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MATHEMATICA!. MODELLING AND NUMERICAL ANALYSfS
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 30, n° 5, 1996, p 637 à 667)

SOME IMPLEMENTATIONS OF PROJECTION METHODS
FOR NAVIER-STOKES EQUATIONS (*)

by Jean-Luc GUERMOND (*)

Abstract — This paper is concetned with the unplementatton of spatially discrete versions of
Chorm-Temam's projection methods The etnphasis is put on the projection step, which enforces
incompressibüity Three types of variational approximations are reviewed In the first one, the
projection step is solved as a div-grad problem with velocity test functions satisfying (at first
g lance) a paradoxical Dmchlet condition In the second method, the projection step is still solved
as a div-grad problem but the velocity test functions satisfy a boundary condition only for the
notmal component In the ihird approach the projection step is solved in the form o f a Poisson
équation supplemented with a Neumann boundary condition The first method i s shown to be
legitimate and economical for fini te element approximations, whereas the second one is shown
to be usefulfor spectral approximations The third one is probably the easiest to implement since
it avoids the ptoblem ofthe mas s matrix occumng m the two others Though the second and third
approaches do not directly involve a infsup condition, this condition is pointed out to be
necessary to establish convergence and rule out possible spunoiis pressure Finally some links
between these algotithms and some preconditwmng techniques ofthe Uzawa operator are shown

Key words Piojection method, Fractional step method, Navier-Stokes équations

Résumé —Dans cet article on s'intéresse a quelques approximations spatiales des méthodes
de projections du type Chorm-Temam On s'intéresse plus particulièrement à l'étape de projec-
tion, qui sert a imposer Vincompressibilité Trois types d'approximations vanationnelles sont
étudiées Dans la première on résout l'étape de projection sous la forme d'un problème de Darcy
avec des vitesses test satisfaisant une condition de Dinchlet (à première vue) paradoxale Dans
la seconde approche, le problème est encore résolu sous sa forme div-grad (i e Darcy) mats les
vitesses test satisfont cette foi s-ci une condition a la frontière portant uniquement sur la
composante normale Dans la troisième méthode, l'étape de projection est résolue sous la forme
d'une équation de Poisson avec une condition de Neumann On montre que la premiere méthode
est légitime pour des approximations par éléments finis, alors que la seconde a de l'intérêt aussi
pour des approximations spectrales La troisième méthode est probablement la plus aisée à mettre
en œuvre puisque qu'elle permet d'éviter l'inversion d'une matrice de masse qui est obligatoire
pour les deux autres Bien que les deux dernières méthodes n'imposent pas directement de
compatibilité entre les espaces de vitesse et de pression, on montre qu'une telle condition est
nécessaire pour assurer la convergence de la méthode Finalement on montre quelques liens entre
ces algorithmes et certaines techniques de prêconditionnement de l'opérateur d'Uzawa
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638 J-L GUERMOND

1. INTRODUCTION

In this paper we consider discrete approximations of a class of fractional
step techniques known as Chorm-Temam projection methods [8] [23]. These
techniques have been proposed for approximating m time the unsteady in-
compressible Navier-Stokes équations. They are devised to turn around the
coupling between the pressure and the velocity that is imphed by the ïncom-
pressibihty constraint • div u = 0. The basic idea consists in devising time
marchmg procedures that uncouple viscous and incompressibility effects.
These techniques are very efficient and have probably « been the first numen-
cal schemes enablmg a cost-effective solution of three-dimensional time-
dependent problems » (cf. Quartapelle [19, p 177]). Their simplicity and
sometimes surpnsmg efficiency render them particularly attractive to the CED
community (see e.g. [2], [9], [11], [12], [25]) Although these techniques have
long been used for calculating steady-state solutions to Navier-Stokes équa-
tions, they are now regaining their status as true time marching procedures for
calculating time-dependent incompressible viscous flows. This renewed inter-
est for time-dependent solutions to Navier-Stokes équations is prompted by the
mcreasmg capacities of computers and the success of large eddy théories
which recognize that unsteadiness of large eddies should be well predicted
whereas smaller scales can (reasonably) be filtered.

Since lts initial appearance, the projection method has been implemented
with various types of spatial approximations and the fractional step has been
modified in order to improve the overall accuracy of the scheme, Thougth the
stability of this method and lts modified versions can generally be proven quite
easily when space variables are contmuous, the stability and convergence of
their discrete counterparts are often overlooked in the hterature.

For instance, the projection step may be put into two different forms. One
possibihty consists m solving a so-called div-grad or Darcy problem as
follows

!

p = ü

V . w =
The second possibihty consists in obtaimng from (1.1) a Poisson équation
supplemented with a homogeneous Neumann boundary condition on the
pressure

2)
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PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS 639

Although (1.1) and (1.2) are equivalent in some sensé, their discrete
counterparts are not in generaL On the one hand, discrete variational approxi-
mations of the Darcy problem yield pressure équations of type
3ih $~ 1 <%'h 0 = F, where $h is a mass matrix and â8h is a matrix associated
with the divergence operator. In this case the homogeneous Neumann bound-
ary condition on the pressure is not enforced, though it is implicitly accounted
for by the velocity tests functions which have the normal component vanishing
at the boundary. On the other hand, discrete variational approximations of
(1.2) yield équations of type 3)h 0 = F, where 2h is an approximation of the
Laplace operator and the homogeneous Neumann boundary condition is
explicitly, though weakly, enforced by the variational formulation. At this
point, one may ask oneself which procedure is correct ? If both are correct
what are their respective range of application ? It is shown in this paper that
both approaches are correct, and each of them has its own advantages within
its respective functional framework.

The other point that is discussed in this paper concerns the appropriate
boundary condition that should be imposed on the end-of-step velocity.
Thanks to theorem2.1 (see below), it is clear on (1.1) that, as far as the
spatially continuous problem is concerned, only the normal component of the
end-of-step velocity should be constrained. However, when the problem is
discretized in space, the answer is no longer clear : a full Dirichlet condition
on the end-of-step velocity is sometimes advocated by some authors (cf. e.g.
Gresho and Chan [12, part II]), whereas other authors impose a, more natural,
condition on the normal component of the velocity (cf. Donea et al. [9], Azaiez
et al. [1]). Which solution is correct ? What are their respective advantages ?
It is the purpose of this paper to show that both solutions are suitable if applied
in the correct functional frameworks. Actually, we show in this paper that the
intermediate velocity and the final velocity should be approximated in two
different spaces.

This paper is organized as follows. In § 2, we review non incrémental and
incrémental projection schemes in the space continuüm. In § 3, we analyze a
discrete projection scheme in which the provisional velocity and the corrected
one are approximated in the same space ; that is, the end-of-step veldcity
satisfies a Dirichlet condition. This scheme is shown to be efficient for fmite
element approximations. A discrete projection scheme with an approximation
space enforcing a boundary condition only on the normal component of the
end-of-step velocity is analyzed in § 4. This functional framework is shown to
be useful for spectral approximations. In § 5, the projection step is formulated
as a Poisson problem supplemented with a Neumann boundary condition. This
technique is probably the easiest to implement, for it turns around a mass
matrix problem that plagues the two others. Some generalization and conver-
gence results are presented in § 6. In § 7, we show that the three projection
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640 J L GUERMOND

algonthms are, in some sense, equivalent to some known preconditioning
techniques of the Uzawa operator for which the preconditioner is applied only
once

2. PRELIMINAWES

2.1. The continuous unsteady Stokes problem

In this paper we consider numencal approximations with respect to time and
space of the time-dependent Navier-Stokes équations formulated m the primi-
tive variables, namely velocity and pressure However, to simplify the pré-
sentation and since we are mainly concerned with the parabolic aspect of the
problem, we restnct ourselves to the time-dependent Stokes problem

(21)

where f(t) is a body force, and the boundary condition on the velocity is set
to zero for sake of simphcity The fluid domain Q is open connected and
bounded in IR ( d = 2 or 3 in practical applications) The domam boundary
dQ is assumed to be smooth , say dQ is Lipschitz and Q is locally on one side
of lts boundary

In the following we work within the classical framework of the Sobolev
spaces The set of real functions infinitely differentiable with compact support
m Q is denoted by D(Q), and the set of distributions on Q is denoted by
D\Q) As usual, L2(Q) dénotes the space of real-valued functions the
squares of which are summable in Q The mner product in L (Q) is denoted
by ( . , . ) and | . |0 is the associated norm , we identify L2(Ü) with lts dual
Hm( Q),m 5= 0, is the set of distributions the successive denvatives of which,
up to order m, can be ïdentified with square summable functions The space
Hm(Q), equipped with the norm

1/2

S |O"«lS
|a|=0

expressed in the multi-index notation, is a Hilbert space [18] We define
H™( Q ) as the completion of D( Q ) in Hm( Q ), and we dénote H~ m(Q) the
dual of / /^( £2 )
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PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS 641

The mcompressibihty condition on the velocity leads to consider solenoidal
vector fields For this reason, we define N(Q) = {v e D(Q), V . v = 0},
and we dénote by H and V the complétions of N(Q) m L2(Q)d and
HQ( Q ) â , respectively. Spaces H and V are charactenzed by :

(2.2) H = {v e L2(fl)d, V . v = 0, t;. n |ao = 0} ,

(2.3) V = { i ; e 1 r f }

See for instance Temam [22, pp. 15-18] for a proof. In the following, the space
H plays an important rôle by means of

THEOREM 2 1 : Under the hypotheses on Q stated above, we have the
orthogonal décomposition

(2.4) L2( Q)d = tf ©V( H\Q)/U).

Proof : See for instance Girault and Raviart [10]. D
If one assumes that ƒ e L2(0,T\H~ \Q)d) and u0 e H, then it is well-

known that (2 1) is well-posed (look for u e L2( 0, T, V) n C°( 0, T ; H) and
restnct the time évolution problem to L2( 0, T ; V7) where V' is the dual of V
and apply Lions's theorem [18, p. 257]) Furthermore, one may venfy that
p e L2(0, T ; L (Q)/R). It is hereafter assumed that the data are regular
enough and satisfy all the compatibility conditions that are needed for a
smooth solution to exit

We now turn the attention to the time approximation of (2.1) by means of
projection methods To make the présentation self-contained, we begin by
recalling the main features of some projection schemes

2.2. The non-incrémental and incrémental projection schemes

Projection methods have been introduced by Chonn [8] and Temam [23].
They are time marching procedures based on a fractional step technique that
may be viewed also as a predictor-corrector strategy aimmg at uncoupling
viscous diffusion and mcompressibihty effects. The time interval [0, T] on
which the solution is sought is partitioned into ]?+ 1 time steps that are
hereafter denoted by tk = kSt for 0 ^ k ^ K, where ôt=TIK. In the
algonthm ongmally devised by Chonn and Temam, each time step is decom-
posed into two substeps as follows For each time step, solve fîrst

(2.5)
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642 J-L GUERMOND

then project the provisional velocity ük+x onto H ; in other words, solve

öt
(2-6)

The series (uk) is initialized by u° = v0. The velocity ük+l is a prédiction of
M(tk+ ! ), and r/ + * is a correction of ük+\

One possible improvement of the algorithm above consists in predicting a
better value of the provisional velocity ük+i by putting the gradient of the
pressure that has been calculated at the time step tk in the right-hand side of
(2.5). This algorithm, hereafter referred to as the incrémental form of the
projection technique [11], consists in the following. Initialize the series
(uk) and ( / / ) respectively by u° = vQ and p° = P\t = 0, assuming that
p e C°(0, T;L2(Q)/R). For each time step solve

(2.7) \

and project M*"+1 onto H

St

St

Note that this algorithm assumes more regularity than the non incrémental one
since it requires an addition al condition, i.e. p° =P|,= 0, that was not specified
in the original Stokes problem (2.1) so that some regularity on p as t —> 0
needs to be assured.

Step (2.6) and (2.8) are called projection steps since, according to theo-
rem2.1, they are equivalent to uk+l ~PHük+l and either

or (p

where PH is the orthogonal projection of L2( Q ) onto H. In both cases, the
velocity ü is a prédiction of u(t ) that satisfies the correct boundary
condition but is not divergence free. This defect is corrected by projecting
ük+l onto H (this step has given its name to the method). However, the
end-of-step velocity, «*+1, does not satisfy exactly the correct boundary
condition since its tangential component is not necessarily zero.
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Note that fractional step techniques (2 5)-(2 6) and (2 7)-(2 8) uncouple
viscous diffusion and încompressibihty In practice these techniques require
solving Helmholtz problems and performing projections onto H, whereas
classical coupled techniques usually mvolve a Uzawa operator
V • ( îd - crV2 )~ l V where o is proportional to ôt and ld is the identity This
operator, called after Uzawa's algorithm in which it is ïmphcitly used (see for
instance Temam [22, p 138]), is non-local and îli-conditioned as the time step
tend to zero (see also § 7 for other details)

When it cornes to analyzing the convergence of projection algonthms
(2 5)-(2 6) and (2 7)-(2 8), it is sufficient to restrict the analysis to that of the
incrémental algorithm, for the error équations of the non-incremental one can
be put into an incrémental form as follows

and

k+l -Jfc
6 ~ e

ôt

Where R +1 is the intégral Taylor residual, and we have defined the error
functions ek = u{tk)-u\ 6e = u{tk) - u and Sk = p(tk)-pk As a
conséquence, in the following we only consider the incrémental form of the
projection algorithm

Global accuracy of projection schemes can be further improved by replacmg
the one-step backward Euler scheme in (2 7) by a Crank-Nicolson approxi-
mation as Van Kan did [25] or by a two-step backward Euler approximation
Stabihty and convergence of some of these modified scheme is studied m [13],
[15], [16], [20], [21] and [25], but these considérations are out of the scope of
the present paper The objective of the work presented herein is to bnng some
answers to questions concerning spatiaily discrete approximations of the
projection step (2 6) or (2 8)

2.3. The spatiaily discrete unsteady Stokes problem

Let Xh and Mh be convergent, internai, and stable approximations of
Hl

ö{Q)d and L2(Q)/U It is hereafter assumed that Xh and Mh are finite
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644 J.-L. GUERMOND

dimensional vector spaces. We define X'h the dual of Xh ; X'h is identicai to
Xh in terms of vector space but is equipped with the dual norm induced by the
scalar product of L (Q)d. We identify Mh with its dual space, for the natural
norm of Mh is that of L2(Q).

We now introducé the continuous bilinear form bh : Xk x Mh —> M so that
bb( uh, ph ) = - ( div uh, ph ), and we associate with bh the continuous linear
operator Bh : Xh —» Mh and its transpose Br

h : Mh —» X'h so that for every couple
( uh, ph ) in Xh x MA we have ( Bh uh, ph ) = bh{ uh, ph ) and
(uh, Bf

hph) = i? ; i(uh,ph). We assume that Bh : X^ —> Mh is onto. An important
conséquence of the surjectivity of Bh is summarized by the following well-
known result which is a corollary of Banach's closed range theorem.

LEMMA 2A : Let E and F be two Hubert spaces, and T e J&f (E, F). The
following propositions are equivalent :

(i) T: E -» F is onto.
(ii) T* : F ' - > ker (T)° is one to one (2) an<i there is ft > 0, so that

For a proof, the reader is referred to Brezzi [5] or Girault-Raviart [Î0,
pp. 58-59]. As a result, there is fih > 0 so that

(2-9) V^eM,,, \B'hqh\xi^fiMo-

The constant Ph is sometimes referred to as the inf-sup constant or the LBB
constant (LBB being for Ladyzhenskaya-Babüska-Brezzi), A large choice of
discrete spaces Xh and Mh satisfying such a condition is available in the
literature. A review of compatible spaces in the framework of finite éléments
may be found in Girault-Raviart [10]. For spectral approximation see, for
instance, Bernardi-Maday [4].

The null space of Bh playing an important rôle in the following, we set
Vh ~ ker (Bh ), and we equip Vh with the norm induced by that of Xh. We also
define by Hh = Vh in term of vector space and we equip Hh with the norm
of L2(Q)d (in some sensé Hh plays the rôle of the completion of Vh in
(L2( "

Let us also introducé the continuous bilinear form ah : Xh x Xh —> M so that
ah(uh, vh) = ( VMA, VyA), and recall that, thanks to the Poincaré inequality in
Hl

Q(Q)d, ah is Xh -elliptic ; that is,

(2.10) 3a >0, Vu, EX,, ah(uh, uh) > a\uh\
2 .

We associate with ah the linear continuous operator Ah : Xh —» X'h so that for
ail ( uh, vh)eXhxX, ah( u, v ) = (Ah uh, vh).

(2) Recall that the polar set of a space V c E is defined by
V° = {e € E\ (e\ v) = 0, Vu e V).
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In the functional framework defined above, the spatially discrete version of
the time-dependent Stokes problem can be formulated as follows. For2 2 °fhe L2(0, T,X'h) a n d i ^ e //„, find uh e 12(O,T;Xh) n C°(0,T; Hh) and
ph E L2(0, T; AfA) so that

'du,

f tf

where/ft and t^ are suitable approximations off and v0 in Xh. The data, ƒ and
v0, are assumed to be as smooth as needed, and in the rest of the paper we
focus on time approximations of (2.11). This problem has a unique solution
(uh,ph), and this solution is stable (in the appropriate norms) with respect to
the data.

Since Xh and Mh are convergent and stable internai approximations of
Hl

Q(Q)d and L2(Q)/U respectively, the solution to (2.11) converges in an
appropriate sense to that of the continuous unsteady Stokes problem (2.1). Our
main concern now consists in approximating the time derivative in (2.11). In
what follows, we are exclusively concerned with time approximations of
problem (2.11) by means of projection techniques similar to (2.5)-(2.6) or
(2.7M2.8).

3. A FUIX DIRICHLET BOUNDARY CONDITION ON THE END-OF-STEP VELOCITY

3.1. The functional framework

In this section we build a discrete projection algorithm in which we take the
provisional velocity uh and the end-of-step velocity uh in the same approxi-
mation space.

In order to build an analogy between the discrete framework and its
continuüm counterpart, we introducé a subspace of Mh that is the analogue of
H](Q) a L2{Q). For this purpose we define the positive bilinear form
(p,q)M\ = (Bt

hptBt
hq). According to (ii) in lemma 2.1, it is clear that

( . , . )Mi is a scalar product, and \p\Mi = \B'hp\0 is a. norm. We now define
M\ SO that Ml = Mh in terms of vector space, but we equip M\ with the norm
| . \Mi. Furthermore, we define Yh = Xh in term of vector space and we equip
Yh with the norm of L ( Q ) . The introduction Mx

h and Yh is justified by

COROLLARY 3.1 : We have the stable, orthogonal décomposition :

(3.1) Yh = Hh®B\{M\).
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646 J.-L. GUERMOND

Proof : Let lh e Yh and define PH : Yh —> Hk the orthogonal projection onto
Hh. We have (lh — PH lh, vh) = 0 for all vh in f/̂ , in other words we also
have (lh- PHblh>vhj = 0 for all vh in Vh ; that is to say,
(/A - P w lh) e V .̂ From (ii) of lemma 2.1, we infer that there is a unique
ph e Mk so that Bt

hph = lk~~ PHh lh Furthermore, it is clear that
(PHJ>,'KPh) = O; as a resuit, \PHJh\l= (lh, PHJh) and
\B'hph\l = (lh, B'hph), from which we infer that the décomposition is stable :

\p
HJh\o< l'ftlo a n d l/»*Ui « l'*lo- a

Note that the above décomposition of Y, is the spatially discrete counterpart
of the classical décomposition: L\Ü) = / / 0 V(H\Q)!M).

3.2. The discrete projection algorithm

With the functional framework introduced above, the logical implementa-
tion of the viscous step {2.1) consists in looking for w*+1 in Xh so that

Jk + 1 _ Jt

fh ~BhPh'

This problem is well posed thanks to the Xh -ellipticity of Ah. Note that
ük

h
+ \ being approximated in Xhi satisfies the Dirichlet condition ük

htd
x
Q = 0. We

now turn the attention to the discrete projection step.

The projection step of the incrémental algorithm can be implemented as
follows. Find uh

+l in Yh and ph
+ — pk

h in Mh so that

rk+1

(3.3)

According to corollary 3.1 this problem is well posed. Actually, the couple
(uk

h
+\St(pk

h
+1 - pk

h) ) is the décomposition of ük
h
+1 in Hh ®Bf

h{Ml
h) ; that is,

uk
h
+} ~ Ptitjh*l* Note, however, that this way of setting the discrete projection

step may not seem the most appropriate since the velocity test functions
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involved satisfy a Dirichlet boundary condition. In order to emphasize this
poin
that
point we can reformulate (3.3) as follows : flnd u\+1 in Xh and pk

h
+1 in Mh so

Xh being an internai approximation to Hl
0(Q)d, uh

h
+x satisfies uk

h?d
l
Q = 0 and

the velocity test functions satisfy vh,dQ = 0, whereas it might seem more
appropriate to enforce only uk

h
+1. n,dQ = 0 and vh . n>dû = 0 as suggested by

the continuous projection step (2.6) or (2.8). We show in the following that this
choice has some conséquence on the condition number of the pressure
operator involved in the linear System (3.4).

3.3. The condition number issue

If the velocity uk
h

+ i is eliminated from (3.3), the projection step reduces to
solving the following pressure problem

n nk+l

^• 5 ) BhBh(ph -ph)—g—.

We now turn the attention to the influence of the end-of-step boundary
condition on the condition number of the pressure operator Bh B*h. We analyze
this influence for finite element approximations and for spectral approxima-
tions. It is shown that the full Dirichlet boundary condition on the end-of-step
velocity is optimal, in term of condition number of Bh B*h9 for finite element
approximations, whereas it is not for spectral approximations.

In the following we assume that Xh and Mh are composed of finite éléments
based on a uniformly regular triangulation 9~A of Q, the characteristic mesh
size of which is denoted by h. We also assume that these two spaces are
uniformly compatible in the sensé that the inf-sup constant fih is independent
of h. Recall that for uniformly regular triangulation we have the inverse
inequality.

LEMMA 3.1 : (cf Girault-Raviart [10, p. 103]). There is a constant
c > 0 independent of h so that

(3.6) VvheX, | V » f c | o « c A - > A | o .

We now give an upper bound on the condition number K(BhB*h)
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