@article{M2AN_1995__29_6_657_0, author = {Haslinger, Jaroslav and Dvo\v{r}\'ak, Jan}, title = {Optimum composite material design}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {657--686}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {29}, number = {6}, year = {1995}, mrnumber = {1360671}, zbl = {0845.73049}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1995__29_6_657_0/} }
TY - JOUR AU - Haslinger, Jaroslav AU - Dvořák, Jan TI - Optimum composite material design JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1995 SP - 657 EP - 686 VL - 29 IS - 6 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1995__29_6_657_0/ LA - en ID - M2AN_1995__29_6_657_0 ER -
%0 Journal Article %A Haslinger, Jaroslav %A Dvořák, Jan %T Optimum composite material design %J ESAIM: Modélisation mathématique et analyse numérique %D 1995 %P 657-686 %V 29 %N 6 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1995__29_6_657_0/ %G en %F M2AN_1995__29_6_657_0
Haslinger, Jaroslav; Dvořák, Jan. Optimum composite material design. ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 6, pp. 657-686. http://archive.numdam.org/item/M2AN_1995__29_6_657_0/
[1] Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quart. Appl. Math., LI, pp. 643-674. | MR | Zbl
and , 1993,Optimal design for minimum weight and compliance in plane stress usign extremal microstructures, European Journal of Mechanics (A/Solids), 12, pp. 839-878. | MR | Zbl
and 1993,[3] Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl Math., 47, pp. 1216-1228. | MR | Zbl
, 1987,[4] Averaged Processes in Periodic Media, Nauka, Moscow. | MR | Zbl
and , 1984,[5] Optimal shape design as a material distribution problem, Structural Optimization, 1, pp. 193-202.
, 1989,[6] Asymptotic Analysis for Periodic Structures, North Holland. | MR | Zbl
, and , 1978,[7] A reliable numerical method for computing homogenized coefficients, MAT Report 31, Mathematical Institute, Danish Technical University, Lyngby, Denmark, ISSN 0904-7611 ; submitted.
, 1994,[8] Optimal bounds for conduction in two-dimensinal, two-phase anisotropic media, Non-Classical Continuum Mechanics, pp. 97-125. | MR | Zbl
and , 1987,[9] Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. I : The confocal ellipse construction, preprint. | Zbl
, 1994,[10] Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II : The Vidgergauz microstructure, preprint. | Zbl
, 1994,[11] On bounding the effective conductivity of anisotropic composites, in Homogenization and Effective Moduli of Materials and Media, J. Ericksen et al, eds., Springer, pp. 97-125. | MR | Zbl
and , 1986,[12] Optimal design and relaxation of variational problems I-III, Comm. Pure Appl Math., 39, pp. 113-137, 139-182, 353-377. | MR | Zbl
and , 1986,[13] Some Methods in the Mathematical Analysis of Systems and Their Control, Gordon and Breach Science Publishers, Inc. | MR | Zbl
, 1981,[14] The effective properties of composites and problems of optimal design of constructions, Uspekhi Mekhaniki, 9, pp. 1-81. | MR
and , 1986,[15]Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. Roy. Soc. Edinburgh, 99A, pp. 71-87. | MR | Zbl
and , 1984,[16] On charactenzing the set of composite materials: the variational method and the translation method, Comm. Pure Appl. Math., pp. 63-125. | Zbl
, 1990,[17] Calcul des variations et homogénéisation, in Les Méthodes de l'Homogénéisation : Théorie et Applications en Physique, Eyrolles, pp. 319-369. | MR
and , 1985,[18] Optimal Design for Elliptic Problems, Springer. | MR
, 1984,[19] Non-homogeneous media and vibration theory, in Lecture Notes in Physics, 147, Springer. | MR | Zbl
, 1980,[20] Materials with prescribed constitutive parameters : an inverse homogenization problem, Int. J. Solids Structures (to appear). | MR | Zbl
,[21] Tailoring materials with prescribed elastic properties, DCAMM, Report 480, Danish Technical University.
, 1994,[22] A homogenization method for shape and topology optimization, Comp. Meth. AppL Mech. Engrg., 93, pp. 291-318. | Zbl
and , 1991,[23] Estimations fines de coefficients homogénéisés, in Ennio De Giorgi Colloquium, Pitman, pp. 168-187. | MR | Zbl
,[24] Regular structures with extremal elastic properties, MTT, 24, pp. 57-63.
, 1989,