A posteriori error estimators for nonconforming finite element methods
ESAIM: Modélisation mathématique et analyse numérique, Tome 30 (1996) no. 4, pp. 385-400.
@article{M2AN_1996__30_4_385_0,
     author = {Dari, E. and Duran, R. and Padra, C. and Vampa, V.},
     title = {A posteriori error estimators for nonconforming finite element methods},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {385--400},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {30},
     number = {4},
     year = {1996},
     mrnumber = {1399496},
     zbl = {0853.65110},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1996__30_4_385_0/}
}
TY  - JOUR
AU  - Dari, E.
AU  - Duran, R.
AU  - Padra, C.
AU  - Vampa, V.
TI  - A posteriori error estimators for nonconforming finite element methods
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1996
SP  - 385
EP  - 400
VL  - 30
IS  - 4
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1996__30_4_385_0/
LA  - en
ID  - M2AN_1996__30_4_385_0
ER  - 
%0 Journal Article
%A Dari, E.
%A Duran, R.
%A Padra, C.
%A Vampa, V.
%T A posteriori error estimators for nonconforming finite element methods
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1996
%P 385-400
%V 30
%N 4
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1996__30_4_385_0/
%G en
%F M2AN_1996__30_4_385_0
Dari, E.; Duran, R.; Padra, C.; Vampa, V. A posteriori error estimators for nonconforming finite element methods. ESAIM: Modélisation mathématique et analyse numérique, Tome 30 (1996) no. 4, pp. 385-400. http://archive.numdam.org/item/M2AN_1996__30_4_385_0/

[1] D. N. Arnold, F. Brezzi, Mixed and nonconforming finite element method simplementation, postprocessing and error estimates, R.A.I.R.O., Modél. Math. Anal Numer. 19, 1985, pp. 7-32. | Numdam | MR | Zbl

[2] D. N. Arnold, R. S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26, 1989, pp. 1276-1290. | MR | Zbl

[3] I. Babuška, R. Durán, R. Rodríguez, Analysis of the efficiency of an a posteriori error estimator for liner triangular finite elements, Siam J. Numer. Anal. 29, 1992, pp. 947-964. | MR | Zbl

[4] I. Babuška, A. Miller, A feedback finite element method with a posteriori error estimation. Part I : The finite element method and some basic properties of the a posteriori error estimator, Comp. Meth. Appl. Mech. Eng. 61, 1987, pp. 1-40. | MR | Zbl

[5] I. Babuška, W. C. Rheinboldt, A posteriori error estimators in the finite element method, Inter. J. Numer. Meth. Eng. 12, 1978, pp. 1587-1615. | Zbl

[6] R. E. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44, 1985,, pp. 283-301. | MR | Zbl

[7] P. G. Ciarlet, The finite element method for elliptic problems, North Holland, 1978. | MR | Zbl

[8] D. F. Griffiths, A. R. Mitchell, Nonconforming elements, The mathematical basis of finite element methods, D. F. Griffiths, ed., Clarendon Press, Oxford, 1984, pp. 41-69. | MR

[9] L. D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22, 1985, pp. 493-496. | MR | Zbl

[10] M. C. Rivara, Mesh refinement processes based on the generalized bisection of simplices, SIAM J. Numer. Anal. 21, 1984, pp.604-613 | MR | Zbl

[11] L. R. Scott, S. Shang, Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp. 54, 1990, pp. 483-493. | MR | Zbl

[12] R. Verfürth, A posteriori error estimators for the Stokes equations, Numer.Math. 55, 1989, pp. 309-325. | MR | Zbl