Convergence of a finite volume scheme for an elliptic-hyperbolic system
ESAIM: Modélisation mathématique et analyse numérique, Tome 30 (1996) no. 7, pp. 841-872.
@article{M2AN_1996__30_7_841_0,
     author = {Vignal, M. H.},
     title = {Convergence of a finite volume scheme for an elliptic-hyperbolic system},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {841--872},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {30},
     number = {7},
     year = {1996},
     mrnumber = {1423082},
     zbl = {0861.65084},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1996__30_7_841_0/}
}
TY  - JOUR
AU  - Vignal, M. H.
TI  - Convergence of a finite volume scheme for an elliptic-hyperbolic system
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1996
SP  - 841
EP  - 872
VL  - 30
IS  - 7
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1996__30_7_841_0/
LA  - en
ID  - M2AN_1996__30_7_841_0
ER  - 
%0 Journal Article
%A Vignal, M. H.
%T Convergence of a finite volume scheme for an elliptic-hyperbolic system
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1996
%P 841-872
%V 30
%N 7
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1996__30_7_841_0/
%G en
%F M2AN_1996__30_7_841_0
Vignal, M. H. Convergence of a finite volume scheme for an elliptic-hyperbolic system. ESAIM: Modélisation mathématique et analyse numérique, Tome 30 (1996) no. 7, pp. 841-872. http://archive.numdam.org/item/M2AN_1996__30_7_841_0/

[1] S. Benharbit, A. Chalabi, J. P. Vila, Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions, to appear in SIAM Journal of Num. Anal. | MR | Zbl

[2] S. Champier, T. Gallouet, R. Herbin, 1993, Convergence of an Upstream finite volume scheme on a Triangular Mesh for a Nonlinear Hyperbolic Equation, Numer. Math. 66, pp. 139-157. | MR | Zbl

[3] R. Diperna, 1985, Measure-Valued Solutions to Conservation Laws, Arch. Rat. Mech. Anal., 88, pp. 223-270. | MR | Zbl

[4] R. Eymard, T. Gallouet, R. Herbin, The finite volume method, in preparation for the Handbook of Numerical Analysis Ph. Ciarlet and J. L. Lions eds. | Zbl

[5] R. Eymard, T. Gallouet, 1993, Convergence d'un schéma de type Eléments Finis-Volumes Finis pour un système formé d'une équation elliptique et d'une équation hyperbolique, M2AN, 27, 7, pp. 843-861. | Numdam | MR | Zbl

[6] J. M. Fiard and R. Herbin, 1994, Comparison between finite volume and finite element methods for the numerical computation of an elliptic problem arising in electrochemical engineering, Comput. Math. Appl. Mech. Engin., 115, pp. 315-338.

[7] T. Gallouet, R. Herbin, 1993, A uniqueness Result for Measure Valued Solutions of Non Linear Hyperbolic Equations, Differential Integral Equations, 6, 6, pp. 1383-1394. | MR | Zbl

[8] R. Herbin, 1994, An error estimate for a finite volume scheme for a diffusion convection problem on a triangular mesh, Num. Meth. in P.D.E. | MR | Zbl

[9] R. Herbin, O. Labergerie, Finite volume and finite element schemes for elliptic-hyperbolic problems, submitted.

[10] A. Szepessy, 1989, Measure valued solution of scalar conservation laws with boundary conditions, Arch. Rat. Mech. Anal., 107, 2, pp. 182-193. | MR | Zbl

[11] P. S. Vassilevski, S. I. Petrova, R. D. Lazarov, 1992, Finite Difference Schemes on Triangular Cell-Centered Grids With Local Refinement, SIAM J. Sci. Stat. Comput., 13, 6, pp. 1287-1313. | MR | Zbl