N(fï) the number of eigenvalues of
AJLP) m ( c - Ẑ 2' c lA2)- By the Min-Max principlesA/(^) is also characterized
by ( N( p ) can be a priori equal to + «*> )

4.1. First existence resuit. Notion of the threshold

We immediately begin by a nonexistence resuit.

LEMMA 4.1 : If c(x)~ ^ cx almost everywhere, the discrete spectrum of
AC(P) (or AJip)) is empty.
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Proof : In that case, the interval (cf jS2, cl p2) is empty. O

A conséquence of Lemma 4.1 is that in order to ensure the existence of
isolated eigen values, it is necessary that the function c(x) admits some where
a strict minimum in the domain BR. We shall see now that this condition is also
(almost) sufficient to obtain an existence resuit at least for large values of
/?. The idea of the proof is that if At(f}) admits an eigenvalue in
(cl /?2> c'Lfi2) then, because of (2.2), the quantity

;M,«)=j82 e(c2-ct) \u\2dx-2fi\ e(c2 - cl) u .
Ju2 Ju2

dx

must be négative which will be true if «3 can be chosen equal to 0 and u
localized in some région where c(x) — c^ < 0. This is the idea of the proof
which nevertheless must be modified because of the generalized divergence-
free condition. This is the reason for which we shall be led to consider the
following assumption :

(4.1)

3D€ c BRi where D€ dénotes a disk of radius î such that

f( i) a.e.xeDe c(x) < c^ - ( Ac) , Ac> O

(ii) s(x) e W2^(De) or /J(X) e W%O(>(D€) .

The reader will realize that in practice, assumption (4.1) differs very slightly
from the more natural one :

(4.2) c_ < C o o .

For instance (4.1) and (4.2) are equivalent if e and p. are piecewise W"°°. We
can also state our main existence resuit, which follows, using a weaker but
more compîicated assumption (see C. Poirier [26]).

THEOREM 4.1 : Assume îhat (4.1) holds. Then f or any m 5= 1, there exists
$m ^ 0 such that for any ƒ? > /?m, Ac(p) admits m eigenvalues strictly
smaller than c^ ff.

Proof: We shail assume that e(x) e W"I0°(D€). If not it suffices to reason
with a^(P ;., . ) instead of aE(fi ; ., . ). For m ^ 1, let us consider m 2D vector
flelds {u£ , 1 =S k ^ m} satisfying :

û  G C^( ü2 ) . supp u£ Œ D€ and {û  , 1 ̂  k ^ m) are linearly independent

Then deflne

|(«3)t = ̂ div(eu^ ) = i d i v ( u l ) + i ^ u l .
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As e e W2-°°(De), it is clear that

u3Yke H\R2), supp ( M 3 ) * C D(

and that

(4.3) VA: « m «' = (u' («3) ' )6 VJfi) .

Now define the m dimensional subspace of Ve( ƒ? ) generated by
{u\, ...,u<J:

(4.4) <=[44-.«0-

If u = ( u, w3 ) e £^, we have, using (2.2)

|M|^= £c2(|rotu|2+
J [R2

-2 f e(S-S
Ju2

J [R

Using the fact that fiu3 = div (eu) / 8 and part (i) of (4.1), we deduce that

(4.5)

a£(p;u,u)-ctf?\u\2
£^±\ £c2|vQdiv eu )f dx + f ec2|rotu|2^

ecl
Ju2

f £|U|
J[R2

2 e u . vf^div (eu) ) | dx

Dénote by Mx(m,t) and M2(m, £) the two positive constants defined by
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(4.6)

M,(ro, C ) = svr

M2( m, € ) = su

where we have defined

2 elc2 - c2 I u . v ( - d i v ( f i u ) ) | dx+\ ec2\rot u\2 dx .
JR2 V £ n Ju2

Note that Mx(tn, t) and M2(m, () exist and are finite because £ ^ has finite
dimension. We deduce that

afi(/? ; «, ii) -
MAm,

M2 (m, /) - p2 Ac
Af -

dx

If we choose

(4.7)
VM2 + J AC2

we see that

(note that because of the generalized divergence-free condition,
w ^ 0 < £ = > u ^ 0 ) . This concludes the proof because of Theorem3.1 (see
Sect. 3). n
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Theorem 4.1 points out a priori the existence of critical values of /? which
are thresholds for the apparition of eigenvalues in the discrete spectrum of
Ae( ƒ?)• This leads us to introducé the notion of upper thresholds :

(4.8) jfm = inf {pm > 0 / Vy? > 0m, Ae(fi) admits at least m

eigenvalues strictly smaller than c^ft1} .

By Min-Max principle, fim is also characterized by

A priori ffm can be equal to + oo (for instance if c(x ) is every where greater than
c^) but Theorem 4.1 expresses that

assumption (4.1 )=> Vm ^ 1 , [fm < + °o .

In opposition to upper thresholds we also introducé the notion of lower
threshold fPm defined by

(4.10) 0>m = SMv{PmNp<Pm,AJiP) admits at most m - 7

eigenvalues strictly smaller than c^fj1}

or equivalently, using Min-Max principle,

(4.11) fin = sap{PJP<fim=*sm(fi) = clfii}.

It is immédiate to verify that both séquences fPm and ffm are nondecreasing and
that, since the functions sm(fi) are continuous (cf. Theorem 3.3)

(4.12) V m ^ 1 fm*kiïm.

One can note that, from its définition, for fi < fPm the operator AE(ft) has at
most (m—l) eigenvalues and that the nonexistence result of Lemma 4.1
means that 0[ = + <*> when c(x) ^ c^ for a.e. x e R2. It is thus clear that
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a lot of informations concerning guided waves can be expressed in terms of
the properties of the thresholds jfm and f?m. That is why our next section will
be entirely devoted to the study of this two séquences.

5. STUDY OF THE THRESHOLDS

5.1. A case where jfm = ffm

Hère we consider a particular class of waveguides for which the propagation
velocity is almost everywhere smaller than its value at infinity :

(5.1) c(x) ^ c„ a.e.xe R2 .

Under this assumption we have

LEMMA 5.1 : If assumption (5.1) holds, for any m ^ 1, the f une t ion

P ~^ s
m( P ) ~ c°° P *s a decreasing function of ƒ?.

Proof : We adapt here the original idea of M. Reed and B. Simon [27],
which has also been used in [7], for instance. First we remark that

/p£(P ; u, u) + ce(0, u, u)
inf sup I «

Now if w = ( u , u3) describes the space V^/?), w e note that
v = ( u, /?w3 ) describes the space Ve( 1 ) and that
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where we have set

(5.2) •ƒ.

- J .

sc2\Vv3\
2dx

2

s(c2\roiv\2 + c2jv3\
2 -2(c2

2
dx

\v\2dx

[ v ) = a \ v 3

Ju2
dx

B,
(5.3)

Therefore we can write

(5.4)

We now use the f act that sm(fi) - c^f? < 0 to remark that formula (5.4)
does not change if we replace F(/?, v ) by G(/?, f ) = inf (0, F(fi, v ) ). So we
have

(5.5) = inf si
E e -re

m{ 1 ) v «

As the set T^^( 1 ) does not depend on /?, it suffices to prove that for any
v e Ve( 1 ), v ^ 0, the function ƒ? —> G(y9, t?) is nonincreasing. For this we
need to study the variations of /?—»F(/f, u ) . Now we note that only the
function A^v) has not a determined sign. Indeed we have by définition

(5.6) B l { v ) > 0 9 B 0 ( v ) > 0 , A o ( v ) ^ 0 ( V ü ̂  0 )

while because of assumption (5.1), we also have

(5.7) A2(v)^0.

In order to be exhaustive, we have to distinguish 3 cases.
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a) v3 = 0
In such a case Ao( v ) = Bo( v ) = 0 and we can write

As A2(v)/B,O) s£ 0, F{fi,v) is nonincreasing and so is

b) w3 * 0 and A2( u ) = 0
In such a case Ao( u ) > 0 and So( u ) > 0. Moreover

The function /î2'—» F(/?, u ) is necessarily monotone. If
A ^ i O / f l ^ u ) «S A0(u)/fl0(t>), then p2-* F((3,v) is decreasing and
therefore so is ytf2 -> G(^, i; ). And if Aj(i? ) / B^ v ) > Ao( t? ) / fio( v ), then
fi2 ^> F(fi,v) is increasing and since F( 0, u ) = Ao( v) / B0(v)>0 the
function G(fï,v) is equal to zero.

c) u3 ^ 0 and A2( t? ) < 0
In ffiât case 7(P,v)~f}2A2{v) /Bx{v) as /? -> + <*> with

A 2 ( Ü ) / 5 1 ( Ü ) < 0 and F(0, v ) = A2(ü ) / B0(v) > 0. Moreover one
easily sees that the function —3 (F(fi,v) )has at most one zero. So that one

dp
necessarily meets one of the situations described by figure 5.1, which proves
once again that G(fi,v) is nonincreasing with respect to fi and complètes the
proof of Lemma 5.1. D

- Ffr,,)

\

Figure 5.1. — Curves of F and G for case c).

A direct conséquence of Lemma 5.1 is the

THEOREM 5.1 : If assumption (5.1) holds, then for any m ^ 1,
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Remark 5.1 : We do not know any example for which ffm < P*m. So we
conjecture that the equality fPm = jfm is always true. However the proof of such
a resuit remains an open question.

5.2. Comparison results

In this section we consider two propagation media characterized respec-
tively by (e}(x), (fJ^x)) and (e2(x), (JLI2(X)). We suppose that these media
are the same at infinity :

(5.8) el(x)-e2(x) = e^ and JJ^X) =^2(x)=Juoo for |*| 2= R .

We dénote by s^(/0 and s2
m(P) the min-max respectively associated with

these two media and by NX(P) and N2(P) the two corresponding numbers of
eigenvalues strictly smaller than c^ p1. In the same way we shall use the
notation (/?^\/^*) and (fi]f,f%f) for the upper and lower thresholds. Our
objective in this paragraph is to show that all these quantities can be compared
provided that (eï,jul) and ( ^ / - O c a n a* s o ^ e compared. Our précise resuit
is the following.

THEOREM 5.2 : Assume that (5.8) holds and that

(5.9) £J(JC) s£ £2(x) and ^ ( J C ) «S /J2(X) a.e. x e R2

then

(5.10) x 2

and consequently

Proof : The proof is not direct and will use the two formulations in E and
H. We will divide it into three parts,
(i) The resuit is true if ex(x) = e2(x) = e(x)

Indeed if we set for j = 1, 2

; «,«*)= f fijl\rotpu\2dx
Ju2
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we clearly have

al(0;u,u)>a2
e(p-9ufu) VW e V£(/3) .

Then as the space of test functions only dépends on e we can apply the
Min-Max principle to show that

(ii) The results is true if jul(x) = JJ2(x) ~ JLI(X)

It suffi ces to in vert the rôles e and fj and to use the H formulation,
(iii) Now assume that (5.9) holds and consider the intermediate medium
defined by

£(x) = el(x) and p(x) = ju2(x) .

Let us dénote by sm(fi) the corresponding min-max. Because of (i), we know
that sl

m(p) ^ sm(f3) and because of (ii) we have sm(fi) ^ $2
m(fi)- Therefore

The other inequalities (5.11) dérive directly from this one. G

We will find this comparison result useful for extending some of our results
to a more gênerai class of media.

5.3. The threshold équation

Our objective in this section is to dérive an équation satisfied by the
thresholds. This équation will appear as a generalized eigen values équation.
The idea is very simple, at least formally, and consists in passing to the limit
in the eigenvalue problem for guided modes (under its variational form) when
co2 tends to c^ff. The only, but essential, difficulty lies in the functional
framework needed for the justification of the limit procedure. For this, we shall
be led to introducé a weighted Sobolev type space of 2D vector fields. The
same type of space occurs in the resolution of the Laplace équation in exterior
domain (see A. S. Bonnet [7], J. C. Nedelec [23]). Let us introducé the weight
function

(5.12) p(x) = ( 1 + \x\2T ](Log (2 + | * | 2 ) ) - 2 > 0

and deflne the space

Hp( rot, div£ ; H 2 ) = {UG h]oc{ U2 f / pï u e L2( R2 )2,

( ro tu ,d iv (£u) ) e L2(R2)2}
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which is an Hubert space for the norm

| M | | | 2 = | « | 2 / > < * * + ( | r o t u |
J M2 J M2

(5.13) | | | M | | | 2 = |«|2/><**+ ( | r o t u | 2 +
J 2 J

The main property of this space lies in the following proposition, whose proof
is given in Appendix A.

PROPOSITION SA: In the space / / (rot, div£ ; R
2) , the mapping

\u\2dx+\ ( |rotu|
» Ju2

1
\2

2 + |di

is a norm equivalent to the norm \\\. ll!£. M ore over the mapping u —» u | BR is
compact from Hp(rot, dive ; IR2) into L2(BR)2.

Remark 5.2 :
m Note that H ( rot, divg ; R2 ) is a greater space than H( rot, dive ; R2 ) (see

section 2, proposition 2.2). The functions of these two spaces only differ by
their behaviour at infinity. However they have the same local regularity and
that is why local compactness properties are conserved (compare proposition
2.2 and proposition 5.1).

• It can be shown, using an adaptation of the truncation procedure used by
J. Giroire in [16], that the embedding #(rot, dive ; IR2) u Hp(rot, div£ ; IR2)
is continuous and dense. In fact one can prove that functions of
Hn(rot, divp ; IR2) which have compact support (and thus belong to
//(rot, div£ ; R ) ) are dense in Hp(rot, dive ; IR ) (see also Lemma5.2 be-
low).

We shall also need to introducé the space of 3D vector fields

(5.14)
(rot, U2) xH\U2) where

^HP(TOUU)={UG L2
oc(U

2)\p2ue L2(U2)2,rotu e L2(U2)}.

which is an Hubert space for the norm

(5.15) I M I ^ r o t ^ x / A R 2 ^

f ( />|u |2+ | r o t u | 2 ) ^ + f ( | « 3 | 2 + \Vu3\
2)dx.

Ju2 Ju2

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



ANALYSIS OF ELECTROMAGNETIC OPEN WAVEGUIDES 543

Then the space (defined for ƒ? > 0 )

(5.16) VpwB(fi) = {u e tf/rot, U2) x Hl(R2) Idiv/cw) = 0}

is a closed subspace of Hp(roU U2) x H](R2) and thus an Hilbert space if
we equip it with the norm || . | |# ( r o t U2)*H\M2) ^ direct conséquence of
Proposition 5.1 is

COROLLARY 5.1 : The mapping

• f ( | r o t u | 2 + | w 3 | 2 + | V M 3 | 2 ) ^ )
JR 2 J

is a norm on the space Vp e(fl) equivalent to the norm || • ll//(rot R2)x//'(fFS2)
and the mapping u —» U\BR is compact from V e(j3) into L (BR) .

We can now define our threshold équation. First we remark that the two
bilinear forms, previously introduced in Proposition 2.1

pe(P\u,v)= ec2( rot u . rot v + VM3 . Vz;3 )dx + c2
oofï

l eu3 v3dx

Ju2 Ju2

=
Ju

.u))dx

are defined and continuous in the space V £(f3).
Then we shall say that ƒ? > 0 satisfies the threshold équation if it is

solution of the following problem :

Before stating the main resuit of this section, we need a technical theorem
concerning the functional space Vp e(jff). The proof of this result is given in
Appendix B.

LEMMA 5.2: Let V£C(fi) be the subspace of Ve(fi) (and thus of
(Vp c(fl)) made of compactly supported functions, then VE c(fi) is dense in

r
We can now state the main result of this section.
THEOREM 5.3 : If /? is a threshold such that 0 < /? < + «>, then it is

solution of the threshold équation (5.17).
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Proof : 1) By définition of the upper and lower thresholds, any of them can
be characterized by

(5.18) fi= H

where the decreasing séquence (jSp)p^l is such that there exists for each
p 5= 1 a function up in D(AE(fip)), up* 0 and a real œ2

p z (c2_ 0>p,
which satisfy

We thus have u e Vc(Pp) and

(5.19) Vu G V£(Pp) aE(flp\

In particular as œ2 < c2^ ft2
p, we have

that is to say

(5.20) pc{ Pp ; up, up c £ ( fip ; u p , u p ) < 0 .

If up = (up,u3 p), the vector field ùp=(up,ûXp) with ü3i

belongs to the fixed space (with respect to p) Vc{ 1 ). Moreover

(5.21)
' J M 2

ÀPP > «p. «„) = /£ f

rotu,,l2 + i

- c i ) |up - 2 f c2 - cl dx .

Note that the strict inequality (5.20) implies that the restriction of np to BR is
not identically zero. Therefore, as up is defined up to a multiplicative constant
(it is an eigenvector), it can be normalized such as

(5.22) f e|u/<fe=l.
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Let ?7(JC) > 0, using Young's inequality we get

L n

545

Let us choose r\ = -= ec , we get

(5.23)
; v f

Plugging (5.23) into (5.20) we obtain that

(5.24) ƒ. | rotu/£c2^ \2£C2dx

2

2 2(the constant C is \\{c -c ) 2 — - 1 J|L-). Consequently, as B and

TT- are bounded and as div (eu^) = eü3 p (since üp belongs to V e( 1 ), we

deduce that

(5.25) üp is bounded in V ( 1 ) .

2) By compactness one can extract a subsequence, still denoted by üp such
that

(5.26)
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The variational eigenvalue problem (5.19) can be rewritten, using ü instead
of up (and v = (v, v 3) e V£( 1 ) instead of u G Ve(fip)) as follows :

ec2 rot u .rot v dx + -r se2 VM« . VS- dx + c2 \ £«, 0̂  d'x

f
= («;-.

This holds in particular if v e V£ c( 1 ) ( v has a compact support). In such
a case, we can pass to the limit when p goes to infinity since in such a case
the weight function p does not play any rôle. So we deduce that for any

(5.27) ec2 rot u rot v dx + \ se2 ViL . V0 3 Jx -h cM eü3v3dx
Ju2 P Ju2 Ju2

+ £ ( c 2 - c

Using again the change of unknown function ü =
( u, ü3 ) —» M = ( u, -n û3 j (an

remark that (5.27) is nothing

(5.28)

Using again the change of
( u, ü3 ) —» M = ( u, -n û3 j (and the same for the test function v -^1?), we

remark that (5.27) is nothing but

As V£ c(fi) is dense in V (/?) (cf. lemma 5.2) and as /?£( ƒ ? ; . , . ) and
c e ( j f f ; . , . ) are continuous in Vpe(fi), (5.28) also holds for any v in
V (ƒ?). To conclude it remains to prove that w is nonzero. This cornes
immediately by passing to the limit in (5.22), using the strong convergence
(5.26). D

Remark 5.3 :
• Note that we have proven that the thresholds are solutions of the

threshold équation but we don't know if the converse is true. Ho wever such
a type of resuit has been proven for scalar waveguides in [7].

• In fact we proved in Theorem 5.3 that any number P which is the limit
of a séquence fi for which the operator AE(J3p) admits an eigenvalue œ2
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tending to /J2 c^ when p —» + oo is solution of the threshold équation. Both
upper and lower thresholds /fm and jfm have this property but they could exist
other /?'s, in particular if there exists m ^ 1 for which 0}n<fi*m.

• In Section 3, we evoked the possibility for c^ $* to be an eigenvalue. We
can now state a necessary and sufficient condition for this which is

f ( i ) P is a solution of the threshold équation

[̂  ( ü ) the corresponding generalized eigenvalue u belongs to L2( IR2 ) .

• Note that the threshold équation (5.17) only concerns the strictly positive
threshold. The question of the threshold 0 will be treated in Section 5.6.

5.4. The third lower threshold jf3 is strictly positive

We are going to prove in this section that for low values of /?, at most two
modes can propagate. This can be stated as follows.

THEOREM 5 A : The third lower threshold /^ is strictly positive.

Before giving the proof of Theorem 5.4, we need an intermediate result
which we shall also use in Section 5.6. This result concerns a particular
subspace of Hp(rot ; div£ ; (R

2), which is

(5.29) Pe = {u e / / / r o t ; div£ ; U
2) Irot u = div (EU ) = 0} .

In order to characterize the space P£ we shall use a nonlocal operator T acting
on functions defined on FR = dBR. We shall use polar coordinates and the
polar angle 6 for the parameterization of FR. We can then characterize the
Sobolev spaces HS(FR) by Fourier series as follows :

9(0) = c o s n0 + nB e H\rR)

1 1_

Our operator T is defined and continuous from //2(FR) into H~ 2(FR) as
follows :

(5.30)

We have the
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LEMMA 5.3 : The space PE is of dimension 2. lt is generaled by the
functions u = V(p and u = V<p where the functions (p and <p are defined
as follows :

(i) in BRi (px and (p2 are the unique solutions of the problems

<p] e Hl(BR), (pxda = Q
i rR

div(e V<pl) =0 in ^

^ - + V = 2 cos 0 on rR
(5-31) \dn

 e
2 1 I

div ( e Vç) ) = 0 in BR

2
r^? = 2 sin 0 on TRl dn

(ii) m ço are given in polar coordinates (r, 6) by

(5.32)
<p\r)=

f sin0

n = 2

cos sin

where {#/ t( /?)} an^i {ç/n(R)} are the Fourier coefficients of<pl\r,j=li2
(which are known because of (i)).

Proof : Let u be an element of P£. As u e Lloc( [R" ) and rot u = 0, we know
from Poincaré's lemma (see [10], [15]) that there exists a function (p in
Hx

}oc(U
2) such that u = V<p. Moreover as this function is defined up to an

additive constant we can impose the condition

(5.33) l (p do = 0 .
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From the condition div (eu) = 0 we deduce that div (e Vç) = 0. From now
on we shall use polar coordinates :

and a décomposition of (p in Fourier series with respect to 9 :

(5.34) <p(r, 0) = X <Pn(r) cos nO + ^ 9H(r) s i n n0 •

By Plancherel's theorem we have

\<p{r,6)\ldd =n^

The condition

(5.35)

(5.36)

Z?|u|2<i;c= p \V<p\2 dx < +°o implies that
Ju2 Ju2

\fn ^ 1 I — \
h r(Logr)

r~ K(r)i2
J2 r(Logr)2

For r 5= R, we have Ag> = 0 which gives the ordinary differential équation

(5.37)
i -

+ 7 «

= 0 n = 0, 1. 2,...

= 0 n = 0, 1, 2,...

For n ^ 1, the gênerai solution of these linear differential équations is a linear
combination of rn and fn. The condition (5.35) leads us to eliminate the
function rn for n 5= 2. Therefore we can write

(538)
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and

(5.39) |

For n = 0, we have

(5.40) <_

Note that the fact that div (a V<p) = 0 in BR implies that (just integrate this
équation over BR )

(5.41)

Both équations (5.33) and (5.41) imply that

(5.42) <Po(R) — 9Q(R) = 0 .

This yields aQ = b0 = 0 and thus

(5.43) <po(r)=0 for r 5= R .

Formulas (5.38) lead to the natural relations between ((p'n(R),(p'n(R)) and
(<pn(R),ç>n(R)) when n ^ 2

(5.44)

In what concerns (px and #>p one has

A,

and

Eliminating &j and ^ p we get

(5.45)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



ANALYSIS OF ELECTROMAGNETIC OPEN WAVEGUIDES 551

If we dénote by a( 9 ) the function defined by

a( 0) = 2 a1 cos 9 + 2 ^ sin 0 ,

we can use the operator T to regroup équations (5.44) and (5.45) in the
following boundary condition

dn = a on

Finally we have proved that the restriction of <p to BR satisfles ( -r^ and (p are
continuous across FR)

(5.46)

<pe

\dn

=\<p e H\BR)

If we can prove that, for any a e H (FR), problem (5.46) has a unique
solution in V(BR)t this will prove that the space Pe is isomorphic to the space

(5.47) = {a(0) = 2 ax cos 9 + 2 ax sin 0, (ava}) e

Indeed (p\BR (and thus <p\r ) will be completely defined by the solution of
(5.46) and then ç?|R2_B completely determined by the formulas

(5.48)

<P(r) = i cos (n6) + (pn(r) sin (n6)

for

From (5.46) and (5.48) one easily checks that V<p e Pe. Now for solving
(5.46) ws use the equivalent variational formulation

(5.49)

Find (pe. V(BR) such that

J. dx + e^bip, y/) = Vj// G V(BR) ,

where (., ,) r^ dénotes the duality Hî(FR) - H~ 2(FR) and the bilinear form
b((p, y/) is defined by

(5.50)
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As b((p, <p) 5= 0 and as in the space V(BR) we have a Poincaré's inequality

(5.51) f \<p\2 dx ^ C(R) \ \V<p\2dx Vq>

it is clear that problem (5.49) is coercive in V(BR) and thus uniquely solvable
by Lax-Milgram's lemma. The dimension of B being equal to 2, it is clear that
Pe is 2-dimensional and that a basis of P£ can be obtained by taking
successively (ax = 1, âY = 0 ) and (ax — 0, âx = 1 ) which gives the
functions <pl and <p2 defined in the theorem. D

Remark 5.4 :
• First, it is easy to show that Pe n L (Q) is reduced to zero. Indeed

u e P e implies that u = V<p = ax V<pl + âx V<p2 where ax and âx are related
to the first Fourier coefficients of <pl and <p (see (5.34) for the définition) by
the expressions

<px(r) -âY r+bx r~ l .

But the fact that V(p e L2(Q)2 implies that ax = ax = 0. This yields
u = 0.

• When e is constant, it is not diffïcult to see that P£ is the space of constant
vector fields. An immédiate way to see it, is to notice that constant vector fields
belong to P£ and to use the fact that dim Pe = 2. One can also solve problems
(5.31) explicitly. One obtains <pl ~ xx and (p2(x) = x2 which gives
u1 = ( 1 , 0 ) and u2 = (0, 1).

Of course the equivalent of Lemma 5.3 holds for the space

(5.52) PA/ = {UG Z/,(rot,divAi ; U2) /rot u = div (JJU) = 0}

Let us give two important properties of functions of spaces Pe and P^ that we
shall use in the sequel.

(i) A nonzero function u in the space Pc (or P ) cannot be identically 0 in
some open bail of IR".
(ii) The restrictions of u to IR \BR belongs to the space L°°(lR^\fi/î), if u
belongs to Pe or ( P ). The same holds for all its derivatives Da u.
Property (i) is a conséquence of a unique continuation theorem (see Theo-

rem 1.2). Property (ii) cornes from the fact that if u belongs to P£ then

u e C°°( R2 \BR ) and is bounded at infinity. Indeed the C~-regularity of
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u = Vç? is a conséquence of the one of ç, that one obtains by elliptic
regularity. Moreover <p increases at most linearly at infinity while all its
derivatives tend to 0 (see formulas (5.48)). It is then easy to prove (ii). We omit
the details.

We can now give the

Proof of Theorem 5A :

Let ( Wj , w2 ) the two functions of L2( IR2 )2 defined by

(wj(x) d(x) if \x\**R
{ * [ w , ( * ) = 0 if \x\>R

where {u l, u2 } is a basis of Pc (see Lemma 5.3). For each j = 1» 2, by Riesz'
theorem, there exists a unique element w. in Hr(0) such that

Let F be the 2D-space generated by wx and wr By construction we have

(5.54) F 1 = l u e He(fi) f nWjdx = O ; j = 1 , 2 l .

Now let us recall that

f
e(c2 - cl) \u\2 dx - 2 fil e(c2-ci)Vu3.udx.

Using Young's inequality as in the proof of Theorem 5.3, we obtain that
( rj > 0 can depend on x)

g(c
2_c

2)

|u|2dx™ ri\X?u
JB»
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Choosing rj = ec2, we get, for any u in V£(/?)

(5.55)
df.

2 2

\n\2 dx

c2 \ 8\uA2dx+\ ec2 lrotu|2 dx.
°° Ju2 Ju2

To conclude, we shall admit for the moment Lemma 5.4, which allows us to

obtain the following estimate (since one has /?M3 = - div ( ( eu ) )

Vwe F1- n Ve(fl)

f cil e\u3\
2dx+ f £

J(R2 JU2

Therefore, using (2.2) and (5.55), we get

(5.56)
C(R)-/fcl

c2-c2

e\u\2dx.

In particular, we have

P
c — c

By the Min-Max principle this means that s3(/?) = c1
ojf' and thus that the

third lower threshold /^ satisfies

(5.57)
C(R)

D

We show now
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LEMMA 5.4 : There exists a constant C(R) > 0 such that

555

C(R) f e\u\2dx^ \ f (ec2|rotu|2 + —|div£u|

Proof: Assume (5.58) is false. Then there would exist a séquence un in the
space FL n V^/?) such that

'dx=lf £|U»

Using Proposition (5.1), we can extract from un a séquence such that

u "_^ u weaklyin

u" _ ^ u stronglyin

rotu" ->0 stronglyin
div ( sun ) -^ 0 strongly in

L2(BR)2

L2(M2)

L 2 ( IR2 ) .

The limit field u then satisfies

(5.59)

ii G Hp(voU div£ ; IR2) rot u = div (eu) = 0

u . w, dx - 0 7 = 1 , 2 (since urt e F"1 )

e |u |2Jx= 1 .

From the two first equalities of (5.59) we deduce that u belongs to Pe and thus
that there exists ( a p a2) e fS such that

(5.60)
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The orthogonality conditions uw, dx = 0 (j = 1 ,2) thus lead to the
JU2

homogeneous System

(5.61)

M ( u 1 )2<it ] « ! + ( uu2 dx)a2 = \

( f u1 u 2 dx J ax + ( f (w2)2<£c j a 2 = 0

whose unique solution is «j = a2 = 0 since u1 and u are linearly
independent as éléments of L2(BR). Thus by (5.60), u = 0 which contradicts
the last equality of (5.59). This complètes the proof. D

5.5. Asymptotic behaviour of the thresholds. Finiteness of N( ƒ? )

Our objective in this paragraph is to prove that

(5.62) lim ^ = + 00

which will imply the finiteness of N(fi) for each ƒ?. We could use the fact that
we have a comparison result by Theorem 5.2 and compare our medium with
a simpler one for which the calculations can be made by hand. This is the case
if we choose

I ^ R

> R .

For such a medium the exact relation dispersion exists. One could dérive from
this exact dispersion relation an équation for the thresholds and study this
équation. Such calculations have already been done when ju is constant by R.
Djellouli in [13]. The resulting threshold équation is very complicated and the
results presented in [13] cannot be considered as mathematically proven and
anyway do not concern the behaviour of the thresholds, Such an approach
appearing as complicated and painful, we have preferred to follow the more
elegant one, and probably more gênerai, developed by A. Bamberger and A. S.
Bonnet in [2]. We flrst consider the particular case

(5.63) c(x) ^ Coo a.e.xe U2 .
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In that case we know (cf Theorem 5.1) that

The intuitive idea of the proof consists in saying that if the séquence j$m

accumulâtes to some finite value ff ^ 0 then jf must be solution of the
threshold équation and of its derivative with respect to /?. One then checks that
these two équations are not compatible as soon as (5.63) is satisfied. The
complete proof is slightly more complicated. First, for purely technical
reasons, we shall make for the moment the folio wing assumption :

(5.64) 3Dy^{xf \x-xo\ <y}/c(x)<c„ a.e.xe Dy.

Then we prove a flrst lemma.

LEMMA 5.5 : Assume that (5.63) and (5.64) hold. Let fip be a séquence of
solutions of the threshold équation satisfying

then /?* = 0.

Proof : By définition of the threshold équation (5.17) one can construct a
séquence up in Vp E(fip) such that

(5.65)

Pc(Pp ; Up9 v ) + ce(fip ; up,v ) = 0 Vu E Vpe(pp )

f c | u p | 2 d x = l

(we have used the fact that u^ is defined up to a multiplicative constant and
that it cannot vanish identically in the bail BR).

1) Using the notation of the proof of Theorem 5.3, the function
üp = ( np > ÜXP

 = Pp UX P ) i s s o l u t i o n o f

(5.66) püpp ; üptv) + cE{pp ; üp9 v ) = 0 V0 G Vp E( 1 )
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where we have set, for any ƒ? > 0,

(5.67)

f ; ü, v )=\ ec2l rot u rot v + -3 Vw3. Vv3 ) dx + c^ £w3 i33 d'x
JK2 \ p / Ju2

i'Jü,v)=p2\ e(c2-c2)u.Ydx-
Ju2

- e(c2 - c2^) [VM3 . v + Vv3. u ] dx .

Assume that B -^ ^ ^ 0 . Then reasoning as in Theorem 5.3, we deduce that
one can extract from ü a subsequence, still denoted ü such that

->

and we have at the limit

(5.68)

weakly in Vflt e( 1 )

stronglyin L2(BRf

; fi, 0 ) = 0 V» e Vp

2) Now let us take v = ü in (5.66) we obtain

V * / rE\.Hn ' n' O^ f\ r n ' n' o /

and inverting the rôle of /? and ^ we have

; üp, üq) + c e ( p q ; üp> ü q ) = 0 .(5.70) p

Taking the différence between (5.69) and (5.70) we have

£(c2-<£)U|, .u,

that is to say, after division by /^ - fi2
q ^ 0

(5.71) ^ f £
PpPqJu2

u , . u dx = 0 .
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This equality being satisüed for any p and q we can pass to the limit
(p —» + oo first, then q ̂  + <*>) to obtain

(5.72) — L j ec2\Vü3\
2dx-\ e(c2-cl)\u\2dx = 0.

(fi ) Ju2 Ju2

3) Because of assumption (5.63) this implies

(5.73) w3 = 0 and | s(c2 - cl) \u\2dx = 0 .
Ju2

Then, coming back to (5.68) with v = ü we obtain rot u = 0. This means,
together with ü3 = 0, that ü belongs to Pe. From (5.63), (5.64) and (5.73) we
also deduce that ü is identically 0 in the disk Dy. Finally one has ü = 0
everywhere by unique continuation theorem (cf Remark 5.4). But this con-

tradicts the fact that €|u|2<ix= 1 which stems up from the local strong
JBR

convergence of the séquence u . •
We now prove (5.62) when (5.63) and (5.64) hold.

LEMMA 5.6 : Under the assumptions of Lemma 5.5, the séquence 0^ tends
to + ©o when m tends to + oo.

Proof: The séquence fi*m is increasing. Assume that 0*m—> fi* < + °°. As
fil ^ 03 > 0 by Theorem (5.4), we necessarily have fi* > 0. Now we remark
that any fi > fi is solution of the threshold équation (5.17). Indeed since
fi> fi* then fi> fi*m. Therefore,by définition of fi*m, the operator A€(fi) has
an infinity of eigenvalues œm(fi) <c2^fi2 which satisfies by Min-Max
principle,

lim o
m —» + oo

We can then repeat identically the proof of Theorem 5.3 (except that we have
a fîxed fi hère instead of a converging séquence fi ) to conclude that fi is a.
solution of the threshold équation. Therefore we can construct a strictly
decreasing séquence fi satisfying the assumptions of Lemma 5.5 and the f act
that fi* > 0 is in contradiction with this lemma. This complètes the proof. D

We now prove (5.62) for the gênerai case.

THEOREM 5.5 : For any medium the séquence 0m goes to + °° when
/n—> + oo. Consequently the number N(fi) of guided modes is finite for any
fi>Q.
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Proof : We use a comparison technique. Let us introducé ê(x) and fi(x)
defined by

(ë(x) = (a+ + 1) and p(x) = (v+ + 1) if \x\ < R

\ ê(x)=eoo and p(x) = ̂  if \x\ > R .

By construction we have

ë(x) & e(x) , p(x) & ju(x) and c(x) < c^ a.e.xeBR.

We can apply Lemma 5.6 to the medium (s,p) to assert that, with obvious
notation,

lim JS° = + oo .

But by Theorem 5.2, /S^ ̂  j§^, therefore

lim jS^ = + » . n

5,6. Existence and nonexistence results for small values of /?

In this section we investigate the possibility of existence of guided modes
for small f} or equivalently the fact that a threshold can be equal to 0. From
Section 5.4, we know that at most two modes can propagate for small jS but
we don't know if the two first thresholds fPA and ff2 are equal to 0 or not. Our
first resuit gives a necessary condition for such a situation to occur. Let us set

B(Pe)= UG P £ / £ |u | 2 ^X =
JB„

= u e P / u\u\2dx=l.

Let us first prove the following lemma.

LEMMA 5.7 : 7 / ^ = 0, then

mm
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Proof: If px = O, we can construct a strictly decreasing séquence
fi7 \* 0 such that, for any p ^ 1, there exists (up, w

2) e VE{Pp) x R*+ such
that

(5.74) <o2
p<clf and l e\up\

2dx = 1

1) Deflning ü = (u , w3 = w3

i i

) and proceeding exactly as in the
proof of Theorem 5.3, we can write inequality (5.24) for ü from which we
deduce the following convergences, up to the extraction of a subsequence (the
différence with the séquence u^ in Theorem 5.3 comes from the f act that here
P tends to 0) :

rot u^

weaklyin H(rot, div€ ;IR
2)

stronglyin L2(BR)2

0 strongly in L2( IR2 )

° strongly in Hl(U2) ,

with moreover at the limit : u e B(P£),
2) We also have, as u is an eigenfunction and co < cM

pt(fip ; «p, Mp(5.75)

But us
deduce from (5.75) that we also have

;up,up)<0.

But using inequality (5.55), that we write in terms of üp instead of u?, we

In particular, the term e( 1 / c2^ - 1 / c2 ) \np |
2 Jx is négative for any p

so that» passing to the limit when p —» + ©o, we obtain

which leads to the desired resuit
As a minor modification of Lemma 5.7 we have the

D
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LEMMA 5.8 : If ff2 = 0, then

1 1
max I el ~r —~ ) I u Iz dx ^ 0 .

Proof: Proceeding as in the proof of Lemma 5.7 we can work with
2 séquences u ^ and u£2) satisfying the orthogonality condition

f (O (2)
JBR

 P P

At the limit we construct two functions u(1) and u(2) of B(PE) satisfying

f / l l \ • CD,2 f / l l \ , 2
e{ — — — J u I dx ^ 0 and e( — — — I Iu

JBR xc^ C ) JBR VC^ C /
The same process can be applied to the séquence

for any (av a2) such that a]+a^=l. At the limit we obtain

2 \2 dx ^ 0 .

m\2 dx ^ 0 .

This leads to the result since dim P£ = 2. D

Playing with the dual formulation between Ae(fi) and A^(/?), we finally
obtain the following result.

THEOREM 5.6 :(i) If jfx = 0,

(5.76)

min \~h \ |u|2^ } ̂  0

(ii) ƒƒ /Ç = 0,

(5.77) maxi max e( 4-—r) |u | 2 ö6c,

max
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Comments :
• It is clear that the conditions expressed in points (i) and (ii) of Theo-

rem 5.6 are symmetrie with respect to e and JJ.
• Remarking that if we set Ru = ( - w2, ux ) we have the équivalences :

' u e P *=>v = eRu e PiC e

u e P <=> v = /JRU e P i
v ^

we can give another form of conditions (5.76) and (5.77) :

(5.76) <^> max ( min e(c2 - c2 ) tul2 dx,

mm

(5.77) <=» max (unwx i I fi(c2 - c2 ) |u|2 <fcf

u e
max | A I ( ^ 2 - ^ ) ju|2dbc) ^ 0

We are now looking at a kind of reciprocal to Theorem 5.6 which consists in
looking for sufficient conditions on E and ju in order to ensure the existence of
guided modes for any value of 0.

THEOREM 5.7 : (i) If we suppose that

(5.78)

mininj min s(c2 - c2 ) \u\2 dx, min u(c2 - c2 ) |u|2rf* 1 ̂  0

the first upper threshold px is equal to 0 which means that A£(/?) admits at
least one eigenvalue strictly smaller than c2^ fF for any /? > 0.

(ii) If we suppose that

(5.79)

( )

then ffx-ff2 = 0 which means that Ae(fi) admits at least two eigenvalues
strictly smaller than CTO p for any f$ > 0.

Proof: (ia) We first assume that the inequality (5.78) is strict and that

mm
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If not we simply invert the rôles of e and JJ in our proof. We can thus choose
u in P, such that

(5.80) s(c2-cl) \u\2dx<0,

Our method is closed to the one of [2] but we have to deal with technical
difficulties. The idea is that we would iike to take (u, 0) as a test function for
applying the Min-Max principle. This is not possible since (u, 0) does not
belong to VB(f3). This is why we use a truncation-regularization process. First
consider d > 0 and M > R + d (M will tend to +«=) and define the
classicaî functions (cf. H. Picq's Thesis [24])

(5.81)
Log

(]RT1\)

if \x\ ^ R + d

if R + d ^ |*| ^ M

{™ppvMcz{\x\ ^M\.

For any M, fM e ƒƒ ( R ) and moreover when M —> + =»

C
(5.82) f , \VVM\

JR2

'dx
<*> L o g M '

We would like to take vM u as the transverse field of our test function but
div (svMu) € /^(IR2) because of the lack of smoothness of vM and that is
why we need regularization. Introducé ((x) defmed by

Ce C Q ( [ R 2 ) , suppCe{*/ |* | < d)

and set

(5.83) y/M=(*vM<E C°°(1R2).

It is immédiate from convolution properties that

1 * £ I v I ^ /?

= 0 if |*| 5= M + d
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Moreover, we have

565

dxi dxi dxi dx.

dy/M
dX; L2

dvM\\

i IL2

dx.
K\\ &

\dx.

so that for (ij) e {l, 2}2» we have

(5.84)
M-

lim
dy/M
dx- L-

= lim dx.

We now define

(5.85) wM=(uM ,u 3 M )

We can remark that, as rot u = 0

so that, as V^M = 0 if \x\ ^ /? and u E L ^

(5.86) l l rotu^ll^^ l l u l l ^ ^ . ^ j | | V ^ | | L

In the same way, as div(au) =0, we have

1

so that (since u

(5.87)

) • u +

), we obtain

Finally remark that as y/M = 1 in B^,

(5.88) u M = u , w3M =

vol. 29, n° 5, 1995
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Now, using (2.2), we write

a(p ; uM, uM) -fcl\ e\uM\2 dx =

[ £c
2{|rotuM|2+ \Vu3M\2}dx + f?cl f e\uX

J m2 J u2

+ ft f e(c2-c2) \u\2dx.

M\ dx

Using (5.86) and (5.87) we have

e(c2 - cl)\u\2 dx < 0

so that, at least for M large enough, we obtain

which proves that sx{P) < c^ft2, V/? > 0 and consequently that 0[ = O.
(ib) In order to be complete we have to treat the case where

(5.89) mm f e(c2-c2) iuj

LLet u e B(P ) such that I e(c2 - c2) |u | 2 Jx = 0. The idea is to take as

R

a test function a small perturbation of the function uM constructed previously :

(5.90) uâ
M = uM + Sw w e H( rot, div£ ; U2 )

which leads to define

(5.91) 4

We are going to prove that az(P ; uw uM) < fi2 c\\uô
M\2 if M is sufficiently

large, ô sufficiently small and w adequately chosen. In the sequel we shall set
1 1 2

w\ = -^div (ew), that we suppose to belong to H (R ), so that
uM = uM + ôw, w = ( w, w3 ). To estimate /?e( ƒ? ; wM, wM) we simply use the
inequality

(5.92) Pe{p;uô
M,uô

M)
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Now we compute c£(J3;uM, uM). First we have, since

1 = 0 and using (5.90),

f e(c2 - c2 )\uM\2 dx = 20 \ e(c2 - cl) u .wdx
JBR ~ JBR

+ Ô2 f e(c2 - cl)\w\2dx
JBR

f 2 2
I ^ M ' 3

v BR

2 f 2 2

f

Therefore we have

(5.93)

- 0 Vw3) dxs(c2 -

Ó2\ e(c2-cl)
JB„

2pe(0;uM, uM)

We know that pc(fi ; uM, uM) \ 0. Let us choose
ÖM = (pc{P ; uM, uM) ) 1 / 2 \ 0 (as P>£ n L2(R2) = {O}, we have necessarily
p£(/? ; uM, uM) > 0 ) , it is clear that

M

\
iB

To conclude, it suffices to prove that one can construct w such that

(5.94)
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To prove this, we first note that one can flnci f in //(rot ; R2) such that

L e(c2-cl)u.fdx<0.

Indeed H(rot ; [R2) is dense in L2(IR2)2 and so e(c2 — c2^) u, which is
different from 0, cannot be orthogonal to H( rot ; R2 ). Then let y/ be the unique
solution of the problem (apply Lax-Milgram's lemma in the space

Findi// G / / (d iv ; [R2)/
(5.95)

Defining w = ̂ , we see that w e //(rot ; divg ; IR
2) (note that

rot w = —rjT rot f) and thus setting w>3 = -g div ( ew ) we have

w = ( w, w3 ) e Ve( ƒ?) and /?2 w - ƒ? Vw3 = f, which concludes the proof
of (ib).

(ii) We will not detail the proof which consists in working with two
independent functions u t and u2 in PE and do exactly the same as in point (i)
to construct ux M and u2 M (or u\M and u2 M) and then work with a
2-dimensional space of test functions. D

A. APPENDIX : PROOF OF PROPOSITION 5.1 (EQUIVALENCE OF NORMS)

We first remark that by définition of R we can find Rx < R such that the
functions e - e^ and JJL - juM have their support included in the bail
{ |JC| ^ Rx}. Now let y/ be a cut-off function satisfying

'y/e C~(tR2), 0 ̂  y/ ̂  1

(A.l) \ ^ = 1 if |JC| ̂  R{

) if |x| ̂  /? .

Any function u of //^( rot, dive ; R ) can be decomposed as follows :

u —

(A.2) {^i = ^u ( supp Uj c BR

First we note that

(A3) p\u2\
2dx^C\ ( | r o tu 2 | 2 + |divu2 |2) dx ,

iu2 Ju2
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since u2 has its support in the set {x/|x| ^ R^. Indeed, for any function
v in ^ ( I R 2 - ^ ) , we have the identity

[ ( | r o tu | 2 + |d iv t ; | 2 )< /x= | \Vv\2dx .
Ju2 Ju2

Then (A3) dérives from Hardy's inequality (see [23]) and density arguments.
As we have the relations

I rot u2 = ( 1 - y/ ) rot u + rot y/ . u

! div u2 = ( 1 - y/ ) div u - Vy/ . u ,

we deduce, since supp y/ <z BR that

(A.5)

f \Totu2\
2dx^2\ (l-^)2\Totu\2dx

JU- JU2

\ | d i v u 2 | 2 ^ « 2 | | 1 - y/\2dx |divu|
JR2 JU2

L
•J,

l u i 2

x\ =S R

dx

\2dx

so that we have as e = e^ in supp ( 1 — y/ )

(A.6) p\u2\
2dx ^ C< \u\2dx+\ ( | r o t u |

Ju2 J\x\^R VU2

for an adequate positive constant C (which dépends on
11(1 ~*VO IL anc* O - Now we remark that u} belongs to the space
H{ rot, dive ; IR2 ) since it has compact support. We now prove that if

(A.7) HR(voU div£ ; R2) = {v e H(rol, div£ ; U2), supp v c BR} ,

then there exists a constant C = C(R) such that

(A.8)

Vu e //^(rot^div^ ; R 2 ) | \v\2 dx ^ Cl ( |rot i?|2 + |div (ev ) | 2 ) ^JC .
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Indeed, if not there would exist a séquence vn whose L -norm would be equal
to 1 while rot vn and div ( evn ) would converge to 0 in L2. By compactness (cf
Proposition 2.2), we could extract a séquence vtl such that

'v11 -> v in L2(BR)2 strongly

div (et/1) -^ div (et?) in L2(R2) strongly

jot vn -» rot v in L2( R2 ) strongly .

The limit function v would satisfy

(A 9) i
[rot i? = di

f supp v a Bj,

div et? = 0

(A. 10) and \v\zdx= 1 .

By unique continuation theorem (see Sect. 1.3 (ii)), (A.9) implies that v is
identically 0 which contradicts (A. 10). Therefore, applying (A.8) to Uj and
using the fact that p is bounded, we get

(A.l l) [ p\u, \2dx ^ C ( Irotu, | 2 + Idiv (eu, )\2)dx.
Ju2 Ju2

From the identities

—>
rot Uj = y/ rot u — rot y/ . u

(A. 12)
I div ( £Uj ) — y/ div ( eu ) + Vy/ . eu

and the fact that Vy/ has its support in BR we deduce

( A . 13) f p\nx \
2dx ^ c l f | U | 2 ^ J C + f ( | r o t u | 2 + | d iv ( e u ) \ 2 ) d x \ .

Ju2 \J\x\^R Ju2 I
Finally, Proposition 5.1 follows from (A.3) and (A.13) since we have

p\ux \2dx+ p\\x2 \2dx ) .
JR' /
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B. APPENDIX : PROOF OF LEMMA 5.2 (DENSITY OF V£ c( /? ) IN Vp £( /? ) )

We use the same truncation functions as these in the thesis of J. Giroire [16]
(see also R Bolley and J. Camus [14]). They are defined for n ^ 1, by

{ i if W « i
where y/ belongs to C°°( [0, + «>] ) and satisfies

0 if re [0,1]
(B.2) jo ^ y/(t) « 1 if re [1,2]

[ 1 if *e [2,+ oo]

So ^ e ^" (R 2 ) and satisfies

fsupp y/n c fl(0, <?"), 0
(B.3) {

The most important property of y/n lies in the following estimate valid for any
muiti-index a e N* x N* and any n > 2 (see [16]) :

(B.4) | 0 a ^w(^)l ^ C a /n(x) forx such that J ^ |jc| ^ en ,

where the constant Ca does not depend on n and where p is the weight function
defined in (5.12). Let w= (u, w3) be in Vpt€(fi) and set

uw = i/1 u and ui = 4 d i v (guw ) .

By construction un = ( uw » u^ ) has a compact support and for n large enough,

«"e VïiC(/?).

We show that (M") converges to w in Vp Ê(^). For this we must prove that
il" tends to u in H^(rot, R2) and that ü\'tends to u3 in H^U2). Let us first
consider un, by Lebesgue's theorem we clearly have (since
Vf(x)e [0,1])

(B.5) u" ™>u in L2(U2
fpdxf.
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Then

rot u" = rot u y/n - rot y/1. u .

Now, still by Lebesgue's theorem, we have

(B.6) y/1 rot u -> rot u in L2( 1R2) .

We thus have to show that || rot y/n. u||L2(1R2) —» 0. We have

|
S \x\ ^ e"

Using (B.4)

and pl/2u belonging to L2((R2)2, we have

(B.7) rot y/n . u -> 0 in L2( [R2) .

We deduce from (B.6) and (B.7) that

(B.8) rot u'1 -» rot u in L2( R2 )

Concerning M'3
J we note that

Reasoning as before we have

V y / \ u - > 0 in L2([R2) ,

and by Lebesgue's theorem

(B.9) y/n w3 -> w3 in L2([R2) .

so that

(B.10) «g -> w3 in L2(IR2) .
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Moreover we have

573

dx Y dx dx 3 p \ dx v Y J Y dxx. dxi
 3 (3\dxi

Once again by Lebesgue's theorem, we obtain

(B.ii) ^ir-^ir i n L2(

As for rot y/n . u in (B.7), We prove that

(B.12) dx, ' in

As long as el/2>R, ^ belongs to L2(\x\ > R)2 and

:{|;c| > /?}, which allows us to prove that

Vy/n - ! ^ - > 0 in L 2 (R 2 ) .(B.13)

It remains to look at the term -r— ( Vy/n ) . u. But according to (B.4), we have

(B-14)
' ^ ,

éi ^ \x\ ^ e"

The right hand side member tends to 0 since pl/2 n e Z/ ( !R2)2. This con-
cludes the proof of Lemma 5.2. o

Remark BA :
• We can use the same process to prove that the compactly supported

functions of //(rot, div£ ,IR
2) are dense in Hp(xoU divg, U2).

• Note that the choice of the truncation functions y/n is original and allows
us to have the estimations (B.4), which we cannot obtain if we use classical
truncation functions like y/n(x) = y/\ \x\ / n).
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