
M2AN - MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

P. JR. CIARLET

JUN ZOU
Finite element convergence for the Darwin
model to Maxwell’s equations
M2AN - Modélisation mathématique et analyse numérique, tome
31, no 2 (1997), p. 213-249
<http://www.numdam.org/item?id=M2AN_1997__31_2_213_0>

© AFCET, 1997, tous droits réservés.

L’accès aux archives de la revue « M2AN - Modélisation mathématique et
analyse numérique » implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1997__31_2_213_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


MATHEMATICA!. MODELLMG AND NUMERICAL ANALYSIS
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 31, n° 2, 1997, p 213 à 250)

FINITE ELEMENT CONVERGENCE FOR THE DARWIN
MODEL TO MAXWELL'S EQUATIONS (*)

P ClARLET JR (0 and JUN ZOU (2)

Abstract —In three dimensional polyhedral domains with a Lipschitz continuons boundary,
we denve the //(curl , Q ) and //(curl, div , Q ) var lattonal formulations for the Darwin model
of approximation to Maxwell's équations and prove the well-posedness of the variational Systems
Then Nedelec s and Standard fini te element methods are used io solve two kinds of variational
ptoblems Though symmetrie bilinear forms in the vanatwnal Systems fail to define full nornis
equivalent to the Standard norms in the finite element subspaces of / / ( cur l ,£?) and
H( curl, div , Q ), we can stül prove the finite element convergente and obtain the enoi
estimâtes, without requiring the physical domains to be convex

Résume —Dans des domaines polyhédnques tridimensionnels de frontieie Lipschtt? conti
nue, on calcule les formulations variationnelles dans / /(rot ,Q) et / / (div, rot , Q) du modèle
de Darwin qui est une approximation des équations de Maxwell On prouve que les problèmes
var lationnels sont bien poses, puis, une famille régulière de triangulations (2T') /( étant donnée,
on utilise les éléments finis de type Nédélec et de type standard poiu discretiser ces problèmes
On démontre la convergence des methodes d'éléments finis et des estimations d'erreur sont
obtenues En particulier, dans le cas ou l'on ne peut pas prouve) l'équivalence des formes
bilinéaires symétriques des problèmes variatwnnels et des normes usuelles indépendamment de
h, on obtient ces résultats en utilisant une méthode légèrement modifiée de lésohttion des
pfoblemes de point-selle

1. INTRODUCTION

It is known that there are more and more scientific problems which involve
the solutions of Maxwell's équations, e g , plasma physics, microwave de-
vices, diffraction of electromagnetic waves In many cases, the numencal
resolution of the full System of Maxwell's équations may be very expensive
in terms of the computational cost However, for some problems, e g the
simulation of charged particle beams when no high frequency phenomenon or
no rapid current change occurs, it is possible to use some simphfied model
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214 P CIARLET JR, JUN ZOU

which approximates Maxwell System in some sense and can be solved more
economically The Darwin model is such a simplified model which is obtamed
from Maxwell's équations by neglectmg the transverse component of the
displacement current, see Hewett-Nielson [12], Hewett-Boyd [11] and
Nielson-Lewis [17] Degond-Raviart [8] considered how to choose the bound-
ary conditions so that the Darwm model is mathematically well-posed and
charactenzed the electnc field and the magnetic field as the solutions of elhptic
boundary value problems

In this paper, we are interested in the solutions of elhptic boundary value
problems in the Darwm model by finite element methods To that aim, we will
first dérive appropnate vanational formulations for the concerned problems
and prove the well-posedness of the formulations, then propose the finite
element methods for the vanational problems and show the finite element
convergence and denve the error estimâtes

The contents of the paper are arranged as follows Section 2 mtroduces
some natural Hilbert spaces for Maxwell*s équations and Green's formulae in
the forms of V . u and V x u as well as the formulation of gênerai contmuous
and discrete saddle pomt problems and the uniqueness and existence of their
solutions Sections 3 and 4 descnbe Maxwell's équations and their Darwm
model of approximation Section 5 présents two Systems, one of Dinchlet type
and the other of Neumann type, on which we will focus for the numencal
solutions by finite element methods In Section 6, the H( curl , Q ) vanational
formulations for the Dinchlet and Neumann problems is denved, together with
their finite element solutions (Nedelec's éléments) and convergence Finally,
m Sections 7 and 8 we address the //(curl, div , Q) vanational formulations
for both Dinchlet and Neumann problems and their HX{Q) conformmg finite
element approximations and convergence

2. PRELIMINAIRES

Throughout the paper, we assume that D i s a simply-connected domain m
ER3 and lts boundary F = óQ is Lipschitz-continuous (cf Girault-Raviart [9]
for a définition) Whenever finite element formulations are considered, we
additionally assume that Q is a polyhedron We dénote by Ft,
0 ^ i ^ m, the connected components of the boundary F, Fo being the outer
boundary In this section, we introducé a few natural Hilbert spaces related to
the Maxwell's équations, and some basic formulae and lemmas to be used m
the subséquent sections The most frequently used Hilbert spaces will be

/ / ( d i v , ^ ) = { v e (L\ü))\ V . v e L2(Q)} ,

//(curl,fl)={ve (L2(O))\Vx ve (L2(Q))3} ,
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FINITE ELEMENT CONVERGENCE FOR THE DARWIN MODEL 215

their subspaces

H0(dlv ; Q) = {v e tf(div;fî) ; v . n = ö o n r } ,

H0(div0;Q)={v<E Ho(div;Q) ; V . v = 0 on r] ,

//0( curl ; O ) = { V E #(curl ; D ) ; v x n = 0 on T} ,

and their intersection spaee

//(curl, div ; Q) = //(div ; fi) n //(curl ; Ö) .

For the spaces //(div ; O), //(curl ; Q) and //(curl, div ; Q), we define the
respective norms by

Here and in the sequel of the paper, || . ||0 will always mean the
(L (Q ) ) -norm (or L (Q )-norm if only scalar functions are involved). And
in gênerai, we will use || . ||m and | . |m to dénote the norm and semi-norm in
the Sobolev space (H"\ü)f (or Hm(Q) if only scalar functions are in-
volved). We refer to Adams [1] or Grisvard [10] for a définition of Sobolev
spaces.

Green's formula. For u e / / ( d i v ; O ) and <p e Hl(Q), or
u e //( curl ; Q ) and w e ( Hl ( Q ) )3, we have

(2.1)

(2.2)

V.u(pdx = - \ u.

( V x u ) . w r f x = u , (
JQ JQ

Here ( . , . ) r corresponds to the dual pairing between H {F) and
Hm(n (or (/T U\r))3 and (H1 / 2(r))3) .

vol. 31, n° 2, 1997



216 P. CIARLET JR, JUN ZOU

DÉFINITION 1 (SADDLE POINT PROBLEM) : Let X and Q be two Hubert

spaces with norms || . \ x and II • Hô respectively, # ( . , . ) and b{ . , . ) two
continuous linear forms defined respectively onXxX and X x Q, andf(. ) and
g ( . ) two continuous linear forms defined respectively on X and Q. Then the
problem : find (u, /?) e (X, Q) such that

(2.3) a(u,v)+ £(*,ƒ?) =/ (v) , Vve Xy

(2-4) b(u,q) = g(q), V ^ Ö ,

is called a saddle point problem.

THEOREM 2.1 (BABUSKA-BREZZI) : Let V be a closed subspace ofX defined
as

V = { V G X\ b(v,q) = 0, Vq e Q} .

Assume that there exist two positive constants a and p such that

a(v, v) ^ a||v||£, V V G V , (V-ellipticity)

and

SUJD ——^— ^ P \\q || fi, V^ G Q . ( m/-5wp condition )

TT̂ en r/ier^ ex/ste a unique solution to the saddle point problem (2.3)-(2.4).

Proof : See Babuska [3] and Brezzi [5], or Brezzi-Fortin [6] and Girault-
Raviart [9]. D

DEFINITION 2 (DïSCRETIZED SADDLE POINT PROBLEM) : Let Xh and Qh be two
finit e dimensional sub spaces of X and Q respectively. Then the problem :

find (uh,ph) e (XA, Qh) such that

(2.5) a(uA, v/7) + b(Yh,ph) =f(yh) , VvA e X/7,

(2-6) K u ^ J ^ ( ^ ) , Vqhe Qh ,

is called a discretized saddle point problem.

Let Qh be the dual space of Qh, with the dual pairing ( . , . ) and equipped
with the norm

We define a linear operator Bh : Xh —> Q*h by

(Bh v/,- <?/,) = b(yh, qh)< Vv, e X,, qh e Qh

M2 AN Modélisation mathématique et Analyse numérique
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and a subset Vh(x) of Xh for any % E QI by

W = K ^ t ; i ( vft> qh ) = (x, q„), Vqh e Qh) .

The following theorem will play a crucial rôle in our later error estimâtes for
the finite element rnethods.

THEOREM 2.2 : Suppose that there exists a positive constant a(h) which
may be depending on h such that

a{v„, yh)>a(h)\\vk\\% Vv„ e Vh{0) , ( Vh(0)-ellipticity )

and another positive constant H independent of h such that

b{ vh, qh )
s u ^ "1—ü— ^ ^ II qh II ö' ^Qh E Qh ( discrete inf-sup condition ) .

v" e A" II V^ || x

Then Vh(g) ^ 0 anöf there exists a unique solution ( uA, pft ) fó £&£ discretized
saddle point problem (2,5)-(2.6). Moreoven ifwe let (u,/?) 6e f̂ £ solution to
the saddle point problem (2.3)-(2.4),

(a) Bh is an isomorphism from VA(0) (taken in Xh) onto Q*h ; and

(b) Let b0 > 0 é?e a constant such that \b(vfq)\ ^ b0\\ v | | x

V(v,$) e Xx g

(c) Let || . || a be the a( . , . )-induced norm, bx and a0 two positive con-
stants satisfying \b(y,q)\ ^ bx || v | | J | ^ j | e ,
|fl(v,w)| ^a o | |v | | x | |w | | x , V v . w e l T/

(d) Let a0 > 0 be a constant defined in the above (c), then

Proof : Vh(g) ̂  0 and the existence and uniqueness of the solutions to
(2.5)-(2.6) were proved in Girault-Raviart [9] (Theorem LI, Chap. 2). We
emphasize here that the constant a(h) is not necessarily required to be
independent of h for the existence and uniqueness. The conclusions in (a)

vol. 31, n° 2, 1997



218 P- CIARLET JR, JUN ZOU

follow directly by applying Lemma 4.1 in [9] (page 58) to the two spaces
Xh and Qh. Though (b)-(d) were in principle proved in Girault-Raviart [9], we
still give a slightly different proof here to stress that the constant a(h) does
not need to appear in the error bounds of (b)-(d).

We first prove (b). For any v̂  e Xh, obviously Bh(uh~ \h) G Q*h. Thus
from (a) there exists a zh G Vh(0)± such that Bhzh = Bh(uh-\h) and

(2-7) £Kl lx« WBh(uh-yhnQî.

But it follows from (2.4) and (2.6) that for any qh e Qh,

= b(u,qh)- b{vh, qh) = b(u-Yh,qh),

combining this with (2.7) shows

(2.8) £Kllx«M«-vJx-

Now set wh = zh + v ,̂ using Bh zh = Bh(nh~ \h) we obtain for any
qh e Qh that

= (Bh z» 1h) + (Bh •*. ^ ) = ( ^ u* " 5/7 vA. ^ ) + (Bh vA, ^ ) -

this implies wft e Vh(g ), and we get from (2.8) and the triangle's inequality
that

which proves (b).
Next we show (c). For any wA e V^Cgf), let vA = u^ - wh, then

v^ e VA( 0 ) and we see from (2.5) that

Let vA G XA, then substituting v = \h in (2.3) gives

Using fc(vA, ^A) = 0 for any gft e QA»
 w ^ obtain

M2 AN Modélisation mathématique et Analyse numérique
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Applying the Cauchy-Schwarz inequality to it and using the définition of
bx imply

Now the triangle's inequality and v^ = u^ — wh yield

| | u -uJ | a «2 | |u -wJ | a + *1 | | /»-9J| e ,
which proves (c).

Finally we show (d). For any v̂  e Xh, qh e Qh, we dérive by (2.3) and (2.5)
that

b(v»Ph ~gh)=a(u- uA, yh) + &(v*,p - qh) .

This with the discrete inf-sup condition leads to

now ( d ) follows by applying the triangle's inequality. D
Remark 2J : The minor différence between Theorem 2.2 and the classical

version (cf. Brezzi [5] and Girault-Raviart [9]) is that the former allows the
constant a(h) to be dependent on h. The classical error estimate in ( c ) is of
the form :

mîQiWp-qh\\Q.

Thus if a(h) dépends on h, no convergence or error estimate could be derived
in norm || . \\x from this classical form. Our new version is more helpful in
this case. It is crucial in obtaining our later finite element error estimâtes in
the subséquent sections.

3. MAXWELL'S EQUATIONS

Let us now briefly recall the physical background of the problem we aim
at solving numerically. Let T > 0 be a given number, then in the space-time
domain Q x (0, 7), MaxwelFs équations in vacuüm are of the following
form :

(3.1) - ^ - V x B = -

(3.2) | + V x E =

(3.3) V.E = ±p.
fco

(3.4) V . B = 0 ,

vol. 31, n° 2, 1997



220 P CIARLET JR JUN ZOU

where E = E(x,r) and B = B(x, t) dénote the electric field and the
magnetic field respectively, while p = p(x,t) and J = J(x,f) dénote the
charge and current densities They satisfy the charge conservation équation

(3 5) & + V . J = 0

The constants c, rQ and JJQ are the light velocity, the electric permittivity and
magnetic permeabihty of vacuüm, respectively They are related by

To complete the above System, we have to add some boundary and initial
conditions Let us assume that f i s a perfect conductor Then we add the
folîowing boundary conditions on Fx (0,T)

(3 6) E x n = 0, ^ B . n = 0

and the initial conditions

(37) E(x, 0 ) = E 0 , B(x,0) = B0, x e Q

Hère the initial data Eo, Bo satisfy the constramts

(38) V .E 0 = i />(x,0) i n ö ,

(3 9) V.B o = 0 inf i ,

(3 10) E 0 x n = 0 o n f

For the well-posedness of the above Maxwell's équations, we have the
folîowing theorem which stems from the classical vanational theory devel-
opped by Lions and Magenes [14]

THEOREM 3 1 We assume thaï p and J satisfy the charge conservation
équation (3 5) and

pe C\[OtT],L\a)),

Je C\[0,T] , (L2(f2))3)nC°([0, T] ,H(div,O))
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and Eo, Bo e //(curl, div ; Q) satisfy the constraints (3.8)-(3.10). Then the
problem (3.1)-(3.7) has a unique solution (E, B) satisfying

E,Be C!([O,r] ;(L2(^))3)nC°([0J] ; H{curl, div ; Q) ) .

4. DARWIN MODEL OF APPROXIMATION TO MAXWELL'S EQUATIONS

To dérive the Darwin model of approximation to Maxwell's équations, one
décomposes the electric field E into the sum of its transverse component
E r and longitudinal component EL, where E r is divergence free and EL is curl
free. Then the Darwin model is derived by substituting E = E^ + E r into
(3.1) and neglecting the transverse component dTLT/dt of the displacement
current. In fact, if we add specified boundary conditions to détermine EL and
E r uniquely and dénote by ED = E^ + E^ and BD the resulting Darwin
approximations to the electric and magnetic fields respectively, then after some
reformulations, we come to the Darwin model which has the following
characteristics (cf Degond-Raviart [8]) :

THEOREM 4 . 1 : Under the assumptions of Theorem 3./, the Darwin ap-
roxim

tems :
proximation ( E L + E ^ , BD) is determined uniquely by the following sys-

(i) EL = EL = — V0 e C i
//(curl, div ; Q)), where <p = <p( . , f), /or a// f e [0, 7 ] ,
is tfze solution of

- J 0 — ~pinQ\ (p — aton Ft, 0 ^ i ^ m

with a = ( ai )0 ̂  ( ̂  m tóng f/ẑ  solution of the differential system

cd£ = l

where C = ( c{ )0 ̂  ( ^ m w f/î  capacitance matrix defined by
àn,l)rj7 X = (xX*i*m is the solution of

and a0 dépends on E0L, Le. the initial value

vol. 31, n° 2, 1997



222 P CIARLET JR, JUN ZOU

(ii) the function BD e C\ [0, T] , //( curl, div , Q ) ) « /or
r e [0, T] f/ze unique solution of

- AB° =/i0VxJ wÖ,

V.BD =0 m ö ,

VBD.n =B0 .n on T,

(VxBö)x« =/io]xn on

f/z<? function E^ e C°( [0, 7] , //(curl, div , £2) ) zs /or all
t e [0, T] t/ie unique solution of

Zlll(^ — ~r~ V X U in h£ •.
1 at

V . E ^ =0 m ö ,
E ^ x n =0 o/i/1,

( E £ . n, 1 } r = 0 , l ^ i ^ m

Here and afterwards, ( . , . ) r represents the dual painng between
/ / " ] f 2( /^) and Z/1 /2(rt) Degond-Raviart [8] proved that the Darwm model
approximates the Maxwell system up to the second order for the magnetic
field, and to the third order for the electnc field, in terms of the supposedly
small dimensionless parameter rj = vlc, where f is a charactenstic velocity
Physical cases in which rj is small are studied numencally m [2]

5. TWO DECOUPLED SYSTEMS FROM THE DARWIN MODEL

In this paper, we are mterested in solvmg the followmg two kinds of
boundary value problems which come from the Darwin model discussed in
Section 4 The first is the Dinchlet problem

(5 1)

where Bx e / /(curl , :Q)
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The second is the Neumann problem :

- zIB = V x f in Q ,

V . B = 0 in Q ,

B . n = B 0 . n o n f ,

( V x B ) x n = f x n o n f ,

where f e H{ curl ; Q ), V . Bo = 0 and Bo e H( curl, div ; Q ). And from
Theorem 4.1, we know

LEMMA 5.1 : The Dirichlet and Neumann problems (5.1) and (5.2) both
have unique solutions E and B respectively. And

E e H{curl, div \ Q \ B e H(curl, div \Q).

6. //(curl ; Q) FORMULATION

This section will first address the dérivation of the / /( curl ; Q ) variational
formulations for the Dirichlet and Neumann problems (5.1) and (5.2), then
dérive finite element methods based on the variational problems. Finally the
error estimâtes of the finite element methods will be given.

6.1. The Dirichlet problem

To dérive the variational formulation of (5.1), we start with the first équation
of (5.1). Using the identity

(6.1) V x ( V x u ) = - J u + V ( V . u ) ,

and V . E = 0 in Q, we get for any v e Ho( curl ; Q ) from the first équation
of (5.1) that

(6.2) ( V x E ) . ( V x v ) à = B r ( V x v ) à .
in in

In order to replace V . E = 0 and (E . n, \)r = 0 in (5.1), we introducé
the following space

(6.3) Hl
c(Q)={qe H\Ü) ;

q = 0onFQ and q- c. on F., c. G R, 1 ^ i =£ m) .

vol. 31, n° 2, 1997



224 P. CIARLET JR, JUN ZOU

Remark 6.1: For any function q e H\(Q), we have V ^ x n = 0 on
F. Moreover, the semi-norm | . |, is a norm on Hl

c(Q), because of the
boundary condition imposed on Fo.

Now, multiplying V . E = 0 by any function q in H\(Q) and integrating
over Q by parts yield

(6.4)

0 = - Vq . E dx + <E . n, q)r
JQ

=-f Vq.Edx+^q{r(E.
JQ i = o

JQ
= - Vq.Edx.

J

Therefore we dérive the variational formulation for the Dirichlet problem
(5.1):
find E e Ho( curl ; Q ) such that

(6.5) ( V x E ) . ( V x v ) à = B r ( V x v ) à , Vv G HQ( curl ; Q ) ,
JQ JQ

(6.6) E.S/qdx^O, \fq G Mita) ,
JQ

which is equivalent to the problem :
find ( E , p ) e 7/0(curl \Q) x H\(Q) such that

(6.7) f ( V x E ) . ( V x v ) à + \.Vpdx =
JQ JQ

= B r (Vxv)è , VVÊ//0(CUT1;Q),

(6-8)

The équivalence between (6.5)-(6.6) and (6.7)-(6.8) is easily proved by taking
v = Vp in (6.7) for any p e H\(Q), and we then have p = 0.

Remark 6.2 : We stated above that p = 0 in the System (6.7)-(6.8) follows
by taking v = Vp in (6.7). This assumes Vp is in //(curl ; Q). Indeed, in the
sense of distributions, one has, for all 0 belonging to the space of infinitely
differentiable functions with compact support in Q (called

M2 AN Modélisation mathématique et Analyse numérique
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Thus V x (Vp) = 0 in the scnse of distributions, i.e. in 3t'(Q). Now, this
implies in turn that Vx(V/?) = 0 almost everywhere. In other words,
V x (Vp) = 0 in (L2(Q))3 and Vp is in H(cur\ ; Q). In the subséquent
sections, we will see many similar cases where such regularity results are then
implicitly assumed.

We can now show the following theorem for the well-posedness of the
system (6.7)-(6.8) :

THEOREM 6.1 : There exists a unique solution (E ,p) to (6.7)-(6.8) with
p = 0. Moreover E is the solution of Dirichlet problem (5.1) and therefore
E <E H(cur\,div ;Q).

Proof: We first apply Theorem 2.1 for the existence of a unique solution
(E,p) to the system (6.7)-(6.8). We can introducé the spaces and linear
functionals used in Theorem 2.1 as follows :

X = / / 0 ( c u r l ; O ) , Q =

a ( u , v ) = ( V x u ) . ( V x v ) à , / ( v ) = B , . ( V x v ) ^ )
J Q ia

b(v,q) = Y.Vqdx, g(q) = 0,
ia

for any u, v e X and q e Q. Then the closed subspace V of X is :

V = { v e X ; 6(v,4) = 0, V ^ ö } (

which, by Green's formula (2.1), may be written as

V={\<EX\ V .v = 0in£2, <v.n, 1)^ = 0, 1 s£ i ^ m) .

We now claim that there exists a constant C > 0 such that

(6.9) | | v | | 0 ^ C| |Vxv| |0 , VVE V.

Otherwise we have a séquence {\fl\ e H(cur\ ; Q) such that V . vn = 0 in
Qt vn x n = 0 on 7" and

(6.10) i |VxvJ i o <lM, | | v j | o = l .

vol. 31, n° 2, 1997
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Thus by the compact ïmbedding theorem (cf Weber [20]), {v;j} has a con-
vergent subsequence still denoted by {vn} in (L2(f2))3 This combimng with
(6 10) implies that {vn} converges to some v in 7/(curl,Q) with
l | v | | 0 = l , and

V x v = ö in Q , v x n = 0 on f,

which ensures the existence of a function q e H](Q) (cf Girault Raviart [9],
Theorem 2 9 of Chap 1) such that q is constant over each component Ft and
v = Vq Now using v e Vt and hence £>(v, q) = 0, we have || v||0 = 0, this
contradicts with || v || 0 = 1 Therefore (6 9) holds, and so does the V-ellipticity
of a( . , . )

For the mf-sup condition note first that if q G Q, then v = Vq e X
because v x n = 0 on F by usmg q\r = ct> for 0 ^ i ^ m Thus
£(v, q) = || v | | x | | ^ | [ e , which shows the inf sup condition with /? = 1

p = o follows immediately by taking v = Vp in (6 7) (recall Remark 6 2)
Thus by Lemma 2 1, the solution (E, p) to (6 7)-(6 8) exists uniquely On the
other hand, the previous dérivations of (6 7)-(6 8) ïndicate that the solution of
(5 1) is also the solution of (6 7)-(6 8) Now the conclusion of Theorem 6 1
follows by the uniqueness of (E,p) and Lemma 5 1 D

6.2. The Neumann problem

To dérive the vanational formulation of (5 2), multiplying the first équation
of (5 2) by any v E H(cur\ , Q) and usmg (6 1), V. B = 0 and Neumann
boundary condition, we come to

f ( V x B ) . ( V x v ) É = 1(611) ( V x B ) . ( V x v ) à = f ( V x v ) J x

Now multiplying V . B = 0 by any q ̂  fi\Q) and mtegratmg over Q by
parts, using B . n = Bo . n on F and V . Bo = 0 in Q yields

(6 12) B. Vqdx=\ BQ.Vqdx
Ja Ja

From the above dérivations, we obtain the followmg vanational formulation
for the Neumann problem (5 2) find B e i / ( curl , Q ) such that

(6 13) f ( V x B ) . ( V x v ) ^ J f ( V x v ) i Vv e H( cur l , Q )

(6 14) f B.Vqdx=\ B0.Vqdx, \/q e H\Q)M,
JQ JQ
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which is equivalent to the problem :

find(B,p) e H(cur\,Q) x Hl(Q)/U such that

(6.15) ( V x B ) . ( V x v ) è + \.Vpdx =
JQ JQ

= f . ( V x v ) 4 Vve //(curl ;fl) ,

f f 1
(6.16) B.\qdx=\ B0.vqdx, \fq e H (Q)/R .

The equivalency is easy to see by taking v = Vp in (6.15). We have the
following theorem for the above system :

THEOREM 6.2 : The re exists a unique solution (B,p) to (6J5)~(6J6) with
p = 0 in Q up to a constant. Moreover, B is also the solution of (5.2) and
therefore B e H(curl, div \Q).

Proof : We first apply Theorem 2.1 for the existence of a unique solution
(B, p) to (6.15)-(6.16). We define the spaces and linear functionals used in
Theorem 2.1 as follows :

X = ƒƒ(curl ; Q ), Q = H]( Q )/U ,

a ( u , v ) = ( V x u ) . ( V x v ) à , / ( v ) = f . ( V x v ) à ,
JQ JQ

f f
b(y3g)— Y .Vq dx, g(q) = B 0 .Vg<ix,

for any u, v e X and q e Q. Then the closed subspace V of X is

which, by Green's formula (2.1), may be written as

V={veX; V . v = 0inX2, v . n = 0 on T} .

We claim next that there exists a constant C > 0 such that

(6.17) l | v | | 0 £C | |Vxv | | 0 , Vve V.
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Otherwise we have a séquence {vn} e //(curl , Q) such that V . \n = 0 m
Q, v . n = 0 on F, and

(6 18) l |VxvJ | 0 <l /n , | |vn | |0=l

Then by the compact ïmbeddmg theorem {cf Weber [20]), {\n} has a con-
vergent subsequence (stül denoted by {vrt}) in (L2(Q))3 This combimng
with (6 18) ïmplies that {vrt} converges to some v m / / (curl , Q) Then one
can readily see that | |v | |0 = 1, V • v = 0 in Q, v . n = 0 on 7" and
V x v = 0 in Q This last équation ensures the existence of a function
qe H\Ü) such that v = Vq Now usmg v e V, and hence
b(\, q) = ö, we have | |v | |0 = 0, this contradicts with | | v | | 0 = l Therefore
(6 17) holds, and so does the V-ellipticity of a( . , . )

For the inf-sup condition take v = Vq e X for any given q e Q Then
b(\,q)- || v | | x \ \q | | e , so the mf-sup condition holds for /? = 1

Fmally, usmg v = Vp in (6 15) yields p = 0 up to a constant in Q Thus
Lemma 2 1 shows the existence of a unique solution ( B , p ) to (6 15)-(6 16)
On the other hand, we already know that the solution of (5 2) is also the
solution of (6 15)-(6 16) Then the conclusion of Theorem 6 2 follows by the
uniqueness of the solution (B,/?) and Lemma 5 1 D

6.3. Finite element solution for the Dirichlet problem

We will make use of Nedelec's mixed fmite éléments [15] to approximate
the vanational problem (6 7)-(6 8)

Let ?fh = <u K be a shape regular triangulation of the domain Q made of
tetrahedra For any element K, let &{(K) be the space of linear functions in
K and 0tY(K) be defined as

^ , ( i C ) = {u = a + b x x o n ^ , a e R\ b e IR3}

Remark 6 3 In order to construct finite dimension al subspaces of
ti\Q) and / /(curl , Q), we bnefly outhne some fundamental properties of
finite éléments denved from &X(K) and MX{K) A function of &X(K) is
umquely determined by lts values at the vertices of K Moreover, as stated in
Theorem4 2 1 of [7], a function whose restriction on any tetrahedron K
belongs to tP^K) is in H](Q) if and only if it is contmuous m Q Clearly,
such a function is completely defined by lts values at the vertices of ?Fh For
fflx(K)> Nedelec [15] proved that a function v satisfying v | ^ e âtx(K)
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belongs to H(cur\ ; Q) if and only if v x n is continuous across the faces.

\{ \
Moreover, such a v is uniquely defined by its moments \ v . ze dl > e e E,

h ^ ^

where E is the set of edges of the triangulation 2T and ze a unit vector parallel
to e, and v is always locally divergence f ree.

Let us now introducé two finite element subspaces

corresponding to the continuous spaces

X = i/0(curl;O); Q = l

For any u e (Hl ( A' ) )3, let IK u be the unique element in 3$ j ( /^ ) which has
the same moments as u on the tetrahedron K. And let 77̂  u be the interpolant
of u, for any u e (H\Ü))3, defined on Xb by :

(6.19) nh u = iK u on Ü:, VA: e sr*.

We can verify that

//„UG Xh, if u G 7/0(curl ; fl ) .

The finite element approximation to the problem (6.7)-(6.8) is now formu-
lated as : find (Eh,ph) e Xh x Qh such that

= f B , .
Ji2

(6.20) a ( E „ v ) + fc(v,pA)= f B , . ( V x v ) à , Vv s Xh ,

(6.21)

where

a ( E , v ) = f (VxE).(Vxv)è,

= f
We can show the following convergence for the above finite element

approximation :
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THEOREM 6.3 : Suppose that Q is a polyhedral domain in ÎR~ with a
Lipschitz continuons boundary, then there exists a unique solution (EA, ph) to
(6,20)-(6.21). M ore oven ph — 0 and the following error estimâtes hold

(6.22) | |Vx(E-EA)| |0«Cfc|E|2, if E e X n (H2(Q)f ,

(6.23) ; l im| |Vx(E-E / , ) | |o = 0, «/EeX,

where (E, 0) is the solution to (6.7)-(6.8). If in addition the domain is convex,
then

(6.24) I IE-EJ | O ? C I | W ^ Ch\E\v p G X n ( f f 2 ( Û ) ) 3 ,

(6.25) liin || E - E, || a cur[ = 0, ifEeX.

Proof: We apply Theorem 2.2 for the proof. Let || . ||a = (a( . , . ))1/2.
This is a norm on Xh. To see this, let v̂  e Vh and a( vh> vh ) = 0, then
V x v^ = 0 in Q. Thus we have a function qheHl(Q)/M such that

As v j K = aK + b^ x x for any tetrahedra of the triangulation ?Fh,j K K
V x v^ = 0 implies vh\K-&K- Thus qh\K^ &Y(K). Using the boundary
condition v̂  x n = 0 on F, we know Vqh x n = 0 on F, which indicates
that qh is a constant on each Fr As qh is unique up to a constant, we can choose
a qh such that qh — 0 on Fo and is constant on the remaining components
Fi for i ^ 0. Therefore qh G Qh as ^ belongs to H\Ü) by définition.
Combining with b{\h,qh) = 0 gives vh = 0. Thus || . ||a is indeed a norm
on Xh.

As |i . ||a is naturally also a norm on the finite dimensional subspace

V„(0) = {v, e Xh ; b(vh, qh)=0, \/qh € Qh} ,

there exists a constant a(h) depending on h such that

(6.26) a{ vA, vA ) ^ a( A ) || v7j || ̂ , v, e VA( 0 ) ,

which means the VA(O)-ellipticity of a( . , . ).
To get the discrete inf-sup condition, for any qh in Qh, we define

y-^ah- Clearly, v G Xh and b(\,qh) = \\y\\x \\qh\\ Q, i.e. the discrete
inf-sup condition holds for ̂ ?= 1. Then the existence and uniqueness of the
solution (Eft, ph) follows from Theorem 2.2.

ph = 0 follows immediately by taking v = Vph in (6.20).
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We next dérive the error estimâtes. Using Theorem 2.2 (b) and (c) and
noting £ = b0 = a0 = 1 and inf \\p - qh || Q - 0 in our case, we dérive
that

(6.27) | |E-EJ| f l<£4 inf | | E - v J | x .

If E e X n #2(£2)3, then by Theorem 2 in Nedelec [15], we have

(6.28) inf H E - v J ^ | |E-77AE||X « CA |E | 2 ,

this implies (6.22).
On the other hand, if E G X only, we can use the density of

Xn(H2(Q)f in X to find a function vg e X n (H2(Q)f for any e > 0
such that

HE-vJ^e/2.

But from the interpolation resuit (6.28), we know that there exists a /ÎC such
that

Now (6.23) follows by taking \h = J7h v£ in (6.27) and the triangle inequality.
If the domain is convex, the following Lemma 6.4 with Remark 1 of

Section 2 yields the improved result (6.24)-(6.25). D

LEMMA 6.4 : Suppose here that Q is convex. Then there exists a positive
constant C independent of h such that

f \cnr\ y f dx^C\ | v j 2 dx, V v A e V A ( 0 ) .

Proof : This was proved by Girault-Raviart [9] (Proposition 5.1,
Chap. 3). D

6.4, Finite element solution for the Neumann problem

We solve the Neumann problem (6.15)-(6.16) by means of Nedelec's finite
éléments. Let us first introducé two finite element subspaces

e STh} ,

Ö„ = k , e H\Q)IU ; q„\K e SP,{K\ VK e 9""} ,

vol. 31, n" 2, 1997



232 P- CIARLET JR, JUN ZOU

corresponding to the two continuous spaces

X = H{curl ; Q) ; Q = Hl(Q)/R .

Then the finite element problem for solving the Neumann System (6.15)-
(6.16) is formulated as follows : find(B/!,ph) e XhxQh such that

(6.29) a ( B , v ) + K v , f t ) = f . ( V x v ) d x , V v e l ,
JQ

(6.30) b( Bh,q ) = [ Bo . Vq dx, Vqe Qh ,
JQ

where

a(B,v) = f
Ja

f
(VxB).(Vxv)à;

t (B , $ ) = B . Vq dx,

For the convergence of the finite element approximation, we have the
following theorem :

THEOREM 6,5 : Suppose that Q is any polyhedral domain in IR3 with a
Lipschitz continuous boundary. Then there exists a unique solution ( B^, ph ) to
the finite element problem (6.29)-(6.30). Moreover, ph = 0 up to a constant
and the following error estimâtes hold

(6.31) | | V x ( B - B A ) | | 0 « C A | B | 2 , ifB e X x (H2(Q) f ,

(6.32) Ujn | | V x ( B - B A ) | | o = 0, if B e X ,

where (B, 0) is the solution to (6.15)-(6.16). If in addition the domain is
convex, then

(6.33) | |B-BJ | 0 t M W «C/z |B | 2 , ifB e Xx (H2(Q))\

(6.34) H m J I B - B X ^ O , if B e X .

Proof : The proof is almost the same as the one for Theorem 6.3. We can
first prove that a{ . , . ) is a norm on Vh( 0 ) and have the Vh( 0 )-ellipticity. The
discrete inf-sup condition can be done similarly and we also obtain §_ = 1. The
only minor différence is that I7h u belongs to Xh naturally here.
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If the domain is convex, the foliowing Lemma 6.6 with the previous proved
results leads to the conclusion. D

LEMMA 6.6 : Suppose here that Q is convex. Then Vh(0) is defined as

W ) = ! w„ e Xh ; £ w„. Vqh dx = 0, Vqh e Qh\ ,

and the re exists a positive constant C independent of h such that

f \vh\
2dx,

Proof: This corresponds to Theorem 1 (inequality (22)) in [16]. D

7. H( curl, div ; Q ) FORMULATION

In this section, we consider the H( curl, div ; Q ) formulations for the
Dirichlet and Neumann problems (5.1) and (5.2). Different from the
H( curl ; Q ) formulations and their finite element methods discussed in Sec-
tion 6, the variational formulations of this section will enable us to use the
Standard Hl(Q) conforming finite element methods for solving the Systems
(5.1) and (5.2). The finite element methods will be discussed in Section 8.

7.1. The Dirichlet problem

We will show that the solution E of the Dirichlet problem (5.1) satisfies also
the foliowing variational problem : find (E ,p) e HOc(Q) x Q such that

(7.1)

(7.2)

where

v , p ) = B , .

/ / O c ( f l ) = {vË #(curl , div ; & ) ; v x n = 0 on r } , Q = L2(Ü) ,

=a ( u , v ) = ( V x u ) . ( V x v ) < &
J

b(\,q)= f ( V . v)qdx.
ia
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Before proving the existence and uniqueness of the solutions of the System
C7.1:)-(7.2), we first introducé two auxiliary spaces V and Vr :

Vr={ye V ; { v . n , l ) r . = 0, 0 s£ i «S m} .

In the space Vn we have

LEMMA 7.1 : There exists a constant C>0 such that

^ C | | V x 0 | | o , V 0 E Vr.

Proof: We know that, cf. Girault-Raviart [9] (Theorem3.6, Chap. 1),

Vu e HQ(divO \Q), 3!0 e Vr such that u = V x 0 .

Thus curl is a one-to-one, continuous linear mapping from Vr to
Ho( divO ; Q ). As in addition, Vr and //0( divO ; Q ) are Banach spaces, curl is
an isomorphism from Vr to //0(div0 ; £?). Also, | | V x 0 | | o is a norm on
Vr equivalent to the standard norm || . || 0 curl div of HQ c( Q ) (as a subspace of
//(curl, d iv ;*2)) . D

Let us now define another norm in HOc(Q) by

(7.3) IMiWii r=(a(v,v))1 /2 ,

for which we have

LEMMA 7.2 : In the space HOc(Q), the norm || . || H defined in (7.3) is
equivalent to the classical norm || . || 0 cur{ div.

Proof: For any v in HQc(Q), we define q € Ii\(Q) to be the solution to

= v .
Jr2

Aq = V . v in Q ; Cq = v . V / dx .

Hère C = (cij)o^i j^m IS ^ e c^Pac^tance matrix introduced in Theorem4.1
and Q~(q\r)o<:j«cnr q is uniquely defined. Then let (p = v - V^, it is
easy to verify that <p ̂  Vr Thus by Lemma 7.1,

(7.4) | 1 0 H o s C | | V x 0 | | o = C | | V x v | i o .
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On the other hand,

235

f \Vq\2dx = -\ qV.

= - J qV .

that implies

(7.5)

Note that

which gives max

(7.6)

r Combining with (7.5) yields

for a constant C which dépends only on Q.
Finally, as | |v | |0 ^ | | 0 | | o + I|V^||O using (7.4) and (7.6), we obtain

This proves the existence of a constant C > 0 depending only on Q such that

To conclude the proof, one simply sees by Green's formula (2.1) that

| (v .n , l ) r . | = \{v.n,Xj)r\

= f (V.v)v.dr+ f y.Vxj
la Jn
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which implies there exists a constant C dependmg only on Q such that,

Vve//0

D

THEOREM 13 : The pair (E, 0), where E is the solution of the Dirichlet
probletn (5.1), may be characterized as the unique solution of (7J)-(7.2).

solution (E, p) e HOc(Q) x L2(Q). Obviously, Lemma 7.2 indicates the

To check the inf-sup condition, for any q e L2(Q), we take v = V0 with

Proof : We first apply Theorem2.1 to show that (7.1)-(7.2) has a unique
)lution (E,/?) e HOc(

V-ellipticity of a( . , . ).
To check

<p satisfying

A(p=qmQ ; 0 = 0 on r.

Immediately we know v x n = 0 on F. Hence v e HOc(Q). By multiplying
A(j) — q by 0 and using intégration by parts, we come to

Thus we see

2
/ - O

By using Green's formula and the functions xt introduced in Theorem4.1,

n' /r, f

C\\q\\2
0.
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From above, we obtain that

II v |

which implies

s u p K^q)^b(Y,q)
we Hùc II wil „

Then the existence of a unique solution ( E , p ) of (7.1)-(7.2) follows from
Lemma 2.1.

We prove now that if E is the solution of (5.1), then (E, 0) is the solution
of (7.1)-(7.2). Using (6.1) and V . E = 0, multiplying by v G HQC(Q) in both
sides of the first équation of (5,1), integrating on Q and using the Green's
formula, we corne to

(VxE).(Vxv)à= (Vxv).B]à)
Ja Ja

which implies (7.1). But (7.2) is obvious.
Now the conclusion of Theorem7.3 follows from the uniqueness of

(E,p). D

7.2. The Neumann problem

Now we consider the H( curl, div ; Q ) formulation for the Neumann prob-
lem (5.2). For the ease of exposition, we transform the problem (5.2) into a
problem with homogeneous boundary condition. Let B = B - Bo and
f = f - V x B 0 . Then by Lemma 5.1, B e H( curl, div ; Q ) is the unique
solution of the following problem :

(7-7)

- AB = V x f in Q ,

V . B = 0 in Q ,

B.n = 0 onf,

(V xB) xn = f xn onf.

In the following we will prove that the above problem (7.7) may be
characterized as the variational problem : find ( B, p ) e HQd(Q) x L^( O )
such that

(7.8)

(7.9)
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where

HOd{Q) = {v e H{ curl, div , Q ) , v

L2
Ö(Q)=

a ( u , v ) = [ ( V x u ) . ( V x v ) ^ + ( V . u ) ( V . v ) d z ,

b(\,q) = ( V . v ) ^

Before we prove our major result of this section, we give an auxiliary
lemma

L E M M A 7 4 ƒ« f/ze Hubert space HOd(Q), || . \\a= (a( . , . ) ) 1 / 2 defines

a norm which is equivalent to || . II0 cur/ rf/v Therefore there exists a constant

a>0 such that a ( v , v )

This is exactly (3 38) of Lemma 3 6, Chap 1 m Girault-Raviart
[9] D

We are now in a position to show our major result of the section

THEOREM 7 5 The pair (B, 0 ) where B is the solution of (7 7) may be
characterized as the unique solution of the variational problem (7 8)-(7 9)

Proof We first apply Theorem 2 1 to show that the system (7 8)-(7 9) has
a unique solution (B, p ) e HOd{Q) x L2

0(Q) Let

For the inf-sup condition for any q G L\(Q), we take
It suffices to verify the mf-sup condition and the V-ellipticity of a{ . , . )

For the inf-sup condition
v = V(p e Höd(Q) with <p satisfymg

éd> = q in Q , —̂ - = 0 on^ ^ dn

We have the followmg a priori estimate for <p

(7 10)
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where C is a constant dependmg only on the domain Q In fact, multiplying
A<p = q by <p and then mtegratmg over Q, we easily come to

(7 11) l | V 0 | | ^ ||?|loll0llo

But note that 0 is only unique up to a constant, so the desired result (7 10)
comes from (7 11) and Friednchs' inequality

Thus using (7 10) we obtain

o + \\V<P\\l

and by the définition of b( . , . ),

= f ( V . v ) q d x = f q2dx= \\q\\2
0

The last two relations imply that

thus the inf-sup condition holds But the V-ellipticity sterns from Lemma 7 4
Now the existence of a unique solution (B, p) of (7 8)-(7 9) is the consé-

quence of Theorem 2 1

Finally ït is straightforward to venfy that the solution B of the problem (7 7)
together with p = 0 is also the solution of (7 8)-(7 9) D

Remark 7 1 We have used the space Lo( Q ) for functions q instead of
L2(Q) To have the inf-sup condition, we deflned (p as the solution of the
Neumann problem Â<p = q in Q and d(p/dn ~ 0 on F For the Neumann

Lproblem, the compatibility condition is given by q dx = 0

8. H1 {Si) CONFORMING FINITE ELEMENT METHOD

This section will focus on the H](Q) conforming finite element method for
the solution of the //(curl, div , Q ) formulated vanational problems proposed
m Section 7, with both Dinchlet and Neumann boundary conditions

We shall use the Hood-Taylor finite element [13] (cf Bercovier-Pironneau
[4], Verfurth [19] and Girault-Raviart [9]) Let ?fh be a triangulation of the
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domain Q, with each element K E £T;' being a tetrahedron of diameter
diamCA^) ^ h. Then we refine the triangulation ST* by dividing each
tetrahedron into eight sub-tetrahedra, each with a diameter ^ h/2. The résult-
ant triangulation is denoted by 2T/?/2.

8.1. The Neumann problem (7.8)-(7.9)

Based on two triangulations ST* and 2TW2, if we let
PX(K) = (^x(K)f , we deflne the flnite element spaces Xh and Qh by

Xh = {vhe C°(Q);vh\Ke PX(K), VK E 2T/Ï/2, V, . n = 0 on T} ,

Qh = {qhe C\Q);qh\Ke &X{K\ V/Te °Th} ,

and their subspaces

Here XA and Qh are the subspaces of two continuous spaces X and Q defined
by

X=HQd(Q), Q = L2
0(Q).

We remark that the restriction v̂  . n = 0 on F appearing in the définition
of ^ is imposed only on the boundary faces of all boundary éléments in
3'h/1. Thus the space Xh is well-defined.

One can prove (cf. Vcrfurth [19] and Raviart [18])

Now the finite element method for the Neumann problem (7.8)-(7.9) can be
formulated as follows : find (B^,^^) e Xh x QOh such that

(8.2) ^ ^ ) = f . ( V x

(8.3)

We have the following convergence results :
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THEOREM 8.1 : Let Q be any polyhedral domain in IR with a Lipschitz
continuons boundary. There exists a unique solution (B^, ph) to (8.2)-(83).
And we have the following error estimâtes

(8.4) l|B-BJ0_mr,,,.v==CMB||2, ifBeXn(H\Q))3;

(8.5) iimJ|B-Bh||OciiWrf,v = O, if B e X .

where (B, 0) e XxL2
0(Q) is the solution to (7.8)-(7.9). If in addition the

domain is convex, then

(8.6) IIB-BJI, ^ Ch ||B||2, ifBsX^(H2(Q)f;

(8.7) H m J I B - B J I ^ O , if B e X .

Proof: The Vh -ellipticity of a( . , . ) immediately sterns from Lemma 7.4
(with a constant independent of h).

Since there exists a constant C > 0 such that ||v||0 curl div ̂  C||v|| p
Vv e (Hl(Q)) , from (8.1) and WOft cz XA we immediately have the follow-
ing inf-sup condition :

( V v a )
( 8 8 ) v S ^ I v i l MollgJo» V^eöo*-

'' '' II v / i l l 0 . c«W, rf/v

Then the existence and uniqueness of the solutions to (8.2)-(8.3) follows from
Theorem 2.2.

Next we show the convergence of the finite element method. Recall
Theorem 2.2, we easily see that here bQ = bl = l, a0 = 1 and
Vh(g) = VA(0). Thus from Theorem 2.2(b) and (c), we obtain

< C 118-/7^811, ^ CA | |B| | 2 ,

using the standard interpolation result and the fact that p is a constant. Here
/7/;(resp. nh) is the interpolation operator defined on X^(resp. Qh).

The rest of the result in the gênerai case can be proved similarly to the proof
of Theorem 6.3 by using the density of the subspace X n (H2(Q) )3 in the
space X and Lemma 7.4. If the domain is convex, the desired results follow
from the following Lemma 8.2. D
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LEMMA 8.2 : If Q is a convex polyhedron, the space X is continuously
imbedded in (Hl(Q)f and | |v||i ^ C\\y\\Q^curLdiv9 Vv e X. Hère C is a
positive constant.

Proof: This is Theorem 3.9, Chap. 1 in Girault-Raviart [9]. D

8.2. The Dirichlet problem (7.1)-(7.2)

Based on the previously described triangulations 3~\ we first define the
fini te element space Qh associated with the pressure by

Then one possibility is to construct a finite element space approximating
HOc(Q) by using the way described in Raviart [18]. The main idea is to
impose the boundary condition v x n = 0 on F in a weak form, that is

(8.9)

where Vh(F) is the standard piecewise linear finite element space defined on
2TA/2( F) — F n ST^2. To be more practically efficient, we further approximate
(8.9) by a quadrature. For a triangle TG ?Th/2(F) with three vertices ar

i= 1,2,3, using the following quadrature formula

2
we can approximate (8.9) by

2

where {a.;ie /} dénotes the set of ail vertices of 2TW2( F), A( i) the set of all
triangles l e 2T "( 7^) which have a( as a vertex and n r the unit normal to T.
Let n ( a ; ) be an approximate unit normal to F at the vertex ai G ^hl2{F)
defined by

meas(T)nT\( ^
J \TeA(i)
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then finally (8.9) can be approximated by

v,(fl,)xn(fl,)=0. V i e / } .

With the above introduced spaces Qh and Xh, the finite element approxima-
tion to the System (7.1)-(7.2) is formulated as follows : find
(EA,pA) e XhxQh such that

where £>( v, g ) = ( V . v ) q dx and

a(u, v) = ( V x u ) , ( V x v ) à
in

+ f (V.u)(V.v)rfx

Unfortunately, it is still an open question whether the space pair
(Xh, Qh) satisfies the discrete inf-sup condition, and no error estimâtes can be
derived yet, though numerical computations show the validity of this pair of
finite element spaces if the domain is convex.

In the next section, we will introducé another way to deal with the
//(curl, div ; £2) formulation for the Dirichlet problem (5.1), for which we
can prove the inf-sup condition and dérive the error estimâtes for its finite
element approximation.

8.3. IVansforming the Dirichlet problem (5.1) into a Neumann problem

In this section, we introducé some techniques to transform the Dirichlet
problem (5.1) into a new Neumann problem, analogous to (5.2). And then
instead of the use of the H(curl, div ; Q) formulation (7.1)-(7.2) for the
Dirichlet problem (5.1), as described in Section 7.1, we can adopt the Neu-
mann H( curl, div ; Q ) formulation for this new Neumann problem, to which
the finite element methods described in Section 7.2 can be applied and error
estimâtes can then also be achieved.

To this aim, we first show
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THEOREM 8.3 : The unique solution E e //(curl, div ; Q) of the Dirichlet
problem (5.1) can be expressed as E = V x S, where
€ e //(curl, div ; Q) is the unique solution of the following Neumann prob-
lem :

(8.10)

(8.11) <f.n = 0, ( V x < f ) x n = 0, o n f .

Proof: The existence of a unique solution ë G //(curl, div \Q) to the
system (8.10)-(8.11) follows routinely as we did for the Neumann problem
(5.2) in Section 7.2.

We now prove that if E = V x ë and ë e //(curl, div ; Q) is a solution
of (8.10)-(8.11), then E is the solution of (5.1). The conditions V . E = 0 in
Q and E x n = 0 on F are obvious. To show (E . n, 1 ) r = 0
(0 ^ i ^ m), f° r each i we define a function 0 e C^(R3) satisfying
0 ^ Ö.(JC) ^ 1 in ER3, 0.(x)=Sij in a neighborhood of ƒ].. Let
E. = V x ( ö . ^ ) and so V . Ey. = 0 in Q. By Green's formula we have

(E . n, 1 ) r = (E.. n, 1 ) r = [ V . E. dx = 0 ,

which is the desired boundary condition. The équation /JE = V x B 1

follows readily by noting - V x ( V x < f ) = B p E = V x ë and
/IE = - V x ( V x E ) . By Lemma 5.1, it follows that E belongs to
//(curl, div; Q).

Next we prove that if E is a solution of (5.1), then there exists S in
//(curl, div; Q) satisfying (8.10)-(8.11) such that E = V x <f.

First of all, it is easy to show that there exists a unique solution
(ë,p) e //(curl ; Q) xHl(Q)/U to the system

f f
(8.12) ( V x ( T ) . ( V x v ) é + y.Vpdx =

_ f

JQ

(8.13) ë .Vqdx = 0, \/q e Hl(Q)/U,
J Q

by applying Theorem2.1 (the proof is similar to that of Theorem 6.2).
Vp = 0 follows by taking v = Vp in (8.12).
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Let us now prove that ê satisfies the required conditions. The conditions
V . ë - 0 in Q and ê . n = 0 on F come immediately from (8.13) and
Green's formula. Furthermore, applying Green* s formula to (8.12) gives the
boundary condition ( V x l ) x n = O and

(8.14) J < f = - V x E in fi.

The above relation (8.14) will lead to Aê =B1 if we can show that

For the purpose, we observe that V x ( V x E + B j ) = ö from the first
équation of (5.1). Therefore there exists a <p e Hl(Q)M (cf. Degond-Raviart
[8], Lemma 1.1) such that

B , + V x E = V 0 .

Hence Green's formula yields for any y/ in @(Q)/R that

V<p.Vy/dx=\ (B, + V x E ) . Vy/dx
ia JQ

= - (V .B j ) y/dx+(Bx .n, y/)r+ (nxE,Vi / / ) r
JQ

= 0,

by recalling the condition Bj . n = 0 on F and V. Bt = 0 in Q. Therefore
we have V̂ > = 0 by density, that is, V x E + B, = V0 = 0, or

So far we have proved that S is the solution to the system (8.10)-(8.11) and
S e / / (curl , div ; O ) as we know from Lemma 5.1.

Finally we show E = V x l . Let g = V x # - E , the proved results
indicate

V x g = 0 in Q; g x n = 0 on F.

Now, using Lemma 1.2 in Degond-Raviart [8] implies

with <p e Hl(Q) satisfying

# = V . g = V . ( V x l - E ) = 0 in O ,

<p = a} on Ft, 0 ^ i ^ m .
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The c^'s are defined uniquely up to a constant as the solution of the linear
System

7 = 0
„«,= %.Vx,dx, O m

Hcre c and %t are defined in Theorem 4.1 and Ker ( C) = spart {e},
e = ( 1 , 1,..., l ) ' e !R'"+I. Now, for ail S e ®( Ï2 ) , we get

f ( V x / -

as x, — ö o n F. Thus we have g . V^( <£c = O by density. Therefore

( a ) belongs to A êr ( C) , that means a = a0 for 0 ^ i ' ^ m, i.e.
0 = a0, or g = V0 = 0. We proved that E = Vx<f in £?, which complètes
the proof of Theorem 8.3. D

8.3.1. Piecewise linear finite element methods for the Neumann System (8.10)-
(8.11)

As the System (8.10)-(8.11) for the unknown S is a special case of the
Neumann problem (7.7), therefore for sol ving § we can adopt the same finite
element method based on piecewise linear spaces used in Section 8.1 for
solving (7.7). All the results stated in Section 8.1 are valid for the present case.
We omit the details.

8.3.2. Piecewise quadratic finite element methods for the Neumann system (8.10)-
(8.11)

Our final aim is to calculate E = V x f but by means of piecewise linear
finite éléments as described in Section 8.3.1, one can only have a piecewise
constant approximation to the field E. To achieve piecewise linear approxi-
mation for the field E, we can make use of the piecewise quadratic finite
éléments for the solution of S\ Let X = HOd(Q). Adopting the same notation
as in Section 8.1, we define

X/7 = {V /7G C ° ( f l ) ; v A | J , e P2(K), VKe?Thf2
9 vA . n = 0 on T} ,

Qh = {qhe C°(Q)-qh\Ks S
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Note that the pressure fînite element space QQh is still piecewise linear
which is enough for approximatmg the constant pressure p.

Obviously, WOhcW] ht where WQh is the space defined in Section 8.L This
with (8.1) indicates that

( V V Q )
( 8 1 5 ) SUg ' ^CNH V^eö

Analogous to (8.2)-(8.3), the finite element method for the Neumann
problem (8.10)-(8.11) can be formulated as follows :
find ( êh, ph ) e Xhx QOh such that

(8.16) =
JQ

(8-17) h h h Oh

We have the following convergence results :

THEOREM 8.4 : Let Q be any polyhedral domain in R* with a Lipschitz
continuons boundary. There exists a unique solution {éh,ph) to (8.16)-(8.J7).
And we have the following error estimâtes

(8.18) \\g-£h\\0,Mv^Chr-'\\ê\\r,

if S e Xn{Hr(Q)fforsome2 sï r s: 3 ;

(8.19) ;limK-^llo.™,,.,v = O, ifteX,

where & is the solution to the system (8.12)-(8.J3). If In addition the domain
is convex, then

(8.20) \\S - êh\\l s£ Chr~x\\g\\ry ifi G X n (Hr(Q)ffor sortie 2 *£ r ̂  3 ;

(8.21) U_mo \\ê-£h\\x =0 , ifS'eX.

Proof : The proof is similar to the one for Theorem 8.1, but one uses (8.15)
hère instead of (8.1). D
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Authors' note

Recently, in a paper entitled "Vector Potentials in Three-Dimensional
Nonsmooth Domains" (Technical Report, IRMAR #96-04, Rennes, France,
1996), Amrouche, Bernardi, Dauge and Girault extended Lemmas 6.4 and 6.6
to the case of non convex polyhedra (with a Lipschitz continuous boundary).
Therefore, the conclusions of Theorems 6.3 and 6.5, i.e. estimâtes (6.24) and
(6.33) and convergence properties (6.25) and (6.34), can be generalized to this
class of domains.
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