@article{M2AN_1997__31_1_1_0, author = {Bennethum, Lynn Schreyer and Feng, Xiaobing}, title = {A domain decomposition method for solving a {Helmholtz-like} problem in elasticity based on the {Wilson} nonconforming element}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1--25}, publisher = {Elsevier}, volume = {31}, number = {1}, year = {1997}, mrnumber = {1432850}, zbl = {0877.73061}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1997__31_1_1_0/} }
TY - JOUR AU - Bennethum, Lynn Schreyer AU - Feng, Xiaobing TI - A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1997 SP - 1 EP - 25 VL - 31 IS - 1 PB - Elsevier UR - http://archive.numdam.org/item/M2AN_1997__31_1_1_0/ LA - en ID - M2AN_1997__31_1_1_0 ER -
%0 Journal Article %A Bennethum, Lynn Schreyer %A Feng, Xiaobing %T A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element %J ESAIM: Modélisation mathématique et analyse numérique %D 1997 %P 1-25 %V 31 %N 1 %I Elsevier %U http://archive.numdam.org/item/M2AN_1997__31_1_1_0/ %G en %F M2AN_1997__31_1_1_0
Bennethum, Lynn Schreyer; Feng, Xiaobing. A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 1, pp. 1-25. http://archive.numdam.org/item/M2AN_1997__31_1_1_0/
[1] Sobolev Spaces, Academic Press, New York. | MR | Zbl
, 1975,[2] Partial Differential Equations, John Wiley & Sons, New York. | MR | Zbl
, and , 1964,[3] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. | MR | Zbl
, 1978,[4] Boundary value problems for the systems of elastostatics in Lipschitz domains, Duke Math. J., 57, pp. 795-818. | MR | Zbl
, and , 1988,[5] Mathematical Analysis and Numencal Methods for Science and Technology, I, Springer-Verlag, New York.
and , 1990,[6] Méthodes de décomposition de domaines pour les problèmes de propagation d'ondes en régime harmonique, Ph. D. Thesis, Université Paris IX Dauphine, UER Mathématiques de la Decision. | Zbl
, 1991,[7] A domain decomposition method for the harmonie Maxwell equations, Itérative Methods in Linear Algebra, Elsevier Science Publishers B. V. (North-Holland), Amsterdam, pp. 475-484, R. Beauwens and P. de Groen, eds. | MR | Zbl
, and ,[8] A parallel iterative procedure applicable to the approximate solution of second order partial differential e-quations by mixed finite element methods, Numer. Math., 65, pp.95-108. | MR | Zbl
, , and , 1993,[9] Mixed finite element methods for second order elliptic problems, Matemática Aplicada e Computacional, 1, pp. 91-103. | MR | Zbl
and , 1982,[10] Inequalities in Mechanics and Physics, Springer-Verlag, Berlin. | MR | Zbl
and , 1976,[11] On miscible displacement in porous media and absorbing boundary conditions for electromagnetic wave propagation and on elastic and nearly elastic waves in the frequency domam, Ph. D. Thesis, Purdue University, 1992.
, 1992,[12] A mixed finite element domam decomposition method for nearly elastic waves in the frequency domain (submitted).
,[13] A domain decomposition method for convection-dominated convection-diffusion equations, preprint.
,[14] Singularities in Boundary Value Problems, Research Notes in Applied Mathematics, Vol. 22, Springer-Verlag and Masson. | MR | Zbl
, 1992,[15] Partial Differential Equations, Fourth Edition, Springer-Verlag, New York. | MR
, 1982,[16] Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conference Series in Mathematics, No. 83, American Mathematical Society. | MR | Zbl
, 1994,[17] A parallelizable iterative procedure for the Helmholtz problem, Appl. Numer. Math., 14, pp. 435-449. | MR | Zbl
, 1994,[18] Potential Methods in the Theory of Elasticity, Israel Program for Scientiflc Translations, Jerusalem. | MR | Zbl
, 1965,[19] On the convergence of Wilson's nonconforing element for solving the elastic problem, Comput. Methods Appl. Mech. Engrg, 7, pp. 1-16. | MR | Zbl
, 1976,[20] Contributions à un problème de M. M. Picone, Ann. Mat. Pura e Appl., 41, pp. 201-215. | MR | Zbl
, 1955,[21] Nonhomogeneous Boundary Value Problems and Applications, Vol I, Springer-Verlag, New York. | Zbl
and , 1972,[22] On the Schwartz alternatmg method I, III, First and Third International Symposium on Domain Decomposition Method for Partial Differential Equations, SIAM, Philadelphia. | MR
, 1988, 1988,[23] A relaxation procedure for domain decomposition methods using finite elements, Numer. Math., 55, pp. 575-598. | MR | Zbl
and , 1989,[24] On Korn's second inequality, R.A.I.R.O Anal. Numér., 15, pp. 237-248. | Numdam | MR | Zbl
, 1981,[25] On the solution of the equations of motion for nearly elastic solids in the frequency domain, Proceedings of the IV Reunion de Trabajo en Procesamiento de la Información y Control, Centro de Cálculo Cientifico, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, November 1991, or Technical Report #164, Center for Applied Mathematics, Purdue University.
, , and , 1992,[26] An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp, 28, pp. 959-962. | MR | Zbl
, 1974,[27] Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse d'État, Université Pierre et Marie Curie, Paris.
, 1977,[28] Seismic Waves, Radiation, Transmission and Attenuation, McGraw-Hill.
, 1965,[29] Incompatible displacement models, Symposium on Numerical and Computer Methods in Structural Engineering, O.N.R., University of Illinois.
, , and , 1971,[30] Iterative methods by space decomposition and subspace correction, SIAM Review, 34, pp, 581-613. | MR | Zbl
, 1992,[31] Functional Analysis, Springer-Verlag, Berlin-New York. | MR | Zbl
, 1980,