Georgios Akrivis VASSILIOS A. Dougalis
 OHAnNES Karakashian
 Solving the systems of equations arising in the discretization of some nonlinear P.D.E.'s by implicit Runge-Kutta methods

M2AN - Modélisation mathématique et analyse numérique, tome 31, n 2 (1997), p. 251-287
http://www.numdam.org/item?id=M2AN_1997__31_2_251_0
© AFCET, 1997, tous droits réservés.
L'accès aux archives de la revue «M2AN - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

SOLVING THE SYSTEMS OF EQUATIONS ARISING IN THE DISCRETIZATION OF SOME NONLINEAR PD.E.'S BY IMPLICIT RUNGE-KUTTA METHODS (*)

Georgios Akrivis (${ }^{1}$), Vassilios A DoUgalis (${ }^{2}$) and
Ohannes Karakashian (${ }^{3}$)

Abstract

Resume - On construit et analyse des methodes toratives permettant une resolution efficace des systemes non lineaues tssus de la discretisation en temps dequations d evolution non lineaines pat des methodes de Runge Kutta implicites Certains schemas consideıes derivent de la methode de Newton et sappliquent a une laige classe d equations non lineares

Abstract - We consruct and analyze iterative methods for the efficient solution of the nonlinear equations that result from the application of Implicit Runge Kutta methods to the temporal integiation of nonlineat evolution equations Some of the schemes we considel have as starting point Newton s method and can be applied to a large class of evolution equations

1 INTRODUCTION

Whenever an implicit Runge Kutta method is used to generate approxima tions to solutions of evolution equations, the issue of solving the resulting system of equations arıses One realizes the importance of this simply by recognizing the fact that the computational work is almost entirely concen trated there

In this work, our aim is to propose and analyze efficient solutions to this problem With this in mind, the first issue that we needed to address was the choice of an appropriate class of evolution problems to consider This had to be sufficiently large to encompass problems of practical interest and yet one that could be described simply Two specific types of problems we wished to study were stiff systems of nonlinear ordinary differential equations (posed on

[^0][^1]\mathbf{R}^{m} for some fixed m) and, mainly, large, sparse stiff systems resulting from finite element or finite difference spatial semidiscretizations of initial and boundary value problems for nonlinear partial differential equations with smooth solutions In the latter case, the size of the systems increases without bound as the spatial discretization parameters tend to zero In order to conduct the analysis in a unified manner we chose to work in the setting of a famıly of finite-dimensional Hilbert spaces H_{m} parametrized by a positive parameter m that can take large values This famıly may reduce to a single member (\mathbf{R}^{m}) in the case of a specific system of ode's or represent, for example, a sequence of finite element spaces of increasing dimension

In the case of a semidiscretization of a partial differential operator, the parameter m also enters the problem as a measure of the magnitude of the error of the semidiscrete approximation, through the comparability constants of several norms defined on H_{m} for the purposes of the error analysis and through bounds of quantities associated with the nonlinear part of the pde Since it is imperative that all the error constants be bounded independently of m, all quantities depending on the latter must be carefully monitored

The techniques of error estimation are motivated by our previous studies of low- and high-order accurate IRK temporal discretizations (and their efficient implementation) in the context of the Korteweg-de Vries equation ([3], [8], [12], [4]) and the nonlınear Schrodinger equation ([1], [11]) In the paper at hand we work in an abstract setting and under assumptions on the nonlinear terms that permit the analysis to carry over to more general problems and to other semidiscretizations and nonlinear evolution equations as well

This paper is organized as follows In Section 2 we introduce the problem and the attendant notation and state the basic assumptions on the solution, the operators in the differential equation and on the IRK schemes A basic feature of our work is that the assumptions on the nonlinear part of the operator afford us a considerable generalization over the (global) monotonicity condition frequently assumed in the literature Indeed, our methodology is designed to apply to specific classes of pde's with spatial derivatives in the nonlinear terms In this approach, which invokes a local monotonicity condition, one takes pains to operate in a neighborhood of (or in a tube around) a smooth solution of the evolution equation This idea is certamly not new Indeed it is a pervading, though not explicitly recognized theme in the works of many authors, including the present ones, who have analyzed spatial and temporal discretizations of solutions of time dependent $p d e$'s Its importance is beginning to be explicitly recognized, see eg [2], [14] The examples contained in this work should convince the reader that the particular norm defining the tube around the solution is highly dependent on the particular nonlinearity and is much more likely to be an L^{∞}-based Sobolev norm than the Hilbert space norm
M^{2} AN Modelisation mathematıque et Analyse numerıque Mathematical Modelling and Numerical Analysis

In Section 3 we introduce the base scheme that is obtained by applying the IRK method to the initial-value problem. For the purposes of the error analysis we found convenient to assume that the IRK schemes under consideration are algebraically stable, satisfy the usual simplifying assumptions on the order conditions and, also, a positivity property that guarantees the existence of solutions of the nonlinear system of intermediate stages [7]. We consider issues of existence and uniqueness of the solutions of the resulting discrete problems and estimate their errors. We then prove a general convergence result for the base scheme with an error estimate of optimal-rate spatial accuracy. The techniques we used are well-known and can be found, with references to the original papers in [6], [9]. Nevertheless, we also note that the analysis presented, especially in what concerns stability, uses only the local monotonicity condition alluded to above rather than the global version.

In Section 4 we consider Newton's iterative method for solving the nonlinear system of the intermediate equations. We show that it preserves the spatial and temporal orders of accuracy of the base scheme, provided it is started with sufficiently accurate initial conditions at each time step, if certain suitable mesh conditions are valid, and if sufficiently many Newton iterations are performed at each step. The number of iterations needed depends on the accuracy of the starting values and the temporal order of accuracy of the base scheme. It is shown that under some realistic conditions, no more than one iteration is required.

In Section 5 we study an efficient variant of Newton's method, the so-called modified Newton method. The obvious advantage that the Jacobian matrix need not be updated at every iteration is enhanced by the possibility of decoupling and simultaneous solving («in parallel») for the intermediate stages. The modified scheme no longer converges quadratically; we show however that, with sufficiently many iterations, it preserves the spatial and temporal orders of accuracy of the base scheme. In Section 6 we analyze an even simpler iterative scheme, which is sometimes referred to as the «explicitimplicit» method as it is based on a splitting of the linear and nonlinear parts of the operator. The resulting method is very efficient in that the linear systems that need be solved have the same coefficient matrix, i.e. a matrix that does not vary with the time stepping. However this scheme is not applicable to as wide a class of evolution equations as the modified Newton method.

Finally, in Section 7 we apply the methodology developed in the previous sections to two concrete examples corresponding to finite element semidiscretizations of the Korteweg-de Vries (KdV) and the Cubic Schrödinger equations. In addition to providing illustrative examples to the formal approach adopted in the work at hand, the results of this section supplement those in [12] and [11] by providing complete analyses of efficient linearizations of the fully discrete schemes proposed in those works. Besides establishing convergence, the following useful information is gleaned:
vol. $31, \mathrm{n}^{\circ} 2,1997$
(1) The number of iterations required to preserve the rate of convergence of the base scheme is determined for each linearization technique
(11) Typically, Courant number type stability conditions between the spatial and temporal discretization parameters are required These are explicitly exhibited
Newton-type methods for solving the nonlinear systems resulting from IRK schemes have often been considered in the literature of stiff systems of ode's For a survey of the literature and a list of references we refer the reader to a recent paper of Alexander, [2] In that work, Alexander analyzes the modified Newton method as apphed to the nonlinear systems resulting from the application of quite general IRK schemes to stiff systems of ode's, that have a Jacobian of the right-hand side term which is essentially negative dominant and slowly varying Using matrix methods he proves that the modified Newton iteration converges linearly to the locally unique solution of the nonlinear system if one starts near a smooth solution of the system of o de 's In this work, we emphasize models of stiff initial-value problems that are semidiscretizations of nonlinear $p d e$'s In such cases, especially if higher-order semidiscretizations are used, the Jacobian may not be essentially negative dominant, or if such be the case, it may be quite difficult to establish this property given that the entries of the Jacobian must be examined

2. PRELIMINARIES

2.1. The basic assumptions

Let \mathscr{M} denote a set of positive numbers (infinite or otherwise) and for $m \in \mathscr{M}$, let $\left(H_{m},(., .)_{H}\right)$ denote a corresponding famıly of finite dımen sional (real) inner product spaces In some applications \mathscr{M} may be a set of positive integers and m may denote the dimension of H_{m}, in others, m may be used to denote a more general parameter for H_{m}

We consider the following family of initial-value problems

$$
\left\{\begin{array}{l}
\frac{d \omega_{m}}{d t}=L_{m} \omega_{m}+\varphi_{m}\left(\omega_{m}\right)+\varepsilon_{m}(t), \quad 0 \leqslant t \leqslant T \tag{21}\\
\omega_{m}(0)=\omega_{m}^{0}
\end{array}\right.
$$

for some $T>0$, where $\omega_{m}[0, T] \rightarrow H_{m}, L_{m} H_{m} \rightarrow H_{m}$ are linear operators, $\varphi_{m} \quad H_{m} \rightarrow H_{m}$ are smooth functions and $\varepsilon_{m}[0, T] \rightarrow H_{m}$ are smooth functions satisfying

$$
\begin{equation*}
\max _{0 \leqslant t \leqslant T}\left\|\varepsilon_{m}(t)\right\|_{H} \leqslant c m^{-} \tag{H1}
\end{equation*}
$$

for some $s>0$ and a constant c independent of m.
One area of application of (2.1) we have in mind is that when ω_{m} represents a continuous-in-time approximation to the solution u of the time dependent p.d.e.

$$
\begin{cases}\frac{d u}{d t} & =L u+\varphi(u), \quad 0 \leqslant t \leqslant T \\ u(0) & =u^{0}\end{cases}
$$

In this case, the functions $\varepsilon_{m}(t)$ may represent semidiscretization errors, and may be unknown. In view of (H1) and other considerations to follow, it turns out that the $\varepsilon_{m}(t)$ will not play a major part in the time integration process.

We assume that for some constants λ, η, independent of m,

$$
\begin{align*}
& \left(L_{m} v, v\right)_{H_{m}} \leqslant \lambda\|v\|_{H_{m}}^{2}, \quad \forall v \in H_{m} \tag{H2}\\
& \left(\varphi_{m}(v), v\right)_{H_{m}} \leqslant \eta\|v\|_{H_{m}}^{2}, \quad \forall v \in H_{m} \tag{H3}
\end{align*}
$$

Note that $\varphi_{m}(0)=0$, as a consequence of (H3) and the continuity of φ_{m}. To simplify matters, we assume that $\lambda, \eta \geqslant 0$.

We assume that for each m, H_{m} is additionally equipped with norms $\|\|\cdot\|\|_{t, m}, i=1,2,3,4$. These norms are obviously equivalent to $\|\cdot\|_{H_{m}}$. Specifically, let $c>0$ and $s_{1}, s_{2}, s_{3}, s_{4} \geqslant 0$ be constants independent of m such that

$$
\begin{equation*}
\|v\|_{t, m} \leqslant c m^{s_{r}}\|v\|_{H_{m}}, \quad i=1,2,3,4, \quad \forall v \in H_{m} . \tag{2.2}
\end{equation*}
$$

For $m \in \mathscr{M}, i=1,2,3,4$ and $\rho>0$, we introduce the sets

$$
B_{l, m}(\rho)=\left\{v \in H_{m}:\|v\|_{l, m} \leqslant \rho\right\} .
$$

Now let M, K, β, γ and δ be given positive numbers. For $m \in \mathscr{M}$, we introduce the spaces $\mathscr{F}_{m, K, M}^{1}, \mathscr{F}_{m, K, M, \beta}^{2}, \mathscr{F}_{m, K, M, \gamma}^{3}$ and $\mathscr{F}_{m, K, M, \delta}^{4}$ by

$$
\begin{aligned}
& \mathscr{F}_{m, K, M}^{1}=\left\{g: H_{m} \rightarrow H_{m} \mid(g(u)-g(v), u-v)_{H_{m}} \leqslant K\|u-v\|_{H_{m}}^{2}\right. \\
&\left.\forall u \in B_{1, m}(M), \forall v \in H_{m}\right\}, \\
& \mathscr{F}_{m, K, M, \beta}^{2}=\left\{g: H_{m} \rightarrow H_{m} \mid(D g(u) v, v)_{H_{m}} \leqslant K m^{\beta}\|v\|_{H_{m}}^{2}\right. \\
&\left.\forall u \in B_{2, m}(M), \forall v \in H_{m}\right\}, \\
& \mathscr{F}_{m, K, M, \gamma}^{3}=\left\{g: H_{m} \rightarrow H_{m} \mid\|D g(u) v\|_{H_{m}} \leqslant K m^{\gamma}\|v\|_{H_{m}}\right. \\
&\left.\forall u \in B_{3, m}(M), \forall v \in H_{m}\right\}, \\
& \mathscr{F}_{m, K, M, \delta}^{4}=\left\{g: H_{m} \rightarrow H_{m} \mid\left\|D^{2} g(u)[v, w]\right\|_{H_{m}} \leqslant K m^{\delta}\|v\|_{H_{m}}\|w\|_{H_{m}}\right. \\
&\left.\forall u \in B_{4, m}(M), \forall v, w \in H_{m}\right\} .
\end{aligned}
$$

Here, $D g, D^{2} g$ are the first and second Fréchet derivatives of g, respectively.
We assume that there exist nonnegative constants $K, M, \beta, \gamma, \delta$ such that

$$
\begin{array}{ll}
\varphi_{m} \in \mathscr{F}_{m, K, M}^{1}, & \forall m \in \mathscr{M} \\
\varphi_{m} \in \mathscr{F}_{m, K, M, \beta}^{2}, & \forall m \in \mathscr{M} \\
\varphi_{m} \in \mathscr{F}_{m, K, M, \gamma}^{3}, & \forall m \in \mathscr{M} \\
\varphi_{m} \in \mathscr{F}_{m, K, M, \delta}^{4}, & \forall m \in \mathscr{M} \tag{H7}
\end{array}
$$

We observe that if (H2) holds, then it follows from (H4) and (H5) that $\forall m \in \mathscr{M}, L_{m}+\varphi_{m} \in \mathscr{F}_{m, K, M}^{1}, \mathscr{F}_{m, K, M, \beta}^{2}$, respectively with K replaced by $K+\lambda$.

The definition of $\mathscr{F}_{m, K, M}^{1}$ explicitly formulates what we previously referred to as the local monotonicity condition: One of the two vectors u, v is restricted to a suitable ball $B_{1, m}(M)$ containing the solution of the p.d.e. Let us also note that the lack of explicit dependence on t is purely for the sake of simplicity. (H8) For each $m \in \mathscr{M}$, (2.1) has a unique solution ω_{m} : $[0, T] \rightarrow \bigcap_{j=1}^{4} B_{j, m}\left(\frac{M}{2}\right)$.
(H9)

$$
\max _{0 \leqslant t \leqslant T}\left\|\frac{d^{j}}{d t^{j}} \omega_{m}(t)\right\|_{H_{m}} \leqslant c_{j}, \quad j=0, \ldots, J
$$

for a sufficiently large integer J and constants c_{j} independent of m.
To simplify the notation, we shall suppress subscripts m and H_{m} whenever possible. Let us also mention that in case the problem is a stiff nonlinear system of o.d.e.'s, not associated with any semidiscretization, we think of it as posed on \mathbf{R}^{m} for a fixed m. In such a case $\varepsilon_{m}=0$.

Remark. One could argue that hypotheses (H2) and (H3) are global in nature ; however, many classes of important p.d.e.'s e.g. parabolic and hyperbolic, as well as specific equations such as the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Navier-Stokes equations of fluid mechanics satisfy them. This is in sharp contrast with hypotheses $(H 4)-(H 7)$ which can only be used in a local setting in order to treat the above-mentioned equations.

2.2. The Implicit Runge-Kutta methods

For $q \geqslant 1$ integer, a q-stage IRK method is given as a set of constants $A=\left(a_{i j}\right) \in \mathbf{R}^{q \times q}, \quad b=\left(b_{1}, \ldots, b_{q}\right)^{T} \in \mathbf{R}^{q}, \quad \tau=\left(\tau_{1}, \ldots, \tau_{q}\right)^{T} \in \mathbf{R}^{q}$. We shall
assume that these methods satisfy certain stability and consistency conditions. Indeed, we require the algebraic stability condition cf. [6]

$$
\left\{\begin{array}{l}
b_{t} \geqslant 0, \quad i=1, \ldots, q \tag{S}\\
\text { the } q \times q \text { array with entries } m_{t \jmath}=a_{t j} b_{t}+a_{\jmath t} b_{\jmath}-b_{\imath} b_{j} \\
\text { is positive semidefinite } .
\end{array}\right.
$$

The consistency conditions are given by the simplifying assumptions [6]

$$
\begin{equation*}
\sum_{j=1}^{q} b_{j} \tau_{J}^{\ell}=\frac{1}{\ell+1}, \ell=0, \ldots, v-1 \tag{B}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{q} a_{i j} \tau_{j}^{\ell}=\frac{\tau_{t}^{\ell+1}}{\ell+1}, i=1, \ldots, q, \ell=0, \ldots, p-1 \tag{C}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{t=1}^{q} a_{t j} \tau_{t}^{\ell} b_{t}=\frac{b_{j}}{\ell+1}\left(1-\tau_{j}^{\ell+1}\right), j=1, \ldots, q, \ell=0, \ldots, \rho-1 \tag{D}
\end{equation*}
$$

for some integers $v, p, \rho \geqslant 1$. We assume that

$$
\begin{gather*}
v \leqslant \rho+p+1 \tag{2.3a}\\
v \leqslant 2 p+2 \tag{2.3b}
\end{gather*}
$$

The existence of the numerical approximations is obtained by assuming the following positivity property
(P) $\left\{\begin{array}{l}A \text { is invertible and there exists a positive diagonal matrix } \mathrm{D} \text { such that } \\ x^{T} C x>0, \forall x \in \mathbf{R}^{q}, x \neq 0, \text { where } C=D A^{-1} D^{-1} .\end{array}\right.$

Two classes of IRK methods satisfying the hypotheses above are the Gauss-Legendre methods for which $v=2 q, p=q, \rho=q$ and the Radau IIA methods for which $v=2 q-1, p=q, p=q-1$, [6]. We also mention two diagonally implicit (DIRK) methods of orders 3 and 4, respectively. (The fourth-order method does not satisfy (2.3a). However, $c f$. [12], [11], our theory holds for this method as well.)

3. THE BASE SCHEME

As noted earlier, the techniques employed in this section are well-known. The purpose of the detailed treatment of the base scheme is to provide a benchmark (in terms of the spatial and temporal orders of accuracy of its global error) against which we measure the accuracy of the linearized schemes that are introduced in the three subsequent sections.

We begin with a preliminary result which shows that in view of (H1) it is possible to disregard the terms $\varepsilon(t)$ while constructing the temporal discreti zations Denoting $L+\varphi$ by f, we have

Lemma 31 Let ω [0,T] $\rightarrow H_{m}$ be the solution of (21) and let $\iota \quad[0, T] \rightarrow H_{m}$ be a solution of the initial value problem

$$
\left\{\begin{array}{l}
\frac{d v}{d t}=f(v), \quad 0 \leqslant t \leqslant T \tag{array}\\
v(0)=\omega^{0}
\end{array}\right.
$$

Then, there exists a constant c, independent of m such that

$$
\begin{equation*}
\max _{0 \leqslant t \leqslant T}\|(\omega-v)(t)\| \leqslant c m^{-} \tag{3}
\end{equation*}
$$

Proof From (2 1) and (3 1), we get,

$$
\frac{d}{d t}(\omega-v)=f(\omega)-f(v)+\varepsilon(t)
$$

Taking the inner product with $\omega-v$, from (H2) and (H4) we get

$$
\frac{d}{d t}\|\omega-v\|^{2} \leqslant 2(\lambda+K)\|\omega-v\|^{2}+2\|\varepsilon(t)\|\|\omega-v\|, \quad 0 \leqslant t \leqslant T
$$

Using (H1), we easıly get (3 2)
Let N be a positive integer and let $k=\frac{T}{N}$ represent the temporal step size We introduce the map $\mathscr{R}(k)=\mathscr{R} \quad H_{m} \rightarrow H_{m}$ as follows For $v \in H_{m}$, let the intermedıate values $v^{t} \in H_{m}, 1 \leqslant l \leqslant q$, be given by

$$
\begin{equation*}
v^{\prime}=v+k \sum_{J}^{q} a_{t j} f\left(v^{J}\right), \quad \imath=1, \quad, q \tag{33}
\end{equation*}
$$

We then set

$$
\begin{equation*}
\mathscr{R} v=v+k \sum_{t=1}^{q} b_{t} f\left(v^{t}\right) \tag{34}
\end{equation*}
$$

Note that the existence of $\mathscr{R} v$ depends solely on the existence of the intermediate values $\left\{v^{\prime}\right\}_{t-1}^{q}$, satisfying (33) Furthermore, since A is invertible in view of (P), (34) may be written as

$$
\mathscr{R} v=\left(1-b^{T} A^{1} e\right) v+b^{T} A^{-1}\left(v^{1}, \quad, v^{q}\right)^{T}
$$

where $e=(1, \quad, 1)^{T} \in \mathbf{R}^{q}$

We shall next consider the question of existence of the intermediate values. Using a well-known version of Brouwer's fixed point theorem, we shall prove that if k is sufficiently small, then for each $v \in H_{m}$, there exists at least one solution set $\left\{\left\{v^{t}\right\}_{t=1}^{u}, \mathscr{R} v\right\}$ to (3.3), (3.4). For simplicity of notation, we shall represent this set simply by $\mathscr{R} v$. Note however that, for nonlinear f, the map \mathscr{R} cannot be expected to be single-valued in general.

Lemma 3.2: Let $\left(H,(., .)_{H}\right)$ be a finite dimensional Hilbert space and denote by $\|\cdot\|_{H}$ the associated norm. Suppose that $g: H \rightarrow H$ is continuous and that there exists $\alpha>0$ such that $(g(x), x)_{H} \geqslant 0$ for all $x \in H$ with $\|x\|_{H}=\alpha$. Then, there exists $x^{*} \in H$ such that $g\left(x^{*}\right)=0$ and $\left\|x^{*}\right\|_{H} \leqslant \alpha$.

Proposition 3.1: Assume that (H2), (H3) and (P) hold. Then there exists $k_{0}=k_{0}(A, b, \lambda, \eta)>0$ such that for each $0<k \leqslant k_{0}$, and each $v \in H_{m}$, there exists a solution $\left\{\left\{v^{\prime}\right\}_{t=1}^{q}, \mathscr{R} v\right\}$ to (3.3), (3.4). Furthermore, all such solutions $\left\{\left\{v^{t}\right\}_{t=1}^{q}\right\}$ satisfy

$$
\begin{equation*}
\max _{1 \leqslant 1 \leqslant q}\left\|v^{t}\right\| \leqslant c\|v\| \tag{3.5}
\end{equation*}
$$

for some constant $c=c(A, \lambda, \eta)$. If (S) is also assumed to hold, then all such solutions $\mathscr{R} v$ satisfy the estimate

$$
\begin{equation*}
\|\mathscr{R} v\| \leqslant(1+c k)\|v\|, \tag{3.6}
\end{equation*}
$$

for some constant $c=c(A, b, \lambda, \eta)$.
Proof: We first establish (3.5) and (3.6). From (3.3), we obtain

$$
\sum_{j=1}^{q} c_{i j} d_{j} v^{j}=\sum_{j=1}^{q} c_{t j} d_{j} v+k d_{t} f\left(v^{t}\right), \quad i=1, \ldots, q
$$

where C, D are as in (P). Taking the inner product of the ι-th equation with $d_{t} v^{t}$, summing over i, from (P), (H2) and (H3) it follows that for some constants c_{1}, c_{2} depending only on A,

$$
c_{1} \sum_{i=1}^{q}\left\|v^{i}\right\|^{2} \leqslant c_{2}\|v\|\left(\sum_{t=1}^{q}\left\|v^{i}\right\|^{2}\right)^{1 / 2}+k(\lambda+\eta)\left(\max _{t} d_{t}^{2}\right) \sum_{t=1}^{q}\left\|v^{t}\right\|^{2}
$$

Choosing $\quad k_{0}=\frac{c_{1}}{2(i+\eta)\left(\max _{i} d_{i}^{2}\right)}$, we obtain (3.5) for any
$0<k \leqslant k_{0}$ $0<k \leqslant k_{0}$.
vol 31, $n^{\circ} 2,1997$

Now from (3.3) and (3.4) it follows that

$$
\begin{aligned}
\|\mathscr{R} v\|^{2} & =\|v\|^{2}+2 k \sum_{t=1}^{q} b_{i}\left(f\left(v^{t}\right), v\right)+k^{2} \sum_{l, j=1}^{q} b_{t} b_{j}\left(f\left(v^{l}\right), f\left(v^{\prime}\right)\right) \\
& =\|v\|^{2}+2 k \sum_{t=1}^{q} b_{l}\left(f\left(v^{t}\right), v^{t}\right)-k^{2} \sum_{l, j=1}^{q} m_{l j}\left(f\left(v^{t}\right), f\left(v^{J}\right)\right) .
\end{aligned}
$$

Using (H2), (H3) and (S),

$$
\begin{equation*}
\|\mathscr{R} v\|^{2} \leqslant\|v\|^{2}+2 k(\lambda+\eta)\left(\max _{1 \leqslant t \leqslant q} b_{t}\right) \sum_{t=1}^{q}\left\|v^{t}\right\|^{2} . \tag{3.7}
\end{equation*}
$$

Using (3.5) in (3.7), we obtain (3.6).
Concerning the question of existence, we first note that if $v=0$, then $\mathscr{R} v=0$ is a solution, in view of the fact that $f(0)=0$. Hence, let $v \neq 0$ and define the map $G \equiv\left(g_{1}, \ldots, g_{q}\right)^{T}:\left(H_{m}\right)^{q} \rightarrow\left(H_{m}\right)^{q}$ by

$$
g_{i}(V)=\sum_{J=1}^{q} c_{i j} d_{t} d_{j}\left(v^{J}-v\right)-k d_{t}^{2} f\left(v^{t}\right), \quad i=1, \ldots, q
$$

for $V=\left(v^{\prime}, \ldots, v^{q}\right)^{T}, v^{\prime} \in H_{m}, i=1, \ldots, q$. Let $((.,)$.$) denote the usual$ (product) inner product on $\left(H_{m}\right)^{q}$, and ill. III the associated norm.

Then we have

$$
((G(V), V))=\sum_{t, j=1}^{q} c_{l j} d_{t} d_{j}\left\{\left(v^{t}, v^{j}\right)-\left(v, v^{t}\right)\right\}-k \sum_{i=1}^{q} d_{t}^{2}\left(f\left(v^{t}\right), v^{t}\right) .
$$

We see immediately that for $0<k \leqslant k_{0}$

$$
\begin{aligned}
((G(V), V)) & \geqslant c_{1}\|V\|^{2}-c_{2}\|v\|\|V\|-k(\lambda+\eta)\left(\max _{t} d_{t}^{2}\right)\|V\|^{2} \\
& \geqslant\|V\|\left\{\frac{c_{1}}{2}\|V\|-c_{2}\|v\|\right\}
\end{aligned}
$$

Hence $((G(V), V)) \geqslant 0$ for all $V \in\left(H_{m}\right)^{q}$ satisfying $\|V\|=\frac{2 c_{2}}{c_{1}}\|v\|$. Using Lemma 3.2, we infer that there exists $V^{*} \in\left(H_{m}\right)^{q}$ such that $G\left(V^{*}\right)=0$. Obviously $\left(v^{1}, \ldots, v^{q}\right)^{T}=V^{*}$ is a solution of (3.3).

We shall often use steps similar to those leading to the estimate (3.5). In such occurrences, these shall be referred to as diagonalization arguments.

We next consider the following stability result

Proposition 3.2: Assume that (H2), (H4), (S) and (P) hold. Then, there exists $k_{0}=k_{0}(A, b, \hat{\lambda}, K)>0$ such that if $\left\{v,\left\{v^{i}\right\}_{1=1}^{q}, \mathscr{R} v\right\}$ and $\left\{w,\left\{w^{t}\right\}_{t=1}^{q}, \mathscr{R} w\right\}$ satisfy (3.3) with $0<k \leqslant k_{0}$ and $\left\{v^{c}\right\}_{t=1}^{y} \subset B_{1}(M)$, (or $\left\{w^{l}\right\}_{l=1}^{u} \subset B_{1}(M)$), then

$$
\begin{gather*}
\max _{1 \leqslant 1 \leqslant q}\left\|v^{\prime}-w^{t}\right\| \leqslant c\|v-w\| \tag{3.8}\\
\|\mathscr{R} v-\mathscr{R} w\| \leqslant(1+c k)\|v-w\| \tag{3.9}
\end{gather*}
$$

for some constant $c=c(A, b, \lambda, K)$.
Proof: Applying a diagonalization procedure to the system

$$
v^{\prime}-w^{\prime}=v-w+k \sum_{j=1}^{q} a_{t j}\left(f\left(v^{\prime}\right)-f\left(w^{\prime}\right)\right), \quad i=1, \ldots, q,
$$

we obtain (3.8) from (H2), (H4) and (P). Furthermore, using (S), we obtain

$$
\|\mathscr{R} v-\mathscr{R} w\|^{2} \leqslant\|v-w\|^{2}+2 k \sum_{i=1}^{q} b_{i}\left(f\left(v^{\prime}\right)-f\left(w^{\prime}\right), v^{t}-w^{\prime}\right)
$$

$$
\begin{align*}
& -k^{2} \sum_{t, j=1}^{q} m_{l j}\left(f\left(v^{t}\right)-f\left(w^{\prime}\right), f\left(v^{j}\right)-f\left(w^{\prime}\right)\right) \tag{3.10}\\
& \quad \leqslant\|v-w\|^{2}+2 k\left(\max _{1 \leqslant t \leqslant 9} b_{t}\right)(\lambda+K) \sum_{t=1}^{q}\left\|v^{\prime}-w^{\prime}\right\|^{2} .
\end{align*}
$$

(3.9) now follows from (3.8) and (3.10).

Note that, as a result of the above, there exists at most one set $\left\{v^{t}\right\}_{t=1}^{y}$ in $B_{1}(M)$ satısfying (3.3).

We now focus attention on the local truncation errors. Letting $t^{n}=n k$ and $t^{n}{ }^{\prime}=t^{n}+k \tau_{i}, \quad i=1, \ldots, q, \quad n=0, \ldots, N-1, \quad$ we have.

Proposition 3.3: Assume that hypotheses (H1), (H2), (H3), (H4), (H8), (H9), (B), (C) and (P) hold. Then there exists $k_{0}>0$ such that for all $0<k \leqslant k_{0}$ and for $n=0, \ldots, N-1$, there exist $\omega^{n, t}$, $\omega^{n+1}=\mathscr{R} \omega\left(t^{n}\right) \quad$ satısfying

$$
\begin{align*}
& \omega^{n, t}=\omega\left(t^{n}\right)+k \sum_{j=1}^{q} a_{t \jmath} f\left(\omega^{n, j}\right), \quad i=1, \ldots, q \tag{3.11}\\
& \omega^{n+1}=\mathscr{R} \omega\left(t^{n}\right)=\omega\left(t^{n}\right)+k \sum_{t=1}^{q} b_{t} f\left(\omega^{n, t}\right) . \tag{3.12}
\end{align*}
$$

vol 31, $\mathrm{n}^{\circ} 2,1997$

Furthermore,

$$
\begin{align*}
& \max _{1 \leqslant 1 \leqslant \varphi}\left\|\omega\left(t^{n \cdot i}\right)-\omega \omega^{n, t}\right\| \leqslant c k\left(k^{p}+m^{-s}\right) \tag{3.13}\\
& \left\|\omega \omega^{n+1}-\omega\left(t^{n+1}\right)\right\| \leqslant c k\left(k^{\min \{p, \cdot \gamma}+m^{-s}\right) \tag{3.14}
\end{align*}
$$

for some constant c independent of k and m.
Proof: The existence of $\left\{\omega^{n, \prime}\right\}_{t=1}^{4}$, and hence that of ω^{n+1} follows from Proposition 3.1. Now let $\left\{\rho^{n . t}\right\}_{\tau=1}^{q}$ and ρ^{n+1} in H_{m} be given by

$$
\begin{equation*}
\rho^{n \cdot i}=\omega\left(t^{n \cdot i}\right)-\omega\left(t^{n}\right)-k \sum_{j=1}^{q} a_{i j} f\left(\omega\left(t^{n \cdot j}\right)\right) \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\rho^{n+1}=\omega\left(t^{n+1}\right)-\omega\left(t^{n}\right)-k \sum_{i=1}^{q} b_{i} f\left(\omega\left(t^{n \cdot i}\right)\right) \tag{3.16}
\end{equation*}
$$

From (2.1), Taylor's theorem, (H1) and (H9),

$$
\begin{aligned}
\rho^{n . i}= & \omega\left(t^{n . i}\right)-\omega\left(t^{n}\right)-k \sum_{j=1}^{q} a_{i j}\left[\frac{d \omega}{d t}\left(t^{n . j}\right)-\varepsilon\left(t^{n .1}\right)\right] \\
= & \sum_{\ell=1}^{p} k^{\ell} \frac{\tau_{l}^{\ell}}{\ell!} \frac{d^{\ell} \omega}{d t^{\ell}}\left(t^{n}\right)-k \sum_{l=1}^{q} a_{i j} \sum_{\ell=1}^{p} k^{\ell-1} \frac{\tau_{l}^{\ell-1}}{(\ell-1)!} \frac{d^{\ell} \omega}{d t^{\ell}}\left(t^{n}\right) \\
& +O\left(k^{p+1}+k m^{-s}\right) .
\end{aligned}
$$

Using (C), it follows easily that

$$
\begin{equation*}
\max _{1 \leqslant 1 \leqslant 4}\left\|\rho^{n, i}\right\| \leqslant c k\left(k^{p}+m^{-1}\right) \tag{3.17}
\end{equation*}
$$

Now it follows from (3.15) and (3.11) that

$$
\begin{equation*}
\omega\left(t^{n, i}\right)-\omega^{n, t}=k \sum_{j=1}^{q} a_{i j}\left[f\left(\omega\left(t^{n, j}\right)\right)-f\left(\omega^{n, j}\right)\right]+\rho^{n, t} \tag{3.18}
\end{equation*}
$$

In view of $(P),(H 2),(H 4),(H 8)$ and (3.17), a diagonalization argument gives (3.13) for k sufficiently small.

Proceeding as in the derivation of (3.17) but using (B) instead of (C), we obtain

$$
\begin{align*}
& \left\|\rho^{n+1}\right\| \leqslant c k\left(k^{v}+m^{-s}\right) \tag{3.19}\\
& \mathrm{M}^{2} \text { AN Modélisation mathématique et Analyse numérique } \\
& \quad \begin{array}{l}
\text { Mathematical Modelling and Numerical Analysis }
\end{array}
\end{align*}
$$

Moreover, it follows from (3.12), (3.16) and (3.18) that

$$
\begin{aligned}
\omega\left(t^{n+1}\right)-\omega^{n+1} & =k \sum_{i=1}^{q} b_{i}\left[f\left(\omega\left(t^{n, i}\right)\right)-f\left(\omega^{n, i}\right)\right]+\rho^{n+1} \\
& =\sum_{i, j=1}^{q} b_{i}\left(A^{-1}\right)_{i j}\left[\omega\left(t^{n . j}\right)-\omega^{n, j}-\rho^{n, j}\right]+\rho^{n+1}
\end{aligned}
$$

(3.14) now follows from (3.13), (3.17) and (3.19).

In case $\varepsilon_{m}=0$, i.e. when we have no semidiscretization of a p.d.e. in mind, the results of Proposition 3.3 hold without any spatial contribution m^{-s} in the bounds (3.13) or (3.14). The same holds for the rest of the analogous estimates in Sections 3-6.

We are now ready to state and prove the main result of this section.
Theorem 3.1 : Assume that the hypotheses of Propositions 3.1, 3.2 and 3.3 hold. Assume additionally that
(i) $s_{1} \leqslant s$.

Then, there exist $k_{0}, m_{0}, c_{0}>0$ such that for all $0<k \leqslant k_{0}$ and all $m \geqslant m_{0}$ satisfying
(ii) $k^{p+1} m^{s_{1}} \leqslant c_{0}$,
there exists a sequence $V^{0},\left\{\left\{V^{n, i}\right\}_{i=1}^{q}, V^{n+1}\right\}_{n=0}^{N-1} \subset H_{m}$ given by

$$
\left\{\begin{align*}
V^{0} & =\omega^{0} \tag{3.20}\\
V^{n, i} & =V^{n}+k \sum_{j=1}^{q} a_{i j} f\left(V^{n, j}\right), i=1, \ldots, q \\
V^{n+1} & =\mathscr{R} V^{n}=V^{n}+k \sum_{i=1}^{q} b_{i} f\left(V^{n, i}\right) .
\end{align*}\right.
$$

In addition, the following estimate holds

$$
\begin{equation*}
\max _{0 \leqslant n \leqslant N}\left\|\omega\left(t^{n}\right)-V^{n}\right\| \leqslant c\left\{k^{\min \{p, \cdots\}}+m^{-s}\right\} \tag{3.21}
\end{equation*}
$$

for some constant c independent of k and m. We shall call (3.20) the "base scheme".

Proof: Applying Proposition 3.1 repeatedly, we can establish the existence of a sequence $\left\{\left\{V^{n, i}\right\}_{i=1}^{q}, V^{n+1}\right\}_{n=0}^{N-1}$ satisfying (3.20). Now using (H8), (2.2) and (3.13),

$$
\begin{align*}
\| \omega^{n, i} i_{\|_{1}} & \leqslant\left\|\omega^{n, i}-\omega\left(t^{n, i}\right)\right\|_{1}+\left\|\omega\left(t^{n, i}\right)\right\|_{1} \tag{3.22}\\
& \leqslant c m^{s_{1}} k\left\{k^{p}+m^{-s}\right\}+\frac{M}{2}, \quad i=1, \ldots, q .
\end{align*}
$$

vol. $31, \mathrm{n}^{\circ} 2,1997$

Hence, in view of (i) and (ii), for k sufficiently small, it follows that

$$
\begin{equation*}
\omega^{n, i} \in B_{1}\left(3 \frac{M}{4}\right), i=1, \ldots, q, n=0, \ldots, N-1 \tag{3.23}
\end{equation*}
$$

Applying Proposition 3.2. we see that

$$
\left\|\omega^{n+1}-V^{n+1}\right\| \leqslant(1+c k)\left\|\omega\left(t^{n}\right)-V^{n}\right\|
$$

From (3.14) and the triangle inequality, it follows that for $n=0, \ldots, N-1$,

$$
\left\|\omega\left(t^{n+1}\right)-V^{n+1}\right\| \leqslant(1+c k)\left\|\omega\left(t^{n}\right)-V^{n}\right\|+c k\left\{k^{\min \{p, n\}}+m^{-s}\right\}
$$

(3.21) now follows easily from recursion.

Remarks.

1) It is obvious that Theorem 3.1 remains valid for any choice of V^{0} in H_{m} that satisfies

$$
\begin{equation*}
\left\|V^{0}-\omega^{0}\right\| \leqslant c m^{-} \tag{3.24}
\end{equation*}
$$

where c is independent of m. Consequently, we shall refer to (3.20) with V^{0} satisfying (3.24) as the "base scheme" as well.
2) (i) and (ii) form a set of convenient sufficient conditions that guarantee that $\omega^{n, t} \in B_{1}(M)$ for all n, i. In special cases, (3.23) may be proved in a more direct manner, $c f$. e.g. [3].
3) If $s_{1} \leqslant s$ and $k^{p+1} m^{\prime} \leqslant c_{0}$ for some $j, 1 \leqslant j \leqslant 4, c_{0}$ sufficiently small, then,

$$
\begin{equation*}
\omega^{n \cdot i} \in B_{l}\left(3 \frac{M}{4}\right), i=1, \ldots, q, 0 \leqslant n \leqslant N-1 \tag{3.25}
\end{equation*}
$$

In general $1 \leqslant p \leqslant q$ whilst v may be as large as $2 q$, as in the case of Gauss-Legendre methods. For some specific problems, using (D), (2.3a), $(2.3 b)$ and specialized techniques, one may obtain an improved rate of convergence estimate for the base scheme. See for instance [12], [11]. In order to accomodate such special cases, we shall make the assumption

$$
\begin{equation*}
\left\|\omega\left(t^{n}\right)-V^{n}\right\| \leqslant c\left\{k^{\sigma}+m^{-s}\right\}, \quad n=0, \ldots, N \tag{H10}
\end{equation*}
$$

for some integer σ, with $p \leqslant \sigma \leqslant v$ and for some constant c independent of k and m.

Finally, let us remark that with slightly more stringent conditions than (i), (ii), one may prove uniqueness of the $V^{n, 1}$ as well. For example, consider the following

COROLLARy 3.1: Assume that (H10) holds and that in addition to the assumptions of Theorem 3.1 we have
(i) $s_{1}<s$,
(ii) $k^{\sigma} m^{s_{1}} \leqslant c_{0}, c_{0}$ sufficiently small.

Then, for a given choice of V^{0} satisfying (3.24), there exists a unique solution $\left\{\left\{V^{n, i}\right\}_{i=1}^{\prime}, V^{n+1}\right\}_{n=0}^{N-1}$ to (3.20).

Proof: In view of Proposition 3.2, it suffices to show that

$$
\begin{equation*}
\max _{1 \leqslant i \leqslant q}\left\|V^{n, i}\right\|_{\|_{1}} \leqslant M, \quad n=0, \ldots, N-1 . \tag{3.26}
\end{equation*}
$$

To obtain this, from (3.8) and (H10) it follows that

$$
\begin{aligned}
\max _{1 \leqslant i}\left\|V^{n, i}-\omega^{n, t}\right\| & \leqslant c\left\|V^{n}-\omega\left(t^{n}\right)\right\| \\
& \leqslant c\left\{k^{\sigma}+m^{-s}\right\} .
\end{aligned}
$$

Hence, using (i), (ii), (2.2) and (3.23), we obtain

$$
\max _{1 \leqslant i \leqslant q}\left\|V^{n \cdot 1}\right\|_{1} \leqslant c m^{\prime \cdot}\left\{k^{\sigma}+m^{-3}\right\}+\max _{1 \leqslant 1 \leqslant 4}\left\|\omega^{n \cdot i}\right\|_{1} \leqslant M,
$$

which is the desired result.

4. NEWTON'S METHOD

To begin, let us recall that Newton's method for approximating a root of a smooth function $g: X \rightarrow X$, where X is a normed linear space, is given by

$$
D g\left(x_{\ell}\right)\left(x_{\ell+1}-x_{\ell}\right)=-g\left(x_{\ell}\right), \quad \ell=0,1, \ldots, \quad x_{0} \text { given } .
$$

In our particular context, given approximations $U^{j} \in H_{m}, U^{j} \approx u\left(t^{j}\right)$, $j=0, \ldots, n$, Newton's iterative procedure for approximating the intermediate values $\left\{U^{n, i}\right\}$ takes the form

$$
\begin{gather*}
U_{\ell+1}^{n, i}-k \sum_{i=1}^{4} a_{i j} D f\left(U_{\ell}^{n \cdot j}\right)\left(U_{\ell+1}^{n, \prime}-U_{\ell}^{n . j}\right)=U^{n}+k \sum_{i=1}^{\ell} a_{i j} f\left(U_{\ell}^{n . j}\right) \tag{4.1}\\
i=1, \ldots, q, \ell=0, \ldots, \ell_{n}-1
\end{gather*}
$$

The starting values $U_{0}^{n t}$ are assumed given, and $\ell_{n} \geqslant 1$ is the number of tterations to be performed at step n We then define U^{n+1} by

$$
U^{n+1}=\left(1-b^{T} A^{-1} e\right) U^{n}+b^{T} A^{-1}\left(\begin{array}{c}
U_{\ell}^{n 1} \tag{42}\\
\\
U_{\ell}^{n q}
\end{array}\right)
$$

Starting values $U_{0}^{n t}$ may be generated by a varıety of technıques For example, one could use the collocation polynomial from the previous step as advocated in [9] In this paper, we generate them simply by extrapolation from previously computed values U^{n}, U^{n-1}, according to

$$
\begin{equation*}
U_{0}^{n \prime}=\sum_{j=0}^{p} \mu_{t \jmath}^{p} U^{n-\jmath}, \quad \iota=1, \quad, q, n=0, \quad, N-1 \tag{43}
\end{equation*}
$$

where $p_{n} \leqslant n$ is a nonnegative integer and where the extrapolation coefficients are generated as follows For integer ℓ such that $0 \leqslant \ell \leqslant n$, let $\left\{L_{1}^{\ell} n\right\}_{,}^{\ell}{ }_{0}$ be the (Lagrange) polynomials of degree ℓ that satisfy $L_{t}^{\ell n}\left(t^{n}{ }^{\prime}\right)=\delta_{t j}, \quad 0 \leqslant t, \quad J \leqslant \ell \quad$ Then set

$$
\begin{equation*}
\mu_{l j}^{\ell}=L_{j}^{\ell} n\left(t^{n}+k \tau_{\imath}\right)=\prod_{\substack{r=0 \\ r \neq j}}^{\ell} \frac{\tau_{t}+r}{r-J}, \quad 1 \leqslant \imath \leqslant q, 0 \leqslant \jmath \leqslant \ell \tag{4}
\end{equation*}
$$

Using Taylor's theorem, it can be shown that tor any smooth function u,

$$
\begin{equation*}
\sum_{J-0}^{\ell} \mu_{1 j}^{\ell} u\left(t^{r-1}\right)=u\left(t^{r}+k \tau_{1}\right)+O\left(k^{\ell+1}\right), 1 \leqslant t \leqslant q, r \geqslant \ell \tag{45}
\end{equation*}
$$

In view of the fact that the accuracy of the extrapolated values is limited by the number of available past data, as well as by $p+1$ and σ we shall take

$$
\begin{equation*}
p_{n}=\min \{n, p, \sigma-1\} \tag{46}
\end{equation*}
$$

ThEOREM 41 Assume that (H10) and the hypotheses of Theorem 31 are satısfied and that we are given initıal data $U^{0}, \quad, U^{\bar{p}}$, $\bar{p}=\min \{p, \sigma-1\}, \quad$ satısfying

$$
\begin{equation*}
\left\|U^{j}-\omega\left(t^{\prime}\right)\right\| \leqslant c\left\{k^{\sigma}+m^{-1}\right\}, 0 \leqslant \jmath \leqslant \bar{p}, \tag{47}
\end{equation*}
$$

for some constant c independent of k and m
Assume in addition that
(1) (H5) holds,
(11) (H7) holds and $\delta<s$,
(iii) $s_{1}, s_{2}, s_{4}<s$,
(iv) $\ell_{n} \geqslant \log _{2}(\sigma-\bar{p}+1), \quad \bar{p} \leqslant n \leqslant N-1$.

Then, there exist $k_{0}, m_{0}, c_{0}>0$ such that for all $0<k \leqslant k_{0}$ and for all $m \geqslant m_{0}$ satisfying
(v) $\mathrm{kKm}^{\beta} \leqslant c_{0}$,
(vi) $k^{\bar{p}+1} m^{s_{j}} \leqslant c_{0}$, for $j=1,2,4$,
(vii) $k^{\bar{p}+1} m^{\delta} \leqslant c_{0}$,
there exists a unique sequence $\left\{U^{n}\right\}_{n=0}^{N}$ which for $\bar{p}+1 \leqslant n \leqslant N$ is generated by (4.1), (4.2) and (4.3) with $p_{n}=\bar{p}$. Furthermore,

$$
\begin{equation*}
\max _{0 \leqslant n \leqslant N}\left\|U^{n}-\omega\left(t^{n}\right)\right\| \leqslant c\left\{k^{\sigma}+m^{-s}\right\} \tag{4.8}
\end{equation*}
$$

for some constant c independent of k and m.
Moreover, if $p \leqslant \sigma \leqslant 2 p$, then the conclusion of the theorem holds with $\ell_{n}=1$ provided
(viii) $k^{2 \bar{p}-\sigma+2} \mathrm{Km}^{\delta}$ is sufficiently small.

Proof: It follows from (4.7) and (H10) that

$$
\left\|U^{n}-V^{n}\right\| \leqslant c\left\{k^{\sigma}+m^{-s}\right\}, \quad 0 \leqslant n \leqslant \bar{p}
$$

where V^{n} is defined by (3.20). We shall prove inductively that there hold:

$$
\begin{align*}
\left\|U^{n}-V^{n}\right\| & \leqslant \tilde{c}_{n}\left\{k^{\sigma}+m^{-s}\right\}, \quad \bar{p} \leqslant n \leqslant N, \tag{i}\\
\tilde{c}_{n} & =\{1+\tilde{c} k\} \tilde{c}_{n-1}+\bar{c} k, \quad \bar{p}+1 \leqslant n \leqslant N, \tag{il}
\end{align*}
$$

where the nonnegative constant \tilde{c} depends only on the IRK method and the constant c in (3.9). An important consequence of $\left(I_{i i}\right)$ is that

$$
\tilde{c}_{n} \leqslant c^{*} \equiv\left(\tilde{c}_{p}+1\right) e^{\bar{c} T}, \quad \bar{p} \leqslant n \leqslant N .
$$

Now assume that $\left(I_{i}\right),\left(I_{i i}\right)$ hold up to $n, \bar{p} \leqslant n \leqslant N-1$. To extend these to $n+1$, we shall prove inductively that

$$
\begin{equation*}
U_{\ell}^{n, i} \in B_{j}(M), \ell \geqslant 0, j=1,2,4, i=1, \ldots, q, \tag{i}
\end{equation*}
$$

(II $\left.I_{i i}\right) \quad \max _{1 \leqslant i \leqslant q}\left\|\tilde{U}^{n, i}-U_{\ell}^{n, i}\right\| \leqslant\left(c k K m^{\delta}\right)^{2^{\ell}-1} \max _{1 \leqslant i \leqslant q}\left\|\tilde{U}^{n, i}-U_{\ell}^{n, i}\right\|^{2^{p}}, \ell \geqslant 0$,
vol. $31, \mathrm{n}^{\circ} 2,1997$
where $\left\{\tilde{U}^{n, i}\right\}_{i=1}^{4}$ are (exact) solutions of (3.3) with $v=U^{n}, \tilde{U}^{n+1}=\mathscr{R} U^{n}$ and where c depends only on the IRK method. Note first that from $\left(I_{i}\right)$ and (H10) it follows that

$$
\begin{align*}
\left\|U^{j}-\omega\left(t^{j}\right)\right\| & \leqslant\left\|U^{j}-V^{j}\right\|+\left\|V^{j}-\omega\left(t^{j}\right)\right\| \tag{4.9}\\
& \leqslant\left(c^{*}+c\right)\left\{k^{\sigma}+m^{-}\right\}, 0 \leqslant j \leqslant n
\end{align*}
$$

We next verify $\left(I_{i}\right)$ for $\ell=0$. (Obviously ($I I_{i i}$) holds for $\ell=0$.) Indeed, from (4.5), (4.9), (3.13),

$$
\left\|\tilde{U}^{n, i}-U_{0}^{n, i}\right\| \leqslant\left\|\tilde{U}^{n, i}-\omega^{n, i}\right\|+\left\|\omega^{n, i}-\omega\left(t^{n, i}\right)\right\|
$$

$$
+\left\|\sum_{j=0}^{\bar{p}} \mu_{i j}^{\bar{p}}\left[\omega\left(t^{n-i}\right)-U^{n-j}\right]\right\|
$$

(4.10)

$$
\begin{array}{r}
+\left\|\omega\left(t^{n, i}\right)-\sum_{j=0}^{\bar{p}} \mu_{i j}^{\bar{p}} \omega\left(t^{n-j}\right)\right\| \\
\leqslant\left\|\ddot{U}^{n, i}-\omega^{n, i}\right\|+c c^{*}\left\{k^{\bar{p}+1}+m^{-s}\right\}, i=1, \ldots, q .
\end{array}
$$

Now from (3.23), (3.8) and (4.9),

$$
\left\|\tilde{U}^{n, t}-\omega^{n, i}\right\| \leqslant c\left\|U^{n}-\omega\left(t^{n}\right)\right\|
$$

$$
\begin{equation*}
\leqslant c c^{*}\left\{k^{\sigma}+m^{-}\right\}, i=1, \ldots, q \tag{4.11}
\end{equation*}
$$

Hence, in view of (iii), (vi) and choosing k small and m large, we obtain

$$
\begin{equation*}
\text { III } \tilde{U^{n,!}}-\omega^{n,!} I I_{j} \leqslant c c^{*} m^{s,}\left\{k^{\sigma}+m^{-s}\right\} \leqslant \frac{M}{8}, j=1,2,4 . \tag{4.12}
\end{equation*}
$$

Thus, from (3.25) and (4.12) it follows that

$$
\begin{equation*}
\tilde{U}^{n, t} \in B_{i}\left(7 \frac{M}{8}\right), j=1,2,4 \tag{4.13}
\end{equation*}
$$

Now from (4.10) and (4.11), it follows that

$$
\begin{equation*}
\left\|\tilde{U}^{n, i}-U_{0}^{n, i}\right\| \leqslant c\left\{k^{\bar{p}+1}+m^{-s}\right\} \tag{4.14}
\end{equation*}
$$

for $c=C c^{*}$ where C does not depend on m, k, n and the induction indices. Choosing k small and m large, we obtain $\left\|I \tilde{U}^{n, i}-U_{0}^{n, i}\right\|_{j} \leqslant \frac{M}{8}$. This, logether with (4.13) give the desired result.

Now assume that ($I I_{i}$) and ($I_{t i}$) hold up to some $\ell \geqslant 0$. To show that $\left\{U_{\xi+1}^{n, t}\right\}_{t=1}^{q}$ exist (uniquely) satisfying (4.1), we consider the associated homogeneous system

$$
y^{\prime}-k \sum_{j=1}^{q} a_{i j} D f\left(U_{f}^{n, j}\right) y^{j}=0, \quad l=1, \ldots, q .
$$

Using a diagonalization procedure, it follows from $\left(I I_{1}\right),(H 2)$ and (H5) that

$$
\left(c_{1}-c_{2} k\left(\hat{\lambda}+K m^{\beta}\right)\right) \sum_{t=1}^{q}\left\|y^{t}\right\|^{2} \leqslant 0,
$$

for some constants c_{1}, c_{2} depending only on A. Hence, taking $k \mathrm{Km}^{\beta}$ sufficiently small, according to (v), forces $y^{\prime}=0, i=1, \ldots, q$.

We shall next prove the estimate,

$$
\begin{equation*}
\max _{1 \leqslant t \leqslant q}\left\|\tilde{U}^{n, t}-U_{\ell+1}^{n, t}\right\| \leqslant c k K m^{\delta} \max _{1 \leqslant 1 \leqslant q}\left\|\tilde{U}^{n, 1}-U_{\ell}^{n, t}\right\|^{2}, \tag{4.15}
\end{equation*}
$$

for some $c=c(A, q)$. Indeed, for $i=1, \ldots, q$,
$\tilde{U}^{n, t}-U_{\ell+1}^{n, t}=k \sum_{j=1}^{q} a_{\imath j}\left[f\left(\tilde{U}^{n, j}\right)-f\left(U_{\ell}^{n, j}\right)-D f\left(U_{\ell}^{n, j}\right)\left(U_{\ell+1}^{n, j}-U_{\ell}^{n, j}\right)\right]$

$$
\begin{align*}
= & k \sum_{j=1}^{q} a_{\ell j}\left[D f\left(U_{\ell}^{n, j}\right)\left(\tilde{U}^{n, j}-U_{\ell+1}^{n, j}\right)\right. \tag{4.16}\\
& \left.+\int_{0}^{1}(1-t) D^{2} \varphi\left(t \tilde{U}^{n, j}+(1-t) U_{\ell}^{n, j}\right)\left[\tilde{U}^{n, j}-U_{\ell}^{n, j}\right]^{2} d t\right]
\end{align*}
$$

where $D^{2} \varphi(u)[v]^{2}=D^{2} \varphi(u)[v, v]$. We need to estimate the argument of $D^{2} \varphi$. From ($I I_{t}$), (4.13) and for $0 \leqslant t \leqslant 1$, we have

$$
\max _{1 \leqslant i \leqslant q}\| \| t \tilde{U}^{n, t}+(1-t) U_{p}^{n, t}\| \|_{j} \leqslant M, \quad j=1,2,4 .
$$

Thus, applying the diagonalization procedure to (4.16), from (H2), (H5) and (H7) we obtain

$$
\begin{aligned}
c_{1} \sum_{i=1}^{q}\left\|\bar{U}^{n, 1}-U_{\varepsilon+1}^{n, 1}\right\|^{2} \leqslant & c_{2} k\left(i+K m^{\beta}\right) \sum_{i=1}^{q}\left\|\tilde{U}^{n, 1}-U_{\varepsilon+1}^{n, 1}\right\|^{2} \\
& +c_{3} k K m^{\lambda} \sum_{i=1}^{q}\left\|\dot{U}^{n, 1}-U_{\ell}^{n, t}\right\|^{2}\left\|\tilde{U}^{n, 1}-U_{f+1}^{n,}\right\|,
\end{aligned}
$$

from which (4.15) follows if $k K m^{\beta}$ is sufficiently small, with $c=\frac{2 q c_{3}}{c_{1}}$. This in turn implies that $\left(I_{\text {u }}\right)$ holds for $\ell+1$ as well. We next show that $U_{\ell+1}^{n, t} \in B_{j}(M)$.

From ($I I_{t I}$) and (4.14),

$$
\max _{1 \leqslant 1 \leqslant q}\left\|\bar{U}^{n, 1}-U_{\ell+1}^{n, 1}\right\| \leqslant k^{2^{\ell+1}-1} c\left(c K m^{\delta}\left\{k^{\bar{p}+1}+m^{-s}\right\}\right)^{2^{\ell+1}-1}\left\{k^{\bar{p}+1}+m^{-s}\right\}
$$

for some $c=C c^{*}$, with C as above. We choose k and m so that in view of (ii) and (vii) we have $c\left(c K m^{\delta}\left\{k^{\bar{p}+1}+m^{-s}\right\}\right)^{2^{\ell+1}-1} \leqslant 1$. We obtain

$$
\begin{equation*}
\max _{1 \leqslant 1 \leqslant q}\left\|\breve{U}^{n, t}-U_{\ell+1}^{n, t}\right\| \leqslant k^{k^{\ell+1}-1}\left\{k^{\bar{p}+1}+m^{-1}\right\} \tag{4.17}
\end{equation*}
$$

As done before, choosing k small and m large, forces $\left(I I_{t}\right)$ to be satisfied for $\ell+1$. This completes the secondary induction argument ($I I$) and we return to the primary argument (I). Now if $\ell_{n} \geqslant \log _{2}(\sigma-\bar{p}+1)$, it follows from (4.2) and (4.17) that

$$
\begin{align*}
\left\|\tilde{U}^{n+1}-U^{n+1}\right\| & \leqslant c(A, b) \max _{1 \leqslant 1 \leqslant q}\left\|\tilde{U}^{n, t}-U_{P_{n}}^{n, t}\right\| \tag{4.18}\\
& \leqslant c k\left\{k^{\sigma}+m^{-‘}\right\} .
\end{align*}
$$

Using the triangle inequality, (4.18), (3.9) and (I_{t}), we obtain

$$
\begin{align*}
\left\|U^{n+1}-V^{n+1}\right\| & \leqslant\left\|U^{n+1}-\tilde{U}^{n+1}\right\|+\left\|\tilde{U}^{n+1}-V^{n+1}\right\| \tag{4.19}\\
& \leqslant\left[(1+c k) \tilde{c}_{n}+c k\right]\left\{k^{\sigma}+m^{-}\right\}
\end{align*}
$$

This establishes both $\left(I_{t}\right)$ and $\left(I_{t}\right)$ and defines \tilde{c}_{n}. (4.8) now follows from $\left(I_{1}\right)$ and (H10). Finally, if (viii) holds, then, from (4.14) and (4.15) we obtain

$$
\begin{aligned}
\max _{1 \leqslant ı}\left\|\tilde{U}^{n, t}-U_{1}^{n, t}\right\| & \leqslant c k K m^{\delta} c^{*^{2}}\left\{k^{\bar{p}+1}+m^{-s}\right\}^{2} \\
& \leqslant\left(c^{\left.*^{2} k^{2 \bar{p}-\sigma+2} K m^{\delta}\right) c k\left\{k^{\sigma}+m^{-s}\right\}}\right. \\
& \leqslant c k\left\{k^{\sigma}+m^{-}\right\}
\end{aligned}
$$

Hence, we may establish (4.19) and thus (I_{t}), ($I_{t \prime}$) for this case as well. The proof of the theorem is now complete.

We now consider briefly the practically important issue of generating initial data $U^{0}, \ldots, U^{\bar{p}}$ satisfying (4.7). Indeed, this can be done by a variety of techniques including the use of explicit Runge-Kutta methods or Taylor expansions. The iterative scheme (4.1) can be used as well with the added benefit of the guidance offered by the theoretical framework of Theorem 4.1. In this respect, the relevant considerations are the following
(a) Take $U^{0}=\omega^{0}$ (or $\left(\omega^{0}+O\left(m^{-s}\right)\right)$.
(b) Generate $U_{0}^{n, i}$ by

$$
\begin{aligned}
U_{0}^{n, i} & =\sum_{j=0}^{n} \mu_{i j}^{n} U^{n-j} \\
& =\bar{U}^{n, i}+O\left(k^{n+1}+m^{-s}\right), i=1, \ldots, q, n=0, \ldots, \bar{p}-1 .
\end{aligned}
$$

(c) Increase ℓ_{n} to compensate for the reduced accuracy of the initial approximations $U_{0}^{n, i}$ and compute U^{n+1} by (4.2), $0 \leqslant n \leqslant \bar{p}-1$.
(d) The desired estimates will hold if the two conditions $k^{\bar{p}+1} m^{s^{\prime}} \leqslant c_{0}$ and $k^{\bar{p}+1} m^{\delta} \leqslant c_{0}$ are replaced with $k^{n+1} m^{s} \leqslant c_{0}$ and $k^{n+1} m^{\delta} \leqslant c_{0}$, respectively. If these conditions become stringent for $n=0$, we recommend the use of more accurate formulas based on Taylor's Theorem such as

$$
\begin{aligned}
U_{0}^{0, i} & =\omega^{0}+k \tau_{i} \omega_{t}^{0}=\omega^{0}+k \tau_{t} f\left(\omega^{0}\right) \\
& =\tilde{U}^{0, i}+O\left(k^{2}+m^{-s}\right)
\end{aligned}
$$

5. EFFICIENT IMPLEMENTATIONS OF NEWTON'S METHOD

Newton's scheme, as described in Theorem 4.1 and specifically in its implementation (4.1), requires forming the operator $\mathscr{F}:\left(H_{m}\right)^{q} \rightarrow\left(H_{m}\right)^{q}$

$$
\mathscr{I}=\left(\begin{array}{cccc}
I-k a_{11} D f\left(U_{\ell}^{n, 1}\right) & -k a_{12} D f\left(U_{\ell}^{n, 2}\right) & \cdots & -k a_{1 q} D f\left(U_{\ell}^{n, 4}\right) \\
-k a_{21} D f\left(U_{\ell}^{n, 1}\right) & I-k a_{22} D f\left(U_{\ell}^{n, 2}\right) & \cdots & -k a_{2 q} D f\left(U_{\ell}^{n, q}\right) \\
\vdots & \vdots & \ddots & \vdots \\
-k a_{q 1} D f\left(U_{\ell}^{n, 1}\right) & -k a_{q 2} D f\left(U_{\ell}^{n, 2}\right) & \cdots & I-k a_{q q} D f\left(U_{\ell}^{n, q}\right)
\end{array}\right)
$$

as well as solving the associated linear system at each new ℓ and n. In practice, this translates into a $q \operatorname{dim} H_{m} \times q \operatorname{dim} H_{m}$ system. Obviously, this could prove to be prohibitively costly when $\operatorname{dim} H_{m}$ is very large. One possibility that immediately comes to mind is to evaluate \mathscr{I} at $U_{0}^{n . j}$ and use it according to the iterative procedure

$$
U_{\ell+1}^{n, i}-k \sum_{j=1}^{q} a_{i j} D f\left(U_{0}^{n, j}\right)\left(U_{\ell+1}^{n, j}-U_{\ell}^{n . j}\right)=U^{n}+k \sum_{j=1}^{q} a_{i j} f\left(U_{\ell}^{n, j}\right), \ell=0, \ldots .
$$

The usefulness of this particular approach is limited because we saw in Theorem 41 that, under rather general conditions, a single Newton iteration is sufficient to preserve the convergence rate of the base scheme On the other hand, we may use the same operator over a number of time steps

It is clear that a great number of strategies are possible for efficient implementation of (41) We shall concentrate on evaluating the operators \mathscr{I} at some U_{*}^{n}, independent of the stage number J To this end, let U_{*}^{n} denote an appropriately chosen element of H_{m} Let $U_{\ell}^{n}{ }^{t}$ satısfy

$$
\begin{gather*}
U_{\ell+1}^{n,}-k \sum_{j=1}^{q} a_{\imath j} D f\left(U_{*}^{n}\right)\left(U_{\ell+1}^{n J}-U_{\ell}^{n J}\right)=U^{n}+k \sum_{j=1}^{q} a_{\imath j} f\left(U_{\ell}^{n J}\right) \tag{array}\\
\imath=1, \quad, q, \ell=0, \quad, \ell \ell_{n}-1
\end{gather*}
$$

This scheme is known as the "modified Newton method" Now assume that A has distinct eigenvalues $\lambda_{1}, \quad, \lambda_{q}$ This is indeed the case for the GaussLegendre and the Radau IIA methods, of [6] The decomposition $A=S^{-1} \Lambda S$ naturally induces a decomposition on the system $\mathscr{F} \mathbf{z}=\mathbf{b}$ whereby q systems $\left(I-k \lambda_{t} D f\left(U_{*}^{n}\right)\right) \tilde{z}_{t}=\bar{b}_{t}, t=1, \quad, q$, are to be solved instead These q systems are independent of each other and can be solved simultaneously on a computer with at least q independent processors This strategy has been successfully implemented in some specific settings in [10]

Concerning the modified Newton method, we have
ThEOREM 51 Assume that (H 10) and the hypotheses of Theorem 31
 $\bar{p}=\min \{p, \sigma-1\}, \quad$ satisfying

$$
\begin{equation*}
\left\|U^{j}-\omega\left(t^{\prime}\right)\right\| \leqslant c\left\{k^{\sigma}+m^{-}\right\}, 0 \leqslant j \leqslant \bar{p}, \tag{array}
\end{equation*}
$$

for some constant c independent of k and m
Assume in addition that
(1) (H5) holds,
(11) (H7) holds and $\delta<s$,
(i11) $s_{1}, s_{2}, s_{4}<s$,
(iv) $\ell_{n} \geqslant \sigma-\bar{p}, \quad \bar{p} \leqslant n \leqslant N-1$

Then, there exast $k_{0}, m_{0}, c_{0}>0$ such that for all $0<k \leqslant k_{0}$ and for all $m \geqslant m_{0}$ satusfying
(v) $k K m^{\beta} \leqslant c_{0}$,
(v1) $k K m^{\delta} \leqslant c_{0}$,
(v11) $k^{\bar{p}+1} m^{\prime} \leqslant c_{0}$ for $j=1,2,4$,
(v111) $k^{\bar{p}+1} m^{\delta} \leqslant c_{0}$,
there exists a unique sequence $\left\{U^{n}\right\}_{n=0}^{N}$, which for $\bar{p}+1 \leqslant n \leqslant N$ is generated by (5.1), (4.2) and (4.3) with $p_{n}=\bar{p}$, and

$$
\begin{equation*}
U_{*}^{n}=U^{n} . \tag{5.3}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\max _{0 \leqslant n \leqslant N}\left\|U^{n}-\omega\left(t^{n}\right)\right\| \leqslant c\left\{k^{\sigma}+m^{-1}\right\} \tag{5.4}
\end{equation*}
$$

for some constant c independent of k and m.
Proof: We shall omit details that would otherwise be repetitions of similar ones exhibited in the proof of Theorem 4.1. Again, we shall use the primary induction hypotheses

$$
\begin{align*}
\left\|U^{n}-V^{n}\right\| & \leqslant \tilde{c}_{n}\left\{k^{\sigma}+m^{-s}\right\}, \quad 0 \leqslant n \leqslant N \tag{t}\\
\tilde{c}_{n} & =\{1+\tilde{c} k\} \tilde{c}_{n-1}+\tilde{c} k, \quad 1 \leqslant n \leqslant N
\end{align*}
$$

$\left(I_{u}\right)$
where the nonnegative constant \tilde{c} depends only on the IRK method and the constants c in (3.9) and (H10). Also, let c^{*} be as in (4.9).

Assume that $\left(I_{t}\right),\left(I_{u}\right)$ hold up to $n, \bar{p} \leqslant n \leqslant N-1$. To extend these to $n+1$, we shall prove inductively that
($I I_{t}$)

$$
U_{\ell}^{n, \ell} \in B_{j}(M), \quad \ell \geqslant 0, J=1,2,4,
$$

(I_{u}) $\quad \max _{1 \leqslant 1 \leqslant q}\left\|\bar{U}^{n, t}-U_{\ell}^{n, t}\right\| \leqslant k^{\ell} \max _{1 \leqslant 1 \leqslant q}\left\|\tilde{U}^{n, t}-U_{0}^{n, t}\right\|^{\ell}, \quad \ell \geqslant 0$,
where $\left\{\tilde{U}^{n, r}\right\}_{t=1}^{q}$ are the (exact) solutions of (3.3) with $v=U^{n}$. Using arguments similar to those used in the proof of Theorem 4.1, we may prove that, under the stated conditions,

$$
\begin{equation*}
U^{n}, U_{0}^{n . t} \in B_{J}(M), \quad j=1,2,4, i=1, \ldots, q . \tag{5.5}
\end{equation*}
$$

vol $31, n^{\circ} 2,1997$

Obviously ($I I_{t}$) holds for $\ell=0$. Now assume that both ($I I_{t}$) and ($I I_{t \prime}$) hold up to some $\ell \geqslant 0$. We have

$$
\begin{aligned}
& \tilde{U}^{n, t}-U_{\ell+1}^{n, t}=k \sum_{j=1}^{q} a_{t}\left[f\left(\tilde{U}^{n, J}\right)-f\left(U_{\ell}^{n, j}\right)-D f\left(U^{n}\right)\left(U_{\ell+1}^{n, J}-U_{\ell}^{n, J}\right)\right] \\
& =k \sum_{j=1}^{q} a_{i j}\left[D f\left(U^{n}\right)\left(\tilde{U}^{n, j}-U_{\ell+1}^{n, j}\right)\right. \\
& +\left[D f\left(U_{l}^{n, J}\right)-D f\left(U^{n}\right)\right]\left(\tilde{U}^{n, J}-U_{l}^{n, J}\right) \\
& \left.+\int_{0}^{1}(1-t) D^{2} f\left(t \bar{U}^{n, J}+(1-t) U_{\ell}^{n, J}\right)\left[\bar{U}^{n, j}-U_{\ell}^{n, j}\right]^{2} d t\right] \\
& =k \sum_{j=1}^{q} a_{u j}\left[D f\left(U^{n}\right)\left(\tilde{U}^{n, J}-U_{\ell+1}^{n, j}\right)\right. \\
& +\int_{0}^{1} D^{2} \varphi\left(t U_{\ell}^{n, J}+(1-t) U^{n}\right)\left[U_{\ell}^{n, J}-U^{n}, \tilde{U}^{n, /}-U_{\ell}^{n,}\right] d t \\
& \left.+\int_{0}^{1}(1-t) D^{2} \varphi\left(t \tilde{U}^{n, \jmath}+(1-t) U_{\ell}^{n, j}\right)\left[\tilde{U}^{n, \jmath}-U_{\ell}^{n,}\right]^{2} d t\right] .
\end{aligned}
$$

As before, we can show that $\tilde{U}^{n, t} \in B_{j}(M), j=1,2,4$. Using a diagonalization argument, it follows from (5.5), (I_{t}), (H2), (H5) and (H7) that

$$
\begin{aligned}
c_{1} \max _{1 \leqslant t \leqslant q}\left\|\tilde{U}^{n, t}-U_{\ell+1}^{n, t}\right\| \leqslant & c_{2} k \max _{1 \leqslant t \leqslant q}\left\{\left(\lambda+K m^{\beta}\right)\left\|\tilde{U}^{n, t}-U_{\ell+1}^{n, t}\right\|\right. \\
& +K m^{\delta}\left\|\bar{U}^{n, t}-U_{\ell}^{n, t}\right\|^{2} \\
& \left.+K m^{\delta}\left\|U_{\ell}^{n, t}-U^{n}\right\|\left\|\tilde{U}^{n, t}-U_{\ell}^{n, t}\right\|\right\}
\end{aligned}
$$

for some constants c_{1}, c_{2}, depending only on the IRK method. Choosing k so that $c_{2} k\left(\hat{\lambda}+K m^{\beta}\right) \leqslant \frac{c_{1}}{2}$, we obtain

$$
\begin{align*}
\max _{1 \leqslant t \leqslant q}\left\|\tilde{U}^{n, t}-U_{\ell+1}^{n, t}\right\| & \leqslant c_{3} k K m^{\delta} \max _{1 \leqslant t \leqslant q}\left\{\left\|\tilde{U}^{n, 1}-U_{\ell}^{n, t}\right\|^{2}\right. \tag{5.6}\\
& \left.+\left\|U_{\ell}^{n, t}-U^{n}\right\|\left\|\tilde{U}^{n, t}-U_{\ell}^{n, t}\right\|\right\}
\end{align*}
$$

We can show that for some constant $c_{4}=c_{4}\left(c^{*}\right)$,

$$
\left\|U_{\ell}^{n, t}-U^{n}\right\| \leqslant c_{4}\left\{k+m^{-1}\right\} .
$$

M^{2} AN Modélısatıon mathématıque et Analyse numérıque Mathematical Modelling and Numerical Analysis

Similarly, from ($I I_{u}$) and (4.14),

$$
\max _{1 \leqslant 1 \leqslant q}\left\|\tilde{U}^{n, 1}-U_{p}^{n, 1}\right\| \leqslant c_{5}\left\{k^{\bar{p}+1}+m^{-s}\right\}
$$

for some $c_{5}=c_{5}\left(c^{*}\right)$. Choosing k and m so that

$$
\begin{equation*}
\max \left\{c_{3} c_{4} K m^{\delta}\left(k+m^{-s}\right), c_{3} c_{5} K m^{\delta}\left(k^{\bar{p}+1}+m^{-}\right)\right\} \leqslant \frac{1}{2}, \tag{5.7}
\end{equation*}
$$

we obtain $\left(I I_{u}\right)$ for $\ell+1$. Hence, we can now show that $U_{p+1}^{n, t} \in B_{\lambda}(M)$, under the stated conditions.

In view of the fact that $\ell_{n} \geqslant \sigma-\bar{p}$, and proceeding exactly as we did in the proof of Theorem 4.1, we can close the primary induction argument, proving the theorem.

Remark 5.1: Theorem 5.1 requires in particular that km^{δ} be sufficiently small. This condition may be weakened somewhat by modifying the proof as follows: We choose k and m so that instead of (5.7) we have

$$
\begin{equation*}
\max \left\{c_{3} c_{4} K m^{\delta}\left(k^{1+\vartheta}+m^{-s}\right), c_{3} c_{5} K m^{\delta}\left(k^{\bar{p}+1}+m^{-s}\right)\right\} \leqslant \frac{1}{2} \tag{5.8}
\end{equation*}
$$

with $0 \leqslant \vartheta<1$, and require $k^{1+\vartheta} m^{\delta}$ to be small. As a consequence, ($I I_{u}$) must be modified to

$$
\max _{1 \leqslant i \leqslant q}\left\|\tilde{U}^{n, t}-U_{\ell}^{n, t}\right\| \leqslant k^{\ell(1-\vartheta)} \max _{1 \leqslant t \leqslant q}\left\|\tilde{U}^{n, t}-U_{0}^{n, t}\right\|^{\ell}, \quad \ell \geqslant 0
$$

As a result, an increased number of iterations must be performed.

6. A SIMPLER ITERATIVE SCHEME

We shall next consider an iterative scheme where \mathscr{I} is constant and which is sometimes called an "explicit-implicit" type method. This extremely efficient option can be applied however, only when the constant γ in (H6) is zero

$$
\begin{gather*}
U_{\ell+1}^{n, t}-k \sum_{j=1}^{q} a_{\ell j} L U_{\ell+1}^{n, j}=U^{n}+k \sum_{J=1}^{q} a_{l j} \varphi\left(U_{\ell}^{n, J}\right), \tag{6.1}\\
i=1, \ldots, q, \ell=0, \ldots, \ell_{n}-1
\end{gather*}
$$

From the error equation

$$
\begin{aligned}
& \tilde{U}^{n, t}-U_{\ell+1}^{n, J}-k \sum_{j=1}^{q} a_{\ell j} L\left(\tilde{U}^{n, J}-U_{\ell+1}^{n, J}\right)=k \sum_{J=1}^{q} a_{l j}\left[\varphi\left(\tilde{U}^{n, J}\right)-\varphi\left(U_{\ell}^{n, J}\right)\right] \\
&=k \sum_{J=1}^{q} a_{l j} \int_{0}^{1} D \varphi\left(t \bar{U}^{n, J}+(1-t) U_{\ell}^{n, j}\right)\left(\tilde{U}^{n, J}-U_{\ell}^{n, J}\right) d t
\end{aligned}
$$

we obtain in view of (H2) and (H6) with $\gamma=0$,

$$
\max _{1 \leqslant 1 \leqslant q}\left\|\tilde{U}^{n, t}-U_{\ell+1}^{n, t}\right\| \leqslant c k K \max _{1 \leqslant t \leqslant q}\left\|\tilde{U}^{n, t}-U_{\ell}^{n t}\right\|
$$

Operating within the framework of an induction argument, we obtain

$$
\begin{aligned}
\max _{1 \leqslant 1 \leqslant q}\left\|\tilde{U}^{n^{n, t}}-U_{\ell}^{n, t}\right\| & \leqslant(c K)^{\ell_{n}}\left(k c^{*}\right) k^{\ell_{n}-1}\left\{k^{\bar{p}+1}+m^{-1}\right\} \\
& \leqslant(c K)^{\ell_{n}} k\left\{k^{\sigma}+m^{-\curlywedge}\right\}
\end{aligned}
$$

for $k c^{*} \leqslant 1$ and $\ell_{n} \geqslant \sigma-\bar{p}+1$. We have,
THEOREM 6.1 : Assume that (H10) and the hypotheses of Theorem 3.1 are satisfied and that we are given initial data $U^{0}, \ldots, U^{\bar{p}}$, $\bar{p}=\min \{p, \sigma-1\}, \quad$ satisfying

$$
\left\|U^{\prime}-\omega\left(t^{\prime}\right)\right\| \leqslant c\left\{k^{\sigma}+m^{-د}\right\}, \quad 0 \leqslant j \leqslant \bar{p},
$$

for some constant c independent of k and m.
Assume in addition that
(i) (H6) holds and $\gamma=0$,
(ii) $s_{1}, s_{2}, s_{3}, s_{4}<s$,
(iii) $\ell_{n} \geqslant \sigma-\bar{p}+1, \quad \bar{p} \leqslant n \leqslant N-1$.

Then, there exist $k_{0}, m_{0}, c_{0}>0$ such that for all $0<k \leqslant k_{0}$, and for all $m \geqslant m_{0} \quad$ satisfying
(iv) $k^{\bar{p}+1} m^{3} \leqslant c_{0}$ for $j=1,2,3,4$,
there exists a unique sequence $\left\{U^{n}\right\}_{n=0}^{N}$ which for $\bar{p}+1 \leqslant n \leqslant N$ is generated by (6.1), (4.2) and (4.3) with $p_{n}=\bar{p}$. Furthermore,

$$
\max _{0 \leqslant n \leqslant N}\left\|U^{n}-\omega\left(t^{n}\right)\right\| \leqslant c\left\{k^{\sigma}+m^{-1}\right\}
$$

for some constant c independent of k and m.

7. EXAMPLES

Let Ω be an open, bounded, connected subset of \mathbf{R}^{d}. For integer $\mu \geqslant 0$ and real $p \in[1, \infty]$, let $W^{\mu, p}=W^{\mu, p}(\Omega)$ denote the usual Sobolev spaces of complex-valued functions defined on Ω and having generalized derivatives up to order μ in $L^{p}(\Omega)$. The norm on $W^{\mu, p}$ will be denoted by $\|.\|_{\mu, p}$. In particular, $L^{p}=W^{0, p}$ and for $p=2$ we let $H^{\mu}=W^{\mu, 2}$. We let $\|\cdot\|=\|\cdot\|_{0,2}$ and $\|\cdot\|_{\mu}=\|\cdot\|_{\mu, 2}$. In some specific instances, as in the case of the KdV equation below, we shall restrict attention to real-valued functions.

7.1. The Korteweg-de Vries equation

We consider the problem of approximating 1-periodic solutions of the KdV equation

$$
\left\{\begin{array}{lll}
u_{t}+u u_{x}+u_{x x x} & =0, & 0 \leqslant x \leqslant 1, \quad 0<t \leqslant T, \tag{7.1.1}\\
u(x, 0) & =u^{0}(x), & 0 \leqslant x \leqslant 1,
\end{array}\right.
$$

where u^{0} is a sufficiently smooth 1-periodic function, i.e. $u^{0} \in H_{p e r}^{\mu} \equiv W_{p e r}^{\mu, 2} \quad$ for $\quad \mu \quad$ sufficiently large, where for $\mu \geqslant 1$, $1 \leqslant p \leqslant \infty$,

$$
W_{p e r}^{\mu, p}=\left\{v \in W^{\mu, p}(0,1): v^{(j)}(0)=v^{(j)}(1), 0 \leqslant j \leqslant \mu-1\right\} .
$$

For the existence, uiqueness and regularity of solutions of (7.1.1.) we refer to [5]. Specifically, it is known that if $u^{0} \in H_{p e r}^{\mu}, \mu \geqslant 3$, then there exists a unique solution $u:[0, T] \rightarrow H_{p e r}^{\mu}, \forall T>0$. Moreover, for $j \geqslant 0$ such that $\mu-3 j \geqslant 0$,

$$
\begin{equation*}
\sup _{0 \leqslant t}\left\|\frac{\partial^{j} u}{\partial t^{j}}\right\|_{\mu-3 j} \leqslant c\left(\left\|u^{0}\right\|_{\mu}\right) . \tag{7.1.2}
\end{equation*}
$$

There is a large body of work devoted to the numerical approximation of solutions of the KdV equation, including finite difference, finite element as well as spectral methods. Herein, we operate within the framework already established in [3], [8] and [12]. In particular, the analysis of convergence of the base scheme is drawn from [12].

For integer $r \geqslant 3$, let $S_{h}^{r} \subset H_{p e r}^{r-1} \cap W_{p e r}^{2, \infty}$, denote the space of 1-periodic smooth splines of degree $\leqslant r-1$, defined on a uniform partition $x_{j}=j h, \quad j=0, \ldots, m$, of $[0,1]$, with $h=\frac{1}{m}$. It is known that $\operatorname{dim} S_{h}^{r}=m$. We set $H_{m}=S_{h}^{r}$ and equip it with the L^{2} inner product

$$
(v, w)_{m}=(v, w)=\int_{0}^{1} v(x) w(x) d x, \quad \forall v, w \in S_{h}^{\prime}
$$

The spaces $\left\{S_{h}^{r}\right\}_{h>0}$ possess the following approximation properties: For each $v \in H_{p e r}^{r}$, there exists $\chi \in S_{h}^{r}$ such that

$$
\begin{equation*}
\sum_{J=0}^{\mu-1} h^{J}\|v-\chi\|_{J} \leqslant c h^{\mu}\|v\|_{\mu}, \quad 1 \leqslant \mu \leqslant r, \tag{7.1.3}
\end{equation*}
$$

for some constant c independent of h and v. If in addition $v \in W_{p e r}^{2, \infty}$, then

$$
\begin{equation*}
\sum_{J=0}^{1} h^{J}\|v-\chi\|_{J, \infty} \leqslant c h^{2}\|v\|_{2, \infty} \tag{7.1.4}
\end{equation*}
$$

Moreover, the spaces S_{h}^{r} possess the following inverse properties

$$
\begin{align*}
\|\chi\|_{\beta} & \leqslant c h^{-(\beta-\alpha)}\|\chi\|_{\alpha}, \quad 0 \leqslant \alpha \leqslant \beta \leqslant r-1 \tag{7.1.5}\\
\|\chi\|_{\alpha, \infty} & \leqslant c h^{-\left(\alpha+\frac{1}{2}\right)}\|\chi\|, \quad 0 \leqslant \alpha \leqslant r-1 \tag{7.1.6}
\end{align*}
$$

As basis for S_{h}^{r}, we use a set of modified basis functions $\tilde{\varphi}_{1}, \ldots, \tilde{\varphi}_{m}$ associated with the nodes x_{1}, \ldots, x_{m} (cf. [14]). For $v \in H_{p e r}^{1}$, we define the quasiinterpolant \tilde{v} by

$$
\tilde{v}(x)=\sum_{J=1}^{m} v\left(x_{J}\right) \bar{\varphi}_{J}(x)
$$

It is known (cf. [14]) that the quasi-interpolant enjoys the following optimal approximation property : For $v \in H_{p e r}^{r}$,

$$
\begin{equation*}
\|v-\tilde{v}\| \leqslant c h^{r}\|v\|_{r} \tag{7.1.7}
\end{equation*}
$$

For $r \geqslant 3$, let $u:[0, T] \rightarrow H_{p e r}^{r}$ be the solution of (7.1.1) and let $\omega=\omega_{h}: \quad[0, T] \rightarrow S_{h}^{r} \quad$ denote its quasi-interpolant $\omega(x, t)=$ $\sum_{t=1}^{m} u\left(x_{j}, t\right) \bar{\varphi}(x)$. It is shown in [8] that

$$
\begin{equation*}
\left(\omega_{t}+\omega \omega_{x}, \chi\right)-\left(\omega_{x x}, \chi_{x}\right)=(\varepsilon(t), \chi) \quad 0 \leqslant t \leqslant T, \forall \chi \in S_{h}^{r} \tag{7.1.8}
\end{equation*}
$$

[^2]where $\varepsilon:[0, T] \rightarrow S_{h}^{r}$ is a (small) smooth function (truncation errror).
Define the operators $L_{h}, \varphi_{h}: S_{h}^{r} \rightarrow S_{h}^{r}$ by
\[

$$
\begin{aligned}
\left(L_{h} v, \chi\right) & =\left(v_{x x}, \chi_{x}\right), & \forall \chi \in S_{h}^{r}, \\
\left(\varphi_{h}(v), \chi\right) & =-\left(v v_{x}, \chi\right) & \forall \chi \in S_{h}^{r},
\end{aligned}
$$
\]

respectively. Note that $\varphi_{h}(v)=-P_{0}\left(v v_{x}\right)$ where P_{0} denotes the L^{2}-orthogonal projection operator onto S_{h}^{r}. We may rewrite (7.1.7) as

$$
\begin{equation*}
\omega_{t}=L_{h} \omega+\varphi_{h}(\omega)+\varepsilon(t), \quad 0 \leqslant t \leqslant T \tag{7.1.9}
\end{equation*}
$$

Having cast our problem in the form of (2.1), we next undertake the systematic verification of the hypotheses (H1)-(H10).

With $s=r,(H 1)$ is proved in [8] (inequality (1.33)). It easily follows from periodicity that $(H 2)$ and $(H 3)$ hold with $\lambda=\eta=0$.

We set all four norms $\|\|\cdot\|\|_{i}$ equal to $\|\cdot\|_{1, \infty}$. It then follows from (7.1.6) that (2.2) holds with $s_{i}=\frac{3}{2}, i=1,2,3,4$. We also let

$$
\begin{equation*}
M=2 \sup _{0 \leqslant t}\left[c\|u(t)\|_{r}+c\|u(t)\|_{2, \infty}+\|u(t)\|_{1, \infty}\right] \tag{7.1.10}
\end{equation*}
$$

where u is the solution of (7.1.1) and c is a constant depending on the constants in (7.1.3), (7.1.4), (7.1.6) and (7.1.7). Also, in verifying hypotheses (H4)-(H7), we shall use different constants K_{i} and then set $K=\max \left\{K_{1}, K_{2}, K_{3}, K_{4}\right\}$.

Integrating by parts and using periodicity, we obtain

$$
\begin{aligned}
\left(\varphi_{h}(v)-\varphi_{h}(w), v-w\right) & =-\frac{1}{2}\left(v_{x},[v-w]^{2}\right) \\
& \leqslant \frac{1}{2}\|v\|_{1, \infty}\|v-w\|^{2}, \quad \forall v, w \in S_{h}^{r}
\end{aligned}
$$

Hence we see that (H4) holds with $K_{1}=\frac{M}{2}$.
Using $D g(x) y=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}[g(x+\varepsilon y)-g(x)]$, we see that $D \varphi_{h}(v) w=$ $-P_{0}\left[(v w)_{x}\right], \forall v, w \in S_{h}^{r}$. Hence,

$$
\begin{aligned}
\left(D \varphi_{h}(v) w, w\right) & =-\left((v w)_{x}, w\right)=-\frac{1}{2}\left(v_{x}, w^{2}\right) \\
& \leqslant \frac{1}{2}\|v\|_{1, \infty}\|w\|^{2} .
\end{aligned}
$$

So we see that (H5) holds with $K_{2}=\frac{M}{2}$ and $\beta=0$ Now, using (7 14),

$$
\begin{aligned}
\left\|D \varphi_{h}(v) w\right\| & \leqslant\left\|(v w)_{x}\right\| \\
& \leqslant\left(\|v\|_{1 \infty}+c h^{-1}\|v\|_{0 \infty}\right)\|w\| \\
& \leqslant c h^{-1}\|v\|_{1 \infty}\|w\|
\end{aligned}
$$

Hence, we see that ($H 6$) holds with $K_{3}=c M$ and $\gamma=1$
Further, $D^{2} \varphi_{h}(z)[v, w]=-P_{0}\left[(v w)_{x}\right]$ for $z, v, w \in S_{h}^{r}$ Hence, we easıly obtain

$$
\left\|D^{2} \varphi_{h}(z)[v, w]\right\| \leqslant c h^{-\frac{3}{2}}\|v\|\|w\|
$$

where c depends on the constants in (715) and (716) Thus, (H7) holds with $K_{4}=c \quad$ and $\quad \delta=\frac{3}{2}$

Now for $0 \leqslant t \leqslant T$, choosing $\chi \in S_{h}^{r}$ suitably and using (713), (7 14), (7 1 6) and (717), we obtain
(7 111) $\|\omega-u\|_{1 \infty} \leqslant\|\omega-\chi\|_{1 \infty}+\|\chi-u\|_{1 \infty}$

$$
\begin{aligned}
& \leqslant c h^{3 / 2}\|\omega-\chi\|+c h\|u\|_{2 \infty} \\
& \leqslant c h^{3 / 2}\{\|\omega-u\|+\|u-\chi\|\}+\operatorname{ch}\|u\|_{2 \infty} \\
& \leqslant c h^{r-3 / 2}\|u\|_{r}+c h\|u\|_{2 \infty}
\end{aligned}
$$

It then follows from the triangle inequality that

$$
\sup _{0 \leqslant t \leqslant T}\|\omega\|_{1 \infty} \leqslant \frac{M}{2}
$$

Hence, (H 8) is satisfied in view of (7110) Indeed, this motivates our choice of M (H9) is inequality (135) of [8]

As for (H10), it is proved in [12] that the (temporal) rate of convergence of the base scheme is the classical rate $\sigma=v$ The results of Sections 4 and 5 apply, yielding approximations U^{n} satısfying $\max _{0 \leqslant n \leqslant N}\left\|U^{n}-\omega\left(t^{n}\right)\right\| \leqslant c\left(k^{\sigma}+h^{r}\right)$ Hence, from (717) and the triangle $0 \leq n \leq N$
inequality it follows that

$$
\max _{0 \leqslant n \leqslant N}\left\|u\left(t^{n}\right)-U^{n}\right\| \leqslant c\left\{k^{\sigma}+h^{r}\right\}
$$

where u is the solution of (711 1)

Let us note that the above results require certain relations between k and h to hold. Specifically, Theorem 4.1 requires

$$
\begin{equation*}
k_{h}-\frac{3}{2(\bar{p}+1)} \leqslant c_{0}^{\prime}, \tag{7.1.12}
\end{equation*}
$$

for sufficiently small c_{0}^{\prime}. This is a mild condition except for the case $\bar{p}=0$ corresponding e.g. to the Backward Euler method. Also, (7.1.12) guarantees that taking $\ell_{n}=1$ in Newton's method will suffice.

On the other hand, condition ($v i$) of Theorem 5.1 translates into the requirement that $k h^{-3 / 2}$ be sufficiently small. We may weaken this restriction say to $k h^{-1}$ small by taking $\vartheta=\frac{1}{2}$ in Remark 5.1. This will however come at the expense of doubling the number of iterations.

7.2. The nonlinear Schrödinger equation

We consider the problem of approximating the complex-valued solution u of the following initial and boundary value problem for the Cubic Schrödinger equation :

$$
\left\{\begin{align*}
u_{t} & =i \Delta u+i|u|^{2} u, & & \text { in } \bar{\Omega} \times[0, T], \tag{7.2.1}\\
u & =0, & & \text { on } \partial \Omega \times[0, T], \\
u(x, 0) & =u^{0}(x), & & \text { in } \bar{\Omega}
\end{align*}\right.
$$

where Ω is an open, bounded, connected subset of \mathbf{R}^{d} and u^{0} is a given complex-valued function defined on $\bar{\Omega}$. We assume that (7.2.1) possesses a unique solution u which is sufficiently smooth up to $\partial \Omega$.

We shall operate within the framework established in [11]. In particular, we shall use the space $C(\bar{\Omega})$ of continuous, complex-valued functions defined on $\bar{\Omega}$, and we let H_{0}^{1} denote the subspace of H^{1} consisting of those functions that vanish on $\partial \Omega$ in the sense of trace.

For integer $r \geqslant 2$ and $0<h<1, Z_{h}^{r} \subset H^{1} \cap C(\bar{\Omega})$ will represent an approximating finite-dimensional space of functions. Such spaces typically consist of piecewise polynomial functions of degree $\leqslant r-1$ defined on a suitable partition of Ω. Note that the elements of Z_{h}^{r} are complex-valued. In particular, we assume that $Z_{h}^{r}=S_{h}^{r}+i S_{h}^{r}$ where S_{h}^{r} is an approximating space of real-valued functions. Indeed, the properties of Z_{h}^{r} listed below are all derived from corresponding properties of S_{h}^{r}.

We assume that these spaces possess good approximation properties; indeed that there exists a constant c independent of h such that for each $v \in H^{r} \cap H_{0}^{1}$, there exists $\chi \in Z_{h}^{r}$ such that

$$
\begin{equation*}
\|v-\chi\| \leqslant c h^{r}\|v\|_{r}, \tag{7.2.2}
\end{equation*}
$$

vol. $31, n^{\circ} 2,1997$
and if in addition $v \in W^{2, \infty}(\Omega)$, then

$$
\begin{equation*}
\|v-\chi\|_{0, \infty} \leqslant c h^{2}\|v\|_{2, \infty} . \tag{7.2.3}
\end{equation*}
$$

We shall assume that the elements of Z_{h}^{r} satisfy the following inverse inequalities

$$
\begin{gather*}
\|\chi\|_{0, \infty} \leqslant c h^{-d / 2}\|\chi\| \tag{7.2.4}\\
\|\chi\|_{1} \leqslant c h^{-1}\|\chi\| \tag{7.2.5}
\end{gather*}
$$

Let $V=Z_{h}^{r}+\left(H^{2} \cap H_{0}^{1}\right)$. We assume the existence of a family of sesquilinear forms $B_{h}^{r}: V \times V \rightarrow C$ with the following properties

$$
\begin{align*}
& B_{h}^{r}(v, v) \text { is real for } v \in V \tag{7.2.6}\\
& B_{h}^{r}(v, v) \geqslant c\|v\|_{1}^{2} \quad \text { for } \quad c>0, \forall v \in Z_{h}^{r} \tag{7.2.7}\\
& B_{h}^{r}(v, \chi)=-(\Delta v, \chi) \quad \forall \chi \in Z_{h}^{r}, v \in H^{2} \cap H_{0}^{1} \tag{7.2.8}
\end{align*}
$$

With B_{h}^{r} we associate an elliptic projection operator $P_{E}: H^{2} \cap H_{0}^{1} \rightarrow Z_{h}^{r}$ by

$$
\begin{equation*}
B_{h}^{r}\left(P_{E} v, \chi\right)=B_{h}^{r}(v, \chi)=-(\Delta v, \chi) \quad \forall \chi \in Z_{h}^{r} \tag{7.2.9}
\end{equation*}
$$

We assume that for some constant c independent of h

$$
\begin{equation*}
\left\|P_{E} v-v\right\| \leqslant c h^{r}\|v\|_{r} \quad \forall v \in H^{r} \cap H_{0}^{1} \tag{7.2.10}
\end{equation*}
$$

The most well-known family of such sesquilinear forms is provided by the so-called Standard Galerkin Method. In this case $Z_{h}^{r} \subset H_{0}^{1}$ and

$$
B_{h}^{r}(v, w)=\int_{\Omega} \nabla v \cdot \nabla \bar{w} d x
$$

Let $u_{h}:[0, T] \rightarrow Z_{h}^{r}$ denote the elliptic projection $P_{E} u$ of the solution of (7.2.1). Then

$$
\begin{equation*}
\left(u_{h t}, \chi\right)=-i B_{h}^{r}\left(u_{h}, \chi\right)+i\left(\left|u_{h}\right|^{2} u_{h}+\psi(t), \chi\right) \tag{7.2.11}
\end{equation*}
$$

where $\psi=P_{0}\left[u_{h t}-u_{t}-i\left(\left|u_{h}\right|^{2} u_{h}-|u|^{2} u\right)\right] \quad$ and $\quad P_{0}$ denotes the L^{2}-orthogonal projection operator onto Z_{h}^{r}. Then ψ satisfies

$$
\begin{equation*}
\sup _{0 \leqslant t}\left\|\frac{d^{j} \psi}{d t^{\prime}}\right\| \leqslant c, h^{r}, \quad j=0,1, \ldots . \tag{7.2.12}
\end{equation*}
$$

To prove this one just needs to note that

$$
\sup _{0 \leqslant t \leqslant T}\left\|\frac{d^{j} u_{h}}{d t^{j}}\right\|_{0, \infty} \leqslant c_{j}, \quad j=0,1, \ldots
$$

for c_{j} independent of h under the hypothesis that $r>\frac{d}{2}$. Set

$$
H_{m}=S_{h}^{r} \times S_{h}^{r}, \quad m=h^{-d}, \quad s=\frac{r}{d} .
$$

We equip H_{m} with the inner product

$$
\begin{gathered}
(v, w)=(v, w)_{H_{m}}=\int_{\Omega}\left(v_{1} w_{1}+v_{2} w_{2}\right) d x \\
v=\left(v_{1}, v_{2}\right)^{T}, \quad w=\left(w_{1}, w_{2}\right)^{T} \in H_{m}
\end{gathered}
$$

and associated norm $\|v\|=\|v\|_{H_{m}}=(v, v)^{1 / 2}$. We define the operator $\Delta_{h}: S_{h}^{r} \rightarrow S_{h}^{r}$ by

$$
\left(\Delta_{h} v, \chi\right)=-B_{h}^{r}(v, \chi), \quad \forall \chi \in S_{h}^{r},
$$

and thence the operator $L: H_{m} \rightarrow H_{m}$ by

$$
L=\left[\begin{array}{cc}
0 & -\Delta_{h} \\
\Delta_{h} & 0
\end{array}\right] .
$$

Now consider the function $g: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ given by

$$
g(x, y)=\left(g_{1}(x, y), g_{2}(x, y)\right)^{T}=\left(-\left(x^{2}+y^{2}\right) y,\left(x^{2}+y^{2}\right) x\right)^{T} .
$$

g naturally induces a map $\varphi\left(v_{1}, v_{2}\right)=\left(\varphi_{1}\left(v_{1}, v_{2}\right), \varphi_{2}\left(v_{1}, v_{2}\right)\right)^{T}$: $H_{m} \rightarrow H_{m}$ where

$$
\begin{array}{ll}
\left(\varphi_{1}\left(v_{1}, v_{2}\right), \chi\right)=\left(g_{1}\left(v_{1}, v_{2}\right), \chi\right), & \forall \chi \in S_{h}^{r}, \\
\left(\varphi_{2}\left(v_{1}, v_{2}\right), \chi\right)=\left(g_{2}\left(v_{1}, v_{2}\right), \chi\right), & \forall \chi \in S_{h}^{r} .
\end{array}
$$

With the maps $\omega, \varepsilon:[0, T] \rightarrow H_{m}$ given by $\omega=\left(\mathfrak{R} u_{h}, \Im u_{h}\right)^{T}$, $\varepsilon=(\mathfrak{R} \psi, \Im \Im \Psi)^{T}$, we see that $(7.2 .11)$ can be written in the equivalent form

$$
\begin{equation*}
\omega_{t}=L \omega+\varphi(\omega)+\varepsilon(t), \quad 0 \leqslant t \leqslant T \tag{7.2.13}
\end{equation*}
$$

which is the required form (2.1).

However, it turns out that φ does not satisfy hypothesis ($H 4$). In order to overcome this difficulty, we introduce a map $\bar{\varphi}: H_{m} \rightarrow H_{m}$ as follows: Let $z \in C_{0}^{\infty}(\mathbf{R})$ be a cutoff function

$$
z(\xi)= \begin{cases}1 & |\xi| \leqslant M \\ 0 & |\xi| \geqslant 2 M\end{cases}
$$

We let $\tilde{g}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be given by

$$
\begin{aligned}
\tilde{g}(x, y) & =\left(\tilde{g}_{1}(x, y), \tilde{g}_{2}(x, y)\right)^{T} \\
& =\left(-z(\xi)\left(x^{2}+y^{2}\right) y, z(\xi)\left(x^{2}+y^{2}\right) x\right)^{T}, \xi=\left(x^{2}+y^{2}\right)^{1 / 2}
\end{aligned}
$$

Now let $\bar{\varphi}$ be the map naturally induced by \tilde{g}

$$
\begin{gathered}
\tilde{\varphi}(v)=z(\xi)\left(-P_{0}\left(v_{1}^{2}+v_{2}^{2}\right) v_{2}, P_{0}\left(v_{1}^{2}+v_{2}^{2}\right) v_{1}\right)^{T} \\
v=\left(v_{1}, v_{2}\right)^{T} \in H_{m}, \quad \xi=\left(v_{1}^{2}+v_{2}^{2}\right)^{1 / 2}
\end{gathered}
$$

We shall show below that ω also satisfies the equation

$$
\begin{equation*}
\omega_{1}=L \omega+\tilde{\varphi}(\omega)+\varepsilon(t), \quad 0 \leqslant t \leqslant T \tag{7.2.14}
\end{equation*}
$$

Now (H1) follows from (7.2.12) and the fact that $m^{-s}=h^{r}$. Also, it is easily seen that $(L v, v)=(\varphi(v), v)=0, \forall v \in H_{m}$. Thus (H2) and (H3) hold with $\lambda=\eta=0$, respectively.

Also, setting
(7.2.15) $\quad\|v\|_{i}=\|v\|_{0, \infty} \equiv \max \left\{\left\|v_{1}\right\|_{0, \infty},\left\|v_{2}\right\|_{0, \infty}\right\}, \quad i=1 ; 2,3,4$,
for $\quad v=\left(v_{1}, v_{2}\right)^{T} \in H_{m}$, we see that (2.2) holds with $s_{i}=\frac{1}{2}$, $i=1,2,3,4$.

Now set

$$
M=2 \sup _{0 \leqslant t}\left[c\|u(t)\|_{r}+c\|u(t)\|_{2, \infty}+\|u(t)\|_{0, \infty}\right]
$$

where u is the solution of (7.2.1) and c is a constant depending on the constants in (7.2.2), (7.2.3) and (7.2.4).

It is clear that \tilde{g} and all its derivatives of arbitrary order are bounded on \mathbf{R}^{2}. Hence it follows at once that $\bar{\varphi}$ satisfies hypothesis (H4) without the stipulation that the argument of φ belong to $B_{1}(M)$.
$\mathrm{M}^{2} \mathrm{AN}$ Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

Also, for $v, w \in H_{m}$ with $\xi=\left(w_{1}^{2}+w_{2}^{2}\right)^{1 / 2}$,

$$
D \ddot{\varphi}(w) v=\left[\begin{array}{c}
-P_{0}\left\{\left[z^{\prime}(\xi) \xi+2 z(\xi)\right] w_{1} w_{2} v_{1}\right. \\
\left.+\left[z^{\prime}(\xi) \xi w_{1} w_{2}+z(\xi)\left(3 w_{2}^{2}+w_{1}^{2}\right)\right] v_{2}\right\} \\
P_{0}\left\{\left[z^{\prime}(\xi) \xi w_{1}^{2}+z(\xi)\left(3 w_{1}^{2}+w_{2}^{2}\right)\right] v_{1}\right. \\
\left.+\left[z^{\prime}(\xi) \xi+2 z(\xi)\right] w_{1} w_{2} v_{2}\right\}
\end{array}\right]
$$

It is easy to see that (H5) and (H6) hold with $\beta=0$ and $\gamma=0$, respectively, again without any restriction on the argument of $\tilde{\varphi}$.

Let $z, v, w \in H_{m}$ with $\|z\|_{4} \leqslant M$. Then,

$$
\begin{gathered}
D^{2} \tilde{\varphi}(z)[v, w]=D^{2} \varphi(z)[v, w]= \\
=2\left[\begin{array}{c}
-P_{0}\left\{z_{1} w_{2} v_{1}+z_{2} w_{1} v_{1}+3 z_{2} w_{2} v_{2}+z_{1} w_{1} v_{2}\right\} \\
P_{0}\left\{3 z_{1} w_{1} v_{1}+z_{2} w_{2} v_{1}+z_{1} w_{2} v_{2}+z_{2} w_{1} v_{2}\right\}
\end{array}\right] .
\end{gathered}
$$

From (7.2.4)

$$
\left\|z_{i} v_{j} w_{\ell}\right\| \leqslant M\left\|v_{j}\right\|_{0, \infty}\left\|w_{\ell}\right\| \leqslant c h^{-d / 2}\left\|v_{j}\right\|\left\|w_{\mathcal{l}}\right\|
$$

so (H7) holds with $\delta=\frac{1}{2}$.
To ascertain (H8), proceeding as we did in the case of the KdV equation, we obtain from (7.2.2), (7.2.4) and (7.2.10),

$$
\left\|u_{h}-u\right\| \leqslant c h^{2}\|u\|_{2, \infty}+c h^{r-d / 2}\|u\|_{r}
$$

Since $\|\omega\|_{0, \infty} \leqslant\left\|u_{h}\right\|_{0, \infty}$, for $r \geqslant \frac{d}{2}$ we obtain
$\sup _{0 \leqslant t \leqslant T}\|\omega(t)\|_{0, \infty} \leqslant \sup _{0 \leqslant t}\left[c\|u(t)\|_{2, \infty}+c\|u(t)\|_{r}+\right.$

$$
\left.+\|u(t)\|_{0, \infty}\right] \leqslant \frac{M}{2}
$$

In view of (7.2.15), this not only establishes (H8), but also shows that (7.2.14) is satisfied. Also, since the operators $\frac{d}{d t}$ and P_{E} commute, we may easily verify (H9) using (7.2.10).

To obtain the results of Sections $3,4,5$ and 6 , we argue as follows : In the case of Theorem 3.1, given any V^{0} satisfying (3.24), we obtain the existence of a unique sequence $\left\{\left\{V^{n, i}\right\}_{i=1}^{q}, V^{n+1}\right\}_{n=0}^{N-1}$ satisfying (3.20) with vol. $31, n^{\circ} 2,1997$
$f=L+\tilde{\varphi}$, with $\left\{V^{n}\right\}_{n=0}^{N}$ satisfying (321) In view of (326), (7215) and the definition of $\bar{\varphi}$, it follows that $V^{0},\left\{\left\{V^{n}\right\}_{l=1}^{q}, V^{n+1}\right\}_{n=0}^{N-1}$ is a solution of the base scheme Furthermore, it is proved in [11] that the following improved estimate holds

$$
\max _{0 \leqslant n \leqslant N}\left\|\omega\left(t^{n}\right)-V^{n}\right\| \leqslant c\left\{k^{\sigma}+h^{r}\right\}
$$

where the integer σ is given by

$$
\sigma=\left\{\begin{array}{cc}
v & \text { if } \Omega \text { is polyhedral or } d=1 \\
\min \{p+3, v\} & \text { otherwise }
\end{array}\right.
$$

Let us note here that these results require the conditions $r>\frac{d}{2}$ and $k^{\sigma} h^{-d / 2} \leqslant c_{0}$

A simılar reasoning can be applied to the results of Sections 4, 5 and 6 Indeed, all of these apply with $f=L+\bar{\varphi}$ Recall that a cornerstone of the proofs was the fact that $U_{\ell}^{n t} \in B_{1}(M)$, and in addition $U^{n}=U^{*} \in B_{1}(M)$ in the case of Theorem 51 Since $\varphi(v)=\bar{\varphi}(v), \forall v \in B_{1}(M)$, the conclusions of Theorems 41,51 and 61 remain in force for $f=L+\varphi$ as well Furthermore, the iterative procedures (41), (51) and (61) involve linear systems that are invertible under their respective prevalling conditions Hence, the schemes outlined have unique solutions, which may be calculated by using either φ or $\tilde{\varphi}$ Obviously, it would be more convenient to use φ, in which case, $D \varphi$ would be given by

$$
D \varphi(w) v=\left[\begin{array}{c}
-P_{0}\left[2 w_{1} w_{2} v_{1}+\left(3 w_{2}^{2}+w_{1}^{2}\right) v_{2}\right] \\
P_{0}\left[\left(3 w_{1}^{2}+w_{2}^{2}\right) v_{1}+2 w_{1} w_{2} v_{2}\right]
\end{array}\right]
$$

Finally, using (7210) and the triangle inequality, we obtain the convergence of the numerical approximations U^{n} to $u\left(t^{n}\right)$ at the rate $O\left(k^{\sigma}+h^{r}\right)$

Of course the conditions of Theorems 41,51 and 61 hold, under the guise of specific constraints on k, h, r, d In particular, the conditions $s_{j}<s$ translate into $r>\frac{d}{2}$, which was a basic assumption for the convergence of the base scheme In addition, we also require that $k^{\bar{p}+1} h^{-d / 2} \leqslant c_{0}$ This is slightly $\underline{m o r e}$ restrictive than the condition $k^{\sigma} h^{-d / 2} \leqslant c_{0}$ For $d \leqslant 3$ and $\bar{p} \geqslant 1$ a mild condition of the type $k=o\left(h^{3 / 4}\right)$ must be satisfied Also, Newton's method will require only one iteration under the condition that k be taken sufficiently small On the other hand, condition (v) of Theorem 51 is equivalent to $k h^{-d / 2}$ being sufficiently small, which could be restrictive for $d=3$ Hence, the Explicit-Implicit iteration could provide a better alternative

[^3]
REFERENCES

[1] G. D. Akrivis, V. A. Dougalis and O. A. Karakashian, 1991, On fully discrete Galerkin methods of second-order temporal accuracy for the Nonlinear Schrödinger Equation, Numer. Math., 59, pp. 31-53.
[2] R. Alexander, 1991, The modified Newton method in the solution of stiff ordinary differential equations, Math. Comp., 57, pp. 673-701.
[3] G. A. Baker, V. A. Dougalis and O. A. Karakashian, 1983, Convergence of Galerkin approximations for the Korteweg-de Vries equation, Math. Comp., 40, pp. 419-433.
[4] J. L. Bona, V. A. Dougalis, O. A. Karakashian and W. R. McKinney, 1995, Conservative high order numerical methods for the generalized Korteweg-de Vries equation, Phil. Trans. Roy. Soc. London Ser. A, 351, pp. 107-164.
[5] J. L. Bona and R. Smith, 1975, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 298, pp. 555-604.
[6] J. C. BUTCHER, 1987, The numerical analysis of ordinary differential equations. Runge-Kutta and general linear methods, John Wiley \& Sons.
[7] M. Crouzeix, W. H. Hundsdorfer and M. N. Spijker, 1983, On the existence of solutions to the algebraic equations in implicit Runge-Kutta methods, BIT, 23, pp. 84-91.
[8] V. A. Dougalis and O. A. Karakashian, 1985, On some high order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation, Math. Comp., 45, pp. 329-345.
[9] E. Hairer and G. Wanner, 1991, Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer series in Computational Mathematics, Springer Verlag.
[10] O. KARAKAShian and W. Rust, 1988, On the parallel implementation of implicit Runge-Kutta methods, SIAM J. Sci. Sta. Comput., 9, pp. 1085-1090.
[11] O. Karakashian, G. D. Akrivis and V. A. Dougalis, 1993, On optimal-order error estimates for the Nonlinear Schrödinger Equation, SIAM J. Numer. Anal., 30, pp. 377-400.
[12] O. Karakashian and W. McKinney, 1990, On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp., 55, pp. 473496.
[13] J. M. Sanz-Serna and D. F. Griffiths, 1991, A new class of results for the algebraic equations of implicit Runge-Kutta processes, IMA Journal of Numerical Analysis, 11, pp. 449-455.
[14] V. Thomée and B. Wendroff, 1974, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal., 11, pp. 1059-1068.

[^0]: (*) Manuscript receıved October 301994
 (${ }^{1}$) Computer Scıence Department Unıversity of Ioannina 45110 Ioannına Gieece
 $\left({ }^{2}\right)$ Mathematics Department University of Athens 15784 Zogiaphou Greece and IACM FORTH
 (${ }^{3}$) Mathematics Department Unıversity of Tennessee Knoxvılle TN 379961300 The work of these authors was supported by a Greece USA Collaboration in Research and Technology Grant INT 9107457

[^1]: M^{2} AN Modelısatıon mathematıque et Analyse numeııque 0764 583X/97/02/\$ 700 Mathematical Modelling and Numetrcal Analysıs © AFCET Gauthieı Villars

[^2]: M^{2} AN Modélisation mathématıque et Analyse numérıque
 Mathematical Modelling and Numerical Analysis

[^3]: M^{2} AN Modelisation mathematique et Analyse numenque
 Mathematical Modelling and Numerical Analysis

