Optimum composite material design
ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 6, pp. 657-686.
@article{M2AN_1995__29_6_657_0,
     author = {Haslinger, Jaroslav and Dvo\v{r}\'ak, Jan},
     title = {Optimum composite material design},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {657--686},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {29},
     number = {6},
     year = {1995},
     mrnumber = {1360671},
     zbl = {0845.73049},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1995__29_6_657_0/}
}
TY  - JOUR
AU  - Haslinger, Jaroslav
AU  - Dvořák, Jan
TI  - Optimum composite material design
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1995
SP  - 657
EP  - 686
VL  - 29
IS  - 6
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1995__29_6_657_0/
LA  - en
ID  - M2AN_1995__29_6_657_0
ER  - 
%0 Journal Article
%A Haslinger, Jaroslav
%A Dvořák, Jan
%T Optimum composite material design
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1995
%P 657-686
%V 29
%N 6
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1995__29_6_657_0/
%G en
%F M2AN_1995__29_6_657_0
Haslinger, Jaroslav; Dvořák, Jan. Optimum composite material design. ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 6, pp. 657-686. http://archive.numdam.org/item/M2AN_1995__29_6_657_0/

[1] G. Allaire and R. V. Kohn, 1993, Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quart. Appl. Math., LI, pp. 643-674. | MR | Zbl

[2] G. Allaire and R. V. Kohn 1993, Optimal design for minimum weight and compliance in plane stress usign extremal microstructures, European Journal of Mechanics (A/Solids), 12, pp. 839-878. | MR | Zbl

[3] M. Avellaneda, 1987, Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl Math., 47, pp. 1216-1228. | MR | Zbl

[4] N. S. Bakhvalov and G. P. Panasenko, 1984, Averaged Processes in Periodic Media, Nauka, Moscow. | MR | Zbl

[5] M. P. Bends0E, 1989, Optimal shape design as a material distribution problem, Structural Optimization, 1, pp. 193-202.

[6] A. Bensoussan, J. L. Lions and G. Papanicolaou, 1978, Asymptotic Analysis for Periodic Structures, North Holland. | MR | Zbl

[7] J. Dvořák, 1994, A reliable numerical method for computing homogenized coefficients, MAT Report 31, Mathematical Institute, Danish Technical University, Lyngby, Denmark, ISSN 0904-7611 ; submitted.

[8] G. A. Francfort and F. Murat, 1987, Optimal bounds for conduction in two-dimensinal, two-phase anisotropic media, Non-Classical Continuum Mechanics, pp. 97-125. | MR | Zbl

[9] Y. Grabovsky, 1994, Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. I : The confocal ellipse construction, preprint. | Zbl

[10] Y. Grabovsky, 1994, Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II : The Vidgergauz microstructure, preprint. | Zbl

[11] R. V. Kohn and G.W. Milton, 1986, On bounding the effective conductivity of anisotropic composites, in Homogenization and Effective Moduli of Materials and Media, J. Ericksen et al, eds., Springer, pp. 97-125. | MR | Zbl

[12] R. V. Kohn and G. Strang, 1986, Optimal design and relaxation of variational problems I-III, Comm. Pure Appl Math., 39, pp. 113-137, 139-182, 353-377. | MR | Zbl

[13] J. L. Lions, 1981, Some Methods in the Mathematical Analysis of Systems and Their Control, Gordon and Breach Science Publishers, Inc. | MR | Zbl

[14] K. Lurie and A. Cherkaev, 1986, The effective properties of composites and problems of optimal design of constructions, Uspekhi Mekhaniki, 9, pp. 1-81. | MR

[15]K. Lurie and A. Cherkaev, 1984, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. Roy. Soc. Edinburgh, 99A, pp. 71-87. | MR | Zbl

[16] G. W. Mllton, 1990, On charactenzing the set of composite materials: the variational method and the translation method, Comm. Pure Appl. Math., pp. 63-125. | Zbl

[17] F. Murat and L. Tartar, 1985, Calcul des variations et homogénéisation, in Les Méthodes de l'Homogénéisation : Théorie et Applications en Physique, Eyrolles, pp. 319-369. | MR

[18] O. Pironneau, 1984, Optimal Design for Elliptic Problems, Springer. | MR

[19] E. Sanchez-Palencía, 1980, Non-homogeneous media and vibration theory, in Lecture Notes in Physics, 147, Springer. | MR | Zbl

[20] O. Sigmund, Materials with prescribed constitutive parameters : an inverse homogenization problem, Int. J. Solids Structures (to appear). | MR | Zbl

[21] O. Sigmund, 1994, Tailoring materials with prescribed elastic properties, DCAMM, Report 480, Danish Technical University.

[22] K. Suzuki and N. Kikuchi, 1991, A homogenization method for shape and topology optimization, Comp. Meth. AppL Mech. Engrg., 93, pp. 291-318. | Zbl

[23] L. Tartar, Estimations fines de coefficients homogénéisés, in Ennio De Giorgi Colloquium, Pitman, pp. 168-187. | MR | Zbl

[24] S. B. Vidgergauz, 1989, Regular structures with extremal elastic properties, MTT, 24, pp. 57-63.