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MATHEMATICAL MODELUKÛ AND NUMERICAL ANALYSIS
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 31 n° 2 1997 p 251 a 288)

SOLVING THE SYSTEMS OF EQUATIONS ARIS1NG
IN THE DISCRETIZATION OF SOME NONLINEAR PD.E.'S

BY IMPLICIT RUNGE-KUTTA METHODS (*)

Georgios AKRIVIS (!), Vassihos A DOUGALIS (2) and
Ohannes KARAKASHIAN (3)

Resumé -— On construit et analyse des methodes itératives pet mettant une te solution efficace
des systèmes non lineaues issus de la discrétisation en temps d équations d évolution non
hneaues pat des methodes de Range Kutta implicites Cet tains schémas considet es dettvent de
la methode de Newton et s appliquent a une lat g e classe d équations non linéaires

Abstract —We consiuct and analyze itérative methods for the efficient solution of the
nonltneai équations that resuit ftom the application of Implicit Range Kutta methods to the
temporal tntegtation of nonhneai évolution équations Some of the schemes we considet have as
stcvting point Newton s method and can be applied to a large class of évolution équations

1 INTRODUCTION

Whenever an implicit Runge Kutta method is used to générale approxima
tions to solutions of évolution équations, the issue of solvmg the resulting
System of équations anses One realizes the importance of this simply by
recogmzmg the fact that the computational work is almost entirely concen
trated there

In this work, our aim is to propose and analyze efficient solutions to this
problem With this in mind, the first issue that we needed to address was the
choice of an appropnate class of évolution problems to consider This had to
be sufficiently large to encompass problems of practical interest and yet one
that could be descnbed simply Two spécifie types of problems we wished to
study were stiff Systems of nonhnear ordinary differential équations (posed on
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Rm for some flxed m) and, mamly, large, sparse stiff Systems resultmg from
finite element or fimte différence spatial semidiscretizations of initial and
boundary value problems for nonhnear partial differential équations with
smooth solutions In the latter case, the size of the Systems mcreases without
bound as the spatial discretization parameters tend to zero In order to conduct
the analysis in a umfied manner we chose to work in the setting of a family
of fînite-dimensional Hilbert spaces Hm parametnzed by a positive parameter
m that can take large values This family may reduce to a single member
( R m ) in the case of a spécifie System of o d e ' s or represent, for example, a
séquence of finite element spaces of increasing dimension

In the case of a semidiscretization of a partial differential operator, the
parameter m also enters the problem as a measure of the magnitude of the error
of the semidiscrete approximation, through the comparabihty constants of
several norms defined on Hm for the purposes of the error analysis and through
bounds of quantities associated with the nonhnear part of the p d e Smce it is
imperative that all the error constants be bounded mdependently of m, all
quantities depending on the latter must be carefully monitored

The techniques of error estimation are motivated by our previous studies of
low- and high-order accurate IRK temporal discretizations (and their efficient
implementation) in the context of the Korteweg-de Vries équation ([3], [8],
[12], [4]) and the nonhnear Schrodinger équation ([1], [11]) In the paper at
hand we work m an abstract setting and under assumptions on the nonhnear
terms that permit the analysis to carry over to more gênerai problems and to
other semidiscretizations and nonhnear évolution équations as well

This paper is orgamzed as foliows In Section 2 we introducé the problem
and the attendant notation and state the basic assumptions on the solution, the
operators in the differential équation and on the IRK schemes A basic feature
of our work is that the assumptions on the nonhnear part of the operator afford
us a considérable generalization over the (global) monotonicity condition
frequently assumed in the literature Indeed, our methodology is designed to
apply to spécifie classes of p d e 's with spatial denvatives in the nonhnear
terms In this approach, which invokes a local monotonicity condition, one
takes pains to operate in a neighborhood of (or in a tube around) a smooth
solution of the évolution équation This idea is certamly not new Indeed it is
a pervadmg, though not exphcitly recognized thème in the works of many
authors, including the present ones, who have analyzed spatial and temporal
discretizations of solutions of time dependent p d e ' s lts importance is
beginning to be exphcitly recognized, see e g [2], [14] The examples
contained in this work should convince the reader that the particular norm
defining the tube around the solution is highly dependent on the particular
nonhnearity and is much more hkely to be an L°° -based Sobolev norm than
the Hubert space norm
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In Section 3 we introducé the base scheme that is obtained by applying the
IRK method to the initial-value problem. For the purposes of the error analy sis
we found convenient to assume that the IRK schemes under considération are
algebraically stable, satisfy the usual simplifying assumptions on the order
conditions and, also, a positivity property that guarantees the existence of
solutions of the nonlinear system of intermediate stages [7]. We consider
issues of existence and uniqueness of the solutions of the resulting discrete
problems and estimate their errors. We then prove a gênerai convergence resuit
for the base scheme with an error estimate of optimal-rate spatial accuracy.
The techniques we used are well-known and can be found, with références to
the original papers in [6], [9]. Nevertheless, we also note that the analy sis
presented, especially in what concerns stability, uses only the local monoto-
nicity condition alluded to above rather than the global version.

In Section 4 we consider Newton* s itérative method for sol ving the non-
linear system of the intermediate équations. We show that it preserves the
spatial and temporal orders of accuracy of the base scheme, provided it is
started with sufficiently accurate initial conditions at each time step, if certain
suitable mesh conditions are valid, and if sufficiently many Newton itérations
are performed at each step. The number of itérations needed dépends on the
accuracy of the starting values and the temporal order of accuracy of the base
scheme. It is shown that under some realistic conditions, no more than one
itération is required.

In Section 5 we study an efficient variant of Newton's method, the so-called
modified Newton method. The obvious advantage that the Jacobian matrix
need not be updated at every itération is enhanced by the possibility of
decoupling and simultaneous solving (« in parallel ») for the intermediate
stages. The modified scheme no longer converges quadratically ; we show
however that, with sufficiently many itérations, it preserves the spatial and
temporal orders of accuracy of the base scheme. In Section 6 we analyze an
even simpler itérative scheme, which is sometimes referred to as the « explicit-
implicit » method as it is based on a splitting of the linear and nonlinear parts
of the operator. The resulting method is very efficient in that the linear Systems
that need be solved have the same coefficient matrix, i.e. a matrix that does
not vary with the time stepping. However this scheme is not applicable to as
wide a class of évolution équations as the modified Newton method.

Finally, in Section 7 we apply the methodology developed in the previous
sections to two concrete examples corresponding to finite element semidis-
cretizations of the Korteweg-de Vries (KdV) and the Cubic Schrödinger
équations. In addition to providing illustrative examples to the formai ap-
proach adopted in the work at hand, the results of this section supplement
those in [12] and [11] by providing complete analyses of efficient lineariza-
tions of the fully discrete schemes proposed in those works. Besides estab-
lishing convergence, the following useful information is gleaned :
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254 G AKRIVIS et al

(1) The number of itérations required to preserve the rate of convergence of
the base scheme is determmed for each hnearization technique
(n) Typically, Courant number type stability conditions between the spatial
and temporal discretization parameters are required These are explicitly
exhibited
Newton-type methods for solving the nonhnear Systems resultmg from IRK

schemes have often been considered in the literature of stiff Systems of
o d e ' s For a survey of the literature and a hst of références we refer the
reader to a recent paper of Alexander, [2] In that work, Alex ander analyzes
the modified Newton method as applied to the nonhnear Systems resultmg
from the application of quite gênerai IRK schemes to stiff Systems of o d e 's,
that have a Jacobian of the nght-hand side term which is essentially négative
dominant and slowly varying Using matrix methods he proves that the
modified Newton itération converges linearly to the locally unique solution of
the nonhnear system if one starts near a smooth solution of the System of
o d e ' s In this work, we emphasize models of stiff initial-value problems that
are semidiscretizations of nonhnear p d e ' s In such cases, especially if
higher-order semidiscretizations are used, the Jacobian may not be essentially
négative dominant, or if such be the case, it may be quite difficult to establish
this property given that the entnes of the Jacobian must be examined

2. PRELIMINAIRES

2.1. The basic assumptions

Let jffl dénote a set of positive numbers (infinité or otherwise) and for
m e JM', let (//m, ( • » • ) ƒ / ) dénote a corresponding family of finite dimen
sional (real) inner product spaces In some applications M may be a set of
positive integers and m may dénote the dimension of Hm , in others, m may
be used to dénote a more gênerai parameter for Hm

We consider the following family of ïmtial-value problems

com(0) =œ°m,

for some T > 0, where com [0, T] —> Hm, Lm Hm —» Hm are linear operators,
q>m Hm ~^> Hm are smooth functions and em [0, T] —> Hm are smooth func-
tions satisfying

omaxrlkm(r)||„ ^cm ,
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for some $ > 0 and a constant c independent of m.
One area of application of (2.1) we have in mind is that when com represents

a continuous-in-time approximation to the solution u of the time dependent
p.d.e.

\u(0) =u°.

In this case, the functions zm(t) may represent semidiscretization errors, and
may be unknown. In view of (Hl ) and other considérations to follow, it turns
out that the sm(t) will not play a major part in the time intégration process.

We assume that for some constants /t, rj, independent of m,

(H2) (L„, v,v)H ^ X\\vfHm , Vu e Hm ,

Note that Ç9W(O) = O, as a conséquence of (H3) and the continuity of
q>m. To simplify matters, we assume that A, rj ^ 0.

We assume that for each m, Hm is additionally equipped with norms
III. 11̂  m, i = 1, 2, 3, 4. These norms are obviously equivalent to || . || H .
Specifically, let c > 0 and svsvsvs4 ^ 0 be constants independent of m
such that

(2.2) Illulll, m < cms' || v || Hm , i = 1,2,3,4, Vi? e //m .

For m G ^ , i = 1, 2, 3, 4 and p > 0, we introducé the sets

Now let M, tf, fi, y and <5 be given positive numbers. For me Jt, we

introducé the spaces F)nKM, PI^M,? ^I.K.M,-,,
 and ^I.K.M.S by

K,

e Hj ,

)v\\Hm < /Cm;' || v

€ Hj,

u) [v,w]\\Hm <

vol. 31, n° 2, 1997



256 G. AKRIVIS et al

Hère, Dg, D1 g are the first and second Fréchet derivatives of g, respectively.
We assume that there exist nonnegative constants K, M, ƒ?, y, ô such that

(HA) <Pm^K,K,M>

(H5) 9me &\KM^

(H6) <pme ^lhK,M,y Vm

We observe that if ( # 2 ) holds, then it follows from (HA) and (H5) that
Vm e ^ , Lm + #?m e J2^ K M, ^2

m K M ^ respectively with K replaced by
K+ L

The définition of J ^ K M explicitly formulâtes what we previously referred
to as the local monotonicity condition : One of the two vectors M, V is restricted
to a suitable bail Bl m(M) containing the solution of the p.d.e. Let us also note
that the lack of explicit dependence on t is purely for the sake of simplicity,
(H8) For each m e <M^ (2.1) has a unique solution œm :

for a sufficiently large integer / and constants c independent of m.
To simplify the notation» we shall suppress subscripts m and Hm whenever

possible. Let us also mention that in case the problem is a stiff nonlinear
System of o.d.e/s, not associated with any semidiscretization, we think of it
as posed on Rm for a fixed m. In such a case em = 0.

Remark. One could argue that hypotheses ( H2 ) and ( H3 ) are global in
nature ; however, many classes of important p.d.e.'s e.g. parabolic and hy-
perbolic, as well as spécifie équations such as the Korteweg-de Vries équation,
the Nonlinear Schrödinger équation and the Navier-Stokes équations of fluid
mechanics satisfy thenx This is in sharp contrast with hypotheses
( HA ) — ( Hl ) which can only be used in a local setting in order to treat the
above-mentioned équations.

2.2. The Implicit Runge-Kutta methods

For q 5= 1 integer» a g-stage IRK method is given as a set of constants
A = (a.j)eRqX9, b - (bv ..., bq)

T G R*, T = ( r p ..., zqf G R*. We shall
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assume that these methods satisfy certain stability and consistency conditions.
Indeed, we require the algebraic stability condition cf. [6]

(bt^0t i = l , . . . , ? ,
1

r§\ } the q x q array with entries mtj = at bt + a (b — bLb

I is positive semidefinite .

The consistency conditions are given by the simplifying assumptions [6]

T ' + 1

for some integers v,p,p 5= L We assume that

(2.3a) v ^ /? + p + 1 ,

The existence of the numerical approximations is obtained by assuming the
following positivity property

A is invertible and there exists a positive diagonal matrix D such that

x Cx > 0, Vx e R*, x * 0, where C = DA' l D~ x .

Two classes of IRK methods satisfying the hypotheses above are the
Gauss-Legendre methods for which v = 2 q, p = q, p = q and the Radau IIA
methods for which v — 2q~ 1, p = q, p = q—l, [6]. We also mention
two diagonally implicit (DIRK) methods of orders 3 and 4, respectively. (The
fourth-order method does not satisfy (2.3a). Ho wever, cf [12], [11], our theory
holds for this method as well.)

3. THE BASE SCHEME

As noted earlier» the techniques employed in this section are well-known.
The purpose of the detailed treatment of the base scheme is to provide a
benchmark (in terms of the spatial and temporal orders of accuracy of its
global error) against which we measure the accuracy of the linearized schemes
that are introduced in the three subséquent sections.

vol 31, n° 2, 1997
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We begin with a prelimmary resuit which shows that in view of ( H\ ) it is
possible to disregard the terms s(t) while constructmg the temporal discreti
zations Denotmg L + (p by ƒ we have

LEMMA 3 1 Let œ [0, T] -» Hm be the solution of (2 1) and let
v [0, T] —» Hm be a solution of the initial value problem

(3 1) i o
[v(0) =co°

Then, there exists a constant c, independent of m such that

(3 2) m a x _ | | ( c u - o ) ( 0 1 1 « ™ '

Proof From (2 1) and (3 1), we get,

Taking the inner product with co-v, from (H2) and (H4) we get

|| | | ( O I I \ \ c o - v \ \ , O ^ t ^ T

Using (Hl ), we easily get (3 2) •

Let iVbea positive integer and let k = ^ represent the temporal step size

We introducé the map ât(k) = & Hm -> Hm as follows For v e Hm, let the

intermediate values v' e Hm, \ ^ i ^ q, be given by

(3 3) v ^ v + k^ayfiv*), i=h ,
j i

We then set

yj H-J *si K £j "[J\ )
t= 1

Note that the existence of 0lv dépends solely on the existence of the
intermediate values {f'}^_, satisfying (3 3) Furthermore, since A is invertible
in view of (P), (3 4) may be wntten as

(3 40

where « = ( 1 , , 1 )T e R*
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We shall next consider the question of existence of the intermediate values.
Using a well-known version of Brouwer's fixed point theorem, we shall prove
that if k is sufficiently small, then for each v e Hnjt there exists at least one
solution set {{^'}?^p Mv\ to (3.3), (3.4). For simplicity of notation, we shall
represent this set simply by Mv. Note however that, for nonlinear f the map
M cannot be expected to be single-valued in gênerai.

LEMMA 3,2 : Let (/ƒ, ( . , . )H) be a finite dimensional Hilbert space and
dénote by || . || H the associated norm. Suppose that g : H —> H is continuons
and that there exists a > 0 such that (g(x), x)H ^ 0 for all x e H with
|| je 11^=0. Then, there exists x* e H such that # (x*) = 0 eind
|| x* || H ^ a. D

PROPOSITION 3.1 : Assume that ( # 2 ) , ( / /3) and ( P ) hold. Then there
exists kQ — kQ(A, b, A, rj) > 0 such that for each 0 < k ^ kQ, and each
v e Hm, there exists a solution {{i>'}f=P $v) to (3.3), (3.4). Furthermore, all
such solutions {{i^Jf-i} satisfy

(3.5) imaxti \\v'\\ ^ c\\v\\ ,

for some constant c — c{A, A, rj). If ( 5 ) is also assumed to hold, then all such
solutions Mv satisfy the estimate

(3.6) \ \ ® v \ \ ^ ( l + c k ) \\v\\ ,

for some constant c = c(A, b, A, n).

Proof : We first establish (3.5) and (3.6). From (3.3), we obtain

E cu dj * = i S dj v + * W ) . i = 1. -, 7̂ .

where C, D are as in ( P ) . Taking the inner product of the *-th équation with
dt v\ summing over i, from ( P ) , (H2) and (H3) it follows that for some
constants c p c2 depending only on A,

Choosing /:0 = -, -r-, we obtain (3.5) for any
2(A + rj) I max Û?̂  J

0<k^ kö.

vol 31, n° 2, 1997
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Now from (3.3) and (3.4) it follows that

\\mv\\2 =

Using ( i /2) , ( # 3 ) and

(3.7) | |* i ; ||2 *£ ||i>||2 + 2*(A + * ) ( max

Using (3.5) in (3.7), we obtain (3.6).
Concerning the question of existence, we first note that if v = 0, then

= 0 is a solution, in view of the fact that / ( 0 ) = 0 . Hence, let
O and define the map G s ( g p ..., g )T : (Hm)g -> (//m)^ by

0t( V) = E ^ 4 d /1 / - i> ) - Wf ƒ( Ü' ) , i = 1, ....
j= 1

for V = (v\ „., i;*)T, v'e Hm, i = l , . . . , 4f. Let ( ( . , . ) ) dénote the usual
(product) inner product on (Hm)q, and III. III the associated norm.

Then we have

7 , i ;
/ , y = l 1 = 1

We see immediately that for 0 < A: ^ A:o

( ( G( V) , V) ) ^ CjlliVIII2 - c2 II1; II IIIVIII » *( A + rj ) ^ max rff ) IIIV11I2

2c2
Hence ((G(V), V ) ) ^ 0 for all VG ( i / J 9 satisfying HlVIII = — - || v \\.

Using Lemma 3.2, we infer that there exists V* e (Hm)q such that
G(V*) = 0. Obviously (u1, .... vq)T= V* is a solution of (3.3). •

We shall often use steps similar to those leading to the estimate (3.5). In
such occurrences, these shall be referred to as diagonalization arguments.

We next consider the foliowing stability result
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PROPOSITION 3.2: Assume that (#2) , (#4) , (S) and (P) hold. Then,

there exists kQ = kQ{A, b, x, K) > 0 such that if {v9 {f'}f= ,, Mv] and
{w, {wl}q

l = ],mw} satisfy (3.3) with 0 < k ^ k0 and { v ' ^ c ^ M ) , (or

(3.8) ^ J

(3.9) \\Mv- Mw\\ ^ (1 +ck) \\v~w\\ ,

for some constant c — c(A, b, x, K).

Proof : Applying a diagonalization procedure to the system

l ; ' - w
l = l ? - W + * 2 ay(/( 1/ ) - ƒ( M/ ) ) , i = l , ..., q ,

we obtain (3.8) from (H2),(H4) and (P ) . Furthermore, using (5 ) , we
obtain

(3.10)

(3.9) now follows from (3.8) and (3.10). •

Note that, as a resuit of the above, there exists at most one set {i/}^=, in
B{(M) satisfying (3.3).

We now focus attention on the local truncation errors. Letting tn = nk and
tn ' = f -f kx0 z= l , . . . , ^ , n - 0, ...,N~ 1, we have.

PROPOSITION 3.3: Assume that hypotheses {Hl\ {Hl), ( / /3) , {HA),
n > 0 such that for(#8),. (/»), 0

0 < ^ ^ k
- 0tw( f ]

B),(C)and
CQ and

) satisfying

r ( P ) hold.
for n =

Then there
0 iV- 1

(3.11) ^ ' ^ ( O + fc j[

(3.12)

vol 31, n° 2, 1997



262 G. AKRIVIS et ai

Furthermore,

(3.13) max || (o( tn''") - cou11| s£ ck(kp + m" s) ,

( 3 . 1 4 ) | | « / I + I - r o ( f " + 1 ) | ] s= c * ( * m i n < / ' ' l > } + w T * ) ,

jfor st>m<? constant c independent of k and m.

Proof : The existence of {a>"''}*=1 and hence that of con+] follows from
Proposition 3.1. Now let {p"'l}^=i and pn+ in Hm be given by

(3.15) / / ' ' = tait"-') -

2(3.16) / / '+ ' = œ( t"+ ' ) - w( r" ) - * 2 £»,. ƒ( oX r"" ' ) ) .
, = J

From (2.1), Taylor's theorem, (H\ ) and (ff9),

+ O(F+1 +km~s) .

Using (C), it follows easily that

(3.17) max \\pnJ\\ ^ ck(kf) + m" v ) .

Now it follows from (3.15) and (3.11) that

(3.18) a>( t"-') - co"-' = * 2 «,>[/"(«>(f"') ) - / («"" '")] +
; = i

In view of ( P ) , ( / /2 ) , (HA), ( / /8 ) and (3.17), a diagonalization argument
gives (3.13) for /: suffïciently small.

Proceeding as in the dérivation of (3.17) but using (B) instead of (C) , we
obtain

(3.19) | |// '+1 | l ^

M2 AN Modélisation mathématique et Analyse numérique
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Moreover, it foliows from (3.12), (3.16) and (3.18) that

263

cm
ï+ i

A — I
.j [œ(t J)-co*J -p'J] +p

(3.14) now follows from (3.13), (3.17) and (3.19). •
In case sm = 0, i.e. when we have no semidiscretization of a p.d.e. in mind,

the results of Proposition 3.3 hold without any spatial contribution m~ * in the
bounds (3.13) or (3.14). The same holds for the rest of the analogous estimâtes
in Sections 3-6.

We are now ready to state and prove the main resuit of this section.

THEOREM 3.1 : Assume that the hypotheses of Propositions 3.1, 3.2 and 3.3
hold. Assume additionally that

(i) sx ^ s.
Then, there exist k0, m0, c0 > 0 such that for all 0 < k ^ kQ and all
m S= m0 satisfying

(ii) kp+l mh ^ c 0 ,
there exists a séquence V°, {{VnJ}q

i=v V**1}"^ c Hm given by

(3.20)

In addition, the following estimate holds

(3.21) omaxN\\w(tn)-Vn\\ ^ c{kmin{p'v} + m~s} ,

/ o r 5orne constant c independent of k and m. We shall call (3.20) the "base
schemesf.

Proof : Applying Proposition 3.1 repeatedly, we can establish the existence
of a séquence {{V"'''}?=p V

n+]}nZo satisfying (3.20). Now using ( i f8 ) , (2.2)
and (3.13),

(3.22) lila/1* 'Illj ^ Illcü"1 i - OJ( tlu i )lll1 + llkw( tiU l)\\\x

vol. 31, n° 2, 1997



264 G. AKRIVIS et ai

Hence , in view of (i) and (ii), for k suftlciently small, it follows that

(3.23) tü"'' e

Applying Proposition 3.2. we see that

!|w" + I - V + l | | « (1+dfc)

From (3.14) and the triangle inequality, it follows that for

\ \ œ ( t n + ' ) - Vn + ]\\ *£ ( 1 + c k ) \ \ w ( t n ) - V n \ \ + c * { * m m { * ' v } + m - i } .

(3.21) now follows easily from recursion. •

R e marks.
1) It is obvious that Theorem3.1 remains valid for any choice of V° in

Hm that satisfies

(3.24) |! V° - co°|| == cm~s ,

where c is independent of m. Consequently, we shall refer to (3.20) with
V° satisfying (3.24) as the "base scheme" as well.

2) (i) and (ii) form a set of convenient sufficient conditions that guarantee
that a)'u ' e BX{M) for ail «, /. In special cases, (3.23) may be proved in a more
direct manner, cf. e.g. [3].

3) If sf ^ s and kp+ mJ ^ c0 for some j , 1 ^ j ^ 4, c0 sufficiently
small, then,

(3.25) w ' u e ^ ( 3 ~ ) , f = 1, . . . ,^,0 ^ n ^ TV - 1 .

In gênerai 1 ^ p ^ g whilst v may be as large as 2 q, as in the case of
Gauss-Legendre methods. For some spécifie problems, using (D), (2.3a),
(23b) and specialized techniques, one may obtain an improved rate of
convergence estimate for the base scheme. See for instance [12], LUI- ln order
to accomodate such special cases, we shall make the assumption

(H\0) \\(ü(rn)~ V"\\ ^ c{ka + m~s}t n = 0 , ...,Nt

for some integer rr, with p ^ a ^ v and for some constant c independent
of k and m.

Finally, let us remark that with slightly more stringent conditions than (i),
(ii), one may prove uniqueness of the Vft'' as well. For exarnple, consider the
following
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COROLLARY 3.1 : Assume that (H\0) holds and that in addition to the
assumptions of Theo rem 3.1 we have

(i) A', < 5 ,

(ii) k°ml ^ c0, c0 sufficiently smalL
Then, for a given choice ofV satisfying (3.24), the re exists a unique solution

{{VnJY!=v yn+l}^Io to (3.20).

Proof : In v iew of Propos i t ion 3.2, it suffices to show that

(3 .26) ( m a x illV^'lll, ^ Af, n = 0, ..., N - \ .

To obtain this , f rom (3.8) and (H\ö) it fo l lows that

m a x || Vn' 'l - œH' ' | | ** c II Vn - u>{ t" ) ||

c\k° + rns)

Henee, using (i), (ii), (2.2) and (3.23), we obtain

m a x \ \ \ V H t % ^ c m x \ k a + m ~ s ) + m a x \\\wn' 'III. ^ M

which is the desired result

4. NEWTON'S METHOD

To begin, let us recall that Newton*s method for approxirnating a root of a
smooth function g : X —> X, where X is a normed linear space, is given by

Dg(xe) (xe+l-~xe)=- g(x£), 2 = O, 1 x0 given .

In our particular context, given approximations UJ e Hnr UJ ~ u(f'),
j — 0, ..., n, Newton's itérative procedure for approxirnating the intermediate
values {£ƒ"''} takes the form

(4.ï ) u'ïi x ~ k X ûy Ö/( 6/;:'; )( £/';•; t - (/;:

i = l , . . . ^ , f = 0 f „ - l .
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The starting values Un
0 ' are assumed given, and 2n S= 1 is the number of

itérations to be performed at step n We then define Jjn+l by

(4 2) Un+X = ( 1 -bTA~le)

Starting values Un
0 ' may be generated by a vanety of techniques For

example, one could use the collocation polynomial from the previous step as
advocated in [9] In this paper, we generate them simply by extrapolation from
previously computed values U'\ Un ~ l, according to

( 4 3 ) £ / S ' = 2 X ^ " y ' < = 1 > - 9 . « = 0 , , * - l ,
j = o

where pn $ n i s a nonnegative integer and where the extrapolation coeffi-
cients are generated as follows For mteger 2 such that 0 ^ 2 ^ n, let
{Le

( "Ij7 0 be the (Lagrange) polynomials of degree 2 that satisfy
h\ n(tn J)=S{J, O ^ i , j ^ 2 T h e n set

(4 4) fjtj = L] \ t n + * r f ) = fto
 X-~J, l < K q , 0 * j * e

Using Taylor's theorem, ît can be shown that for any smooth function ut

e
(4 5)

In view of the fact that the accuracy of the extrapolated values is limited by
the number of available past data, as well as by p + 1 and a we shall take

(4 6) pn = mm {n, p, a - 1}

THEOREM 4 1 Assume that (HIO) and the hypotheses of Theorem 3 1

are satisfied and that we are given initial data U , , Ul\

p = mm {/?, er - 1}, satisfying

(4 7) \\UJ-œ(i?)\\ ^ c{ka + m~ v},0 ^j **p,

for some constant c independent of k and m
Assume in addition that
(i) (H5) holdst

(n) (Hl) holds and S < s,
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(iii) svsvs4<s,

(iv) en 2= Iog2( a - p H- 1), p**n*ZN-\.

Then, there exist kQ, mQf c0 > 0 suc h that for all 0 < k ^ k0 and for all

m ^ m0 satisfying

(v) JUïTw/ ^ c0,

(vi) F + ! m"J ^ c0, /or jf = 1, 2, 4,

(vii) k7)+lm ^ c 0 ,

r/iere ex/5^ a unique séquence {Un}n^Q which for p + 1 ^ n ^ N is
generated by (4.1)} (4.2) and (43) with pn= p. Furthermore,

(4.8) max || Un - w{ tn) || ** c{ka + m s] ,

for some constant c independent of k and m.

Moreoven if p ^ a ^ 2 p% then the conclusion of the theorem holds with
tn = 1 provided

(viii) fc2p~o + 2 Km3 is sufficiently small

Proof: It folïows from (4.7) and (H10) that

|| Un - Vn\\ ^ c{ka + m~ % 0 ^ n ^ p ,

where Vn is defined by (3.20). We shall prove inductively that there hold :

(ƒ,) II TT - Vl\\ ^ c n { k a + rn % p ^ n ^ N ,

where the nonnegative constant c dépends only on the IRK method and the
constant c in (3.9). An important conséquence of (/„) is that

cn 3S c* = (cj} + 1 ) ecT, p ^ n ^ iV .

Now assume that (/.), (7|V) hold up to n, p ^ n ^ iV - 1. To extend
these to n + 1, we shall prove inductively that

(//;) Uy G Bj(M)J S* 0 , j= 1,2,4, i = 1 r̂ t

(/ƒ,.) ^ ^ ^ ^ Ö " 2 'a ||
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where [ÙnJ\tl=l are (exact) solutions of (3.3) with i; = Uf\ Ûn+l = MUn and
where c dépends only on the IRK method. Note first that from (ƒ.) and
(f/10) it foliows that

(4.9) \U*-œ{t!)\\ S \\U]-Vj\\ + ||V-a>(Ô||

^ ( c* + c ) {ka + m v}, 0 s£ j ^ n .

We next verify (II.) for £ = 0. (Obviously (//..) holds for £ = 0. ) Indeed,
from (4.5)> (4.9), (3.13),

Il U - UQ \\ ̂  \\U - eu H + H eu - co( ? ) ||

(4.10)

Now from (3.23), (3.8) and (4.9),

« t f 1 ' 1 - a / 1 ' ! **c\\Un-co(ta)\\

(4.11)
^ ce* {ka + rn "v|, / = l, ..., ̂  .

Hence, in view of (iii), (vi) and choosing k small and m large, we obtain

(4.12) tll - œtl ce* ms' {ka + m' s} ^ ~ j = 1, 2, 4 .

Thus, from (3.25) and (4.12) it follows that

(4.13) ^ ' e 8.(7 Ç ) , . / = 1 ,2 ,4 .

Now from (4.10) and (4.11), it follows that

(4.14) H ^ ' - t / J ' I l ^ c { F + 1 + m - A

for c = Ce* where C does not depend on m, fc, n and the induction indices.

Choosing k small and m large, we obtain \
together with (4.13) give the desired resuit.

^ - U'QJ \\\j ^ ~. This,
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Now assume that (//. ) and (// f l) hold up lo some 2 ^ 0. To show that
{Un

£'l , }* = j exist (uniquely) salisfying (4.1), we consider the associated homo-
geneous system

Using a diagonalizaiion procedure, it follows from (H t ), ( H2 ) and ( H5 ) that

lor some constants c p c2 depending only on A. Hence, taking kKm suiïïciently
small, according to (v), forces y = 0, i = l , . . . , g.

We shall next prove the estimate,

(4.15) i max ^ || Ülu ' - ^ , || ^ c ^ m d
 f max ̂  || f/"' ' - £/'f'' ' ||

2 ,

lor some c~c{A,q). Indeed, for i = l , . . . , <?,

2 ö--' ) - ƒ( i/;-' ) - zyc t / ^ > ( uH,i, - c/1^

(4.16) = /c 2 ;

7 = 1

<?

where D2 tp{u) [v]2 = D 2 ç>( M ) [ t \ u ] . We need to estimate the argument of
D*" #?. From ( / / , ) , A. 13) and for 0 ^ i ^ 1, we have

max lilrL/'1'' + ( 1 - t) Un
s 'lli; ̂  M , j = 1, 2, 4 .

Thus, applying the diagonalization procedure to (4.16), from (7/2 ), { H5 ) and
( Hl ) we obtain

^ II/T""' r/;!>' il2 < - Ai " 4. /r ^^ ^ iir"7"*' r/"'' H2

j = i " ( = i

^ /r j f ^ "^v^ 11 T~^'> ' F î^i ' II ^ !l 7*V"' ' f f" ' II

/ = 1
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2 qc3
from which (4.15) follows if kKm is sufficiently small, with c = . This

c\
in turn implies that (//„) holds for 2 + 1 as well. We next show that
e/;-, Sf?,(M).

From (ƒ/„) and (4.14),

max
i

U - Ue j || ^ /e c(cKm {k1 +m }) {r +m },

for some c = Cc*, with C as above. We choose k and m so that in view of

(ii) and (vii) we have c(cKm {kr + l + m s\ f* + '~ ' ^ 1. We obtain

(4.17) max || t)"1 ' - t /? ' || ^ i k 2 ' * ' " 1 ^ 1 + w" 1 .

As done bef ore, choosing k small and m large, forces ( // ) to be satisfied for
2 + 1. This complètes the secondary induction argument (/ƒ) and we return
to the primary argument (ƒ). Now if 2n ^ Iog2(n - p + 1 ), it follows from
(4.2) and (4.17) that

(4.18) \\Ün+x-Un+x\\ ^ c(A,b) max \\ ÜfU l ~ Un
e
 l \\

^ ck{k° + m~s}.

Using the triangle mequality, (4.18), (3.9) and (/f), we obtain

(4.19) \ \ U n + x - V n + x \ \ ^ \ \ U n + l - Ü n + l \ \ + \ \ Ü n + l - Vn+l\\

^ [ ( 1

This establishes both ( / ) and (I{{) and defines cn. (4.8) now follows from
(ƒ,) and ( / /10) . Finally, if (viii) holds, then, from (4.14) and (4.15) we obtain

( max || Ü"* ' - Un{11| ^ ckKrn6 c*2{kJy+ ' + m "f

Hence, we may establish (4.19) and thus (/,), (/„) for this case as well. The
proof of the theorem is now complete. •

We now consider briefly the practically important issue of generating initial
data C/°, ..., Up satisfying (4.7). Indeed, this can be done by a variety of
techniques including the use of explicit Runge-Kutta methods or Taylor
expansions. The itérative scheme (4.1) can be used as well with the added
benefit of the guidance offered by the theoretical framework of Theorem 4.1.
In this respect, the relevant considérations are the following
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Ca) Take U° = CÜ° (or ( co° + O{ m~s) ) .
(b) Generate Un

Q
l by

(c) Increase £w to compensate for the reduced accuracy of the
initial approximations UQ' and compute (jn+l ^y (4.2),
0 s£ « s£ /? - 1.

(d) The desired estimâtes will hold if the two conditions kp+ l mXj ̂  c0 and

kp+ï m *S c0 are replaced with kn+i ms> ^ c0 and jfc"+1 «7̂  ̂  c0,
respectively. If these conditions become stringent for n = 0, we
recommend the use of more accurate formulas based on Taylor's
Theorem such as

U°0
J ̂ œ° + kx{ œ° = œ° + kztf{a>0)

5. EFFICIENT IMPLEMENTATIONS OF NEWTON'S METHOO

Newton's scheme, as described in Theorem 4.1 and specifically in its
implementation (4.1), requires forming the operator 3> : (Hm)g —> (Hm)q

/ - kau Df( U;>) - kal2 Df( U"e
 2 ) kax q Df( U", " ) \

-ka2lDf(U'le*) I-ka22Df(U"e
2) -- - ka2q Df( U'^«)

\ - kaql Df( U"e ' ) - kaq2 Df( U? 2 ) • - / - ka^ Df( U"; "

as well as solving the associated linear system at each new 2 and n. Jn practice,
this translates into a q dim Hm x q dim Hm system. Obviously, this could
prove to be prohibitively costly when dim Hm is very large. One possibility
that immediateïy comes to mind is to evaluate S at U^j and use it according
to the itérative procedure

" ? i . - * 2 a-,jDK uiio') ( i n t i - u"ej)=un+* i : « , y A u-t-
j),e=o,....
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The usefulness of this particular approach is hmited because we saw in
Theorem 4 1 that, under rather gênerai conditions, a single Newton itération is
sufficient to preserve the convergence rate of the base scheme On the other
hand, we may use the same operator over a number of time steps

It is clear that a great number of stratégies are possible for efficient
implementation of (4 1) We shall concentrate on evaluating the operators
3 at some £ƒ", independent of the stage number j To this end, let £ƒ" dénote
an appropriately chosen element of Hm Let Un

t
 l satisfy

(5 1) U " t l i - k J Z l ] i ! ^ l J l
; = i j - i

i = i , , q , e = o , , e n - \

This scheme is known as the "modified Newton method" Now assume that
A has distinct eigenvalues kv , X This is indeed the case for the Gauss-
Legendre and the Radau IIA methods, cf [6] The décomposition
A = S" AS naturally induces a décomposition on the System $z = b
whereby q Systems (ƒ — kXt Df(U")) zt = br i = 1, , g, are to be solved
instead These q Systems are independent of each other and can be solved
simultaneously on a computer with at least q independent processors This
strategy has been successfully ïmplemented in some spécifie settings m [10]

Concernmg the modified Newton method, we have

THEOREM 5 1 Assume that (H10) and the hypotheses of Theorem 3 1

are satisfied and that we are given initial data U , , Ul\

p = mm {/?, a - 1}, satisfy ing

(5 2) \\UJ-G>(1>)\\ ^c{ka + m-"},0^j^p,

for some constant c independent of k and m

Assume in addition that

(i) (H5) holds,

(il) (7/7) holds and S < s,

(m) sps2, s4 <j,
(îv) £n =s a - p, p s£ n ^ N- 1

Then, there exist kQy m0, cQ > 0 such that for ail 0 < k ^ k0 and for ail
m 5= m0 satisfying

(v) kKmP ^ c0,

(vi) kKm ^ c0,

(vu) kp+ ] m> ̂  c0 for j = 1, 2, 4,

(vm) k' m ^ c0,
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there exists a unique séquence {Un}n = Q, which for p + 1 ^ n ^ N is
generated by (5.1), (4.2) and (43) with pn = p, and

(5.3) Ui = Un .

Furthermore,

(5.4) n max „ || Un - co( tn) || ^ c{ka + m"

for some constant c independent of k and m.

Proof : We shall omit details that would otherwise be répétitions of similar
ones exhibited in the proof of Theorem4.1. Agam, we shall use the primary
induction hypotheses

Wl-Vn\

where the nonnegative constant c dépends only on the IRK method and the
constants c in (3.9) and (//10). Also, let c* be as in (4.9).

Assume that (/,), ( / , ) hold up to n, p ^ n ^ N - 1. To extend these
to n + 1, we shall prove inductively that

, f j ) 9 f 3 Ï 0 , j = 1 , 2 , 4 ,

(//„) ^ ^ ^

where {Ö"'f}f=1 are the (exact) solutions of (3.3) with v = Un. Using
arguments similar to those used in the proof of Theorem4.1, we may prove
that, under the stated conditions,

(5.5) U\ C / J ' G fl/Af), 7 = l , 2 , 4 , i = l , . . . , ^ .
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Obviously (//„) holds for 2 = 0. Now assume that both (7/f) and (IIti )
hold up to some £ ^ 0. We have

u"

; = 1

+ [D/( t / ^ ) - Df( Un)]( ÜlhJ - Un
e
J )

[ ( 1 - 0 D2f(tlfl'J + ( 1 - 0 Un
t'

J) [ÜthJ - Un
2
Jf dt\

Jo
D2 cp(tUn

£
J + ( 1 - 0 UR) [Un

e'
J - U\ Û>h' - UH

f
 J] dt

- 0 uîJ) [ûtuJ- un
e
 Jf dt\.

As before, we can show that Üul e B(M), j= 1,2,4. Usmg a diagonal-
ization argument, it follows from (5.5), (ƒƒ ), ( / /2) , (H5) and (H7) that

max H^- ' - t / ^ J I ^ c2k max

nl\\2

+ Kmô \\Vn
2

l-Un\\ I I Ö " - ' - ^ ' ! ! } ,

for some constants cv c2, depending only on the IRK method. Choosing k so

that c2k(X + Km^) ^ -j-, we obtain

(5.6) x max || Ö"' ' - Un
e
l
+ x\\ ^ c, kKrn5 max { || (F ' - Un

e
 l \\2

+ i ic / ' ; - ' - f / "n « ö * ' - t / ; - M I } .

We can show that for some constant c4 = c4(c*),
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Similarlv from (ƒƒ„) and (4.14),

for some c5 = c5(c*). Choosing k and m so that

(5.7) max {c3 c4 tfm^k + m * ), c3 c5 tfm*(F+ 1 + m" s )} ^ \ ,

we obtain (//„) for f + 1. Hence, we can now show that Ullçl
+] e B(M)t

under the stated conditions.

In view of the fact that £n ^ a - p, and proceeding exactly as we did in
the proof of Theorem4.1, we can close the primary induction argument,
proving the theorem. •

Remark 5.1 : Theorem 5.1 requires in particular that km be sufficiently
small. This condition may be weakened somewhat by modifying the proof as
follows : We choose k and m so that instead of (5.7) we have

(5.8) max {c3c4 Km(kx+® + m~s), c3c5Km\kp+ï +m"A)} ^ i ,

with 0 ^ *& < 1, and require k + m to be small. As a conséquence,
( //(( ) must be modified to

max \\Ün'l-Un
e
l\\ ^ke{l~û) max || Ö"'' - t / J ' | | f , * ^ 0 .

As a resuit, an increased number of itérations must be performed.

6. A SIMPLER ITERATIVE SCHEME

We shall next consider an itérative scheme where 3 is constant and which
is sometimes called an "explicit-implicit" type method. This extremely effi-
cient option can be applied however, only when the constant y in ( H6 ) is zero

(6.1
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From the error équation

7 = 1 U S + l 7 = 1 '

q f1

7 = 1 'J J 0

we obtain in view of ( H2 ) and ( H6 ) with y = 0,

rnav \\ ff1'l — Tïn'l II < ^ ^ ma* II//"'' 77" ' II

Operating within the framework of an induction argument, we obtain

max
1 ^ / ^ q

for /:c* ^ 1 and 2n 5= c r - p + 1. We have,

THEOREM 6.1 : Assume that ( # 1 0 ) and the hypotheses of Theorem 3.1 are

satisfied and that we are given initial data t/°, ..., Up>
p = min {p,a— 1}, satisfying

|| UJ — co( tl ) || ^ c\ka + m~ i } , 0 ^ 7 ^ p ,

/o r some constant c independent of k and m.
Assume in addition that
(i) ( H 6 ) holds and y - 0,
(ii) s , A1 , s , s < 5,

(iii) f n ^ a - p + 1, p ^ n ^ N - \.
Then, the re exist k0, mQi cQ > 0 swc& r/iaf /or a// 0 < fc ̂  /c0, an<i for all

m ^ m0 satisfying

(iv) * > + 1 m t ' « c 0 / o r y = l , 2 , 3 , 4
r/zere exists a unique séquence {Un}n = Q which for p ¥ \ ^ n ^ N is
generated by (6.1), (4.2) and (43) with pn—p> Furthermore,

m a x \\Un-œ(tn)\\ *£ cjfc ' + m - 1 } ,
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for some constant c independent of k and m. •

7. EXAMPLES

Let Q be an open, bounded, connected subset of Rw. For integer ja ̂  0 and
real p e [1,°°], let W**'p = W**tP(Q) dénote the usual Sobolev spaces of
complex-valued functions defined on Q and having generalized derivatives up
to order fj in LP(Q). The norm on W^p will be denoted by || . || ;. In
particular, LP=W°*P and for p = 2 we let Hti=W*2. We'' let
II • II = II • II o 2 anc* II • H^= II • 11̂  2- *n s o m e spécifie instances, as in the
case of the KdV équation below, we shall restrict attention to real-valued
functions.

7.1. The Korteweg-de Vries équation

We consider the problem of approximating 1 -periodic solutions of the KdV
équation

ut + uux + uxxx = 0, 0 *£ x ^ 1, 0 < t s£ 7 ,

w(x, 0 ) = wo(-^) > 0 ^ x ^ 1,

where u is a sufficiently smooth 1-periodic function, i.e.
u° e H1" = W^e

2 for JU sufficiently large, where for j u ^ 1,f)er = W^er

W™ = {v e W^' ; ;(0, l ) : i ; o ' ) ( 0 ) = i ? o ' ) ( l ) , 0 ^j ^ JU - l } .

For the existence, uiqueness and regularity of solutions of (7.1.1.) we refer to
[5]. Specifically, it is known that if M e ^ e r » V ^ »̂ t n e n t n e r e exists a
unique solution M : [0, T] -^ /f^r, V T > 0. Moreover, for j ^ 0 such that
P - 3 ; ^ 0,

(7.1.2) SUD d / w |

There is a large body of work devoted to the numerical approximation of
solutions of the KdV équation, including finite différence, finite element as
well as spectral methods. Herein, we operate within the f rame work already
established in [3], [8] and [12]. In particular, the analysis of convergence of
the base scheme is drawn from [12].
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For integer r 3= 3, let Sr
h c Hr~J n V^~, dénote the space of 1-periodic

smooth splines of degree ^ r - 1, defined on a uniform partition

x —jhy y = 0, ..., m, of [0 ,1 ] , with h =—. It is known that

dim S^ = m. We set /7m = 5^ and equip it with the L2 inner product

f1

(u, w)m = (ü, w) = u(x) w(x) Jx , Vu, w SE S'h.
Jo

The spaces {^^}^>0 possess the following approximation properties : For each
v G Hr

?er, there exists / e 5^ such that

for some constant c independent of h and v. If in addition v G W^~, then

(7- 1 -4) 2 ^ II ü ~ X Hy, oo ^ C^2 II ü II 2l oo-

Moreover, the spaces Sr
h possess the following inverse properties

(7-1.5) Hxll, <ch-(fi-1*

(7.1-6) lUIl^oo ^ ch~\a +

As basis for 5^, we use a set of modified basis functions #>p ..., (pm associated
with the nodes xl,...9xm (cf. [14]). For i? G H1 , we define the quasi-
interpolant v by

It is known (c/ [14]) that the quasi-interpolant enjoys the following optimal
approximation property : For v e Hr

per,

(7.1.7) \\v-v || **chr\\v\\r.

For r ^ 3, let w: [0,T] -^ Hr
per be the solution of (7.1.1) and let

oj = ojh : [0, r ] —» 5^ dénote its quasi-interpolant œ(x, t) =
m

2 «(*„ t)(p(x). It is shown in [8] that

(7.1.8) (cot+coœx,x)-(coxx,Xx) = (s(t),x) 0 ^ t ^ T,VX e Sr
h,
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where e : [0, T] —> Sr
h is a (srnall) srnooth function (truncation errror).

Deflne the operators Lh, <ph: Sr
h-> Sr

h by

respectively. Note that <ph{ v ) = - Po( wx ) where Po dénotes the
L2 -orthogonal projection operator onto Sr

h. We may rewrite (7.1.7) as

(7.1.9) a}f = L h c o + <ph(co) + e ( t ) y O ^ t ^ T .

Having cast our problem in the form of (2.1), we next undertake the
systematic vérification of the hypotheses (Hl )-(HlO).

With s - r, (Hl ) is proved in [8] (inequality (1.33)). It easily follows from
periodicity that (H2) and (7/3) hold with A = rj = 0.

We set all four norms II!. III,. equal to || . ||} oo. It then follows from (7.1.6) that

(2.2) holds with s. = ~ i = l , 2 , 3 , 4 . We also let

(7.1.10) M = 2 o s u ^ T [ c \ \ u ( t ) \ \ r + c \ \ u ( t ) \ \ 2 o o + | | « ( O I I , , J ,

where u is the solution of (7.1.1) and c is a constant depending on the constants
in (7.1.3), (7.1.4), (7.1.6) and (7.1.7). Also, in verifying hypotheses
(H4)-(H1), we shall use different constants Ki and then set

Integrating by parts and using periodicity, we obtain

• ^ ( w ) , i ? - w ) = - i ( i ; j r , [v-w]2)

Hence we see that (HA) hoids with Kx = ~.

Using Dg(x)y= lim - [g(x + ey)-g(x)]t we see that D(ph(v)w =
e

-PQ[(vw)x], Vv,weSr
h. Hence,
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So we see that ( f / 5 ) holds with K2 = y and fi = 0 Now, using (7 14) ,

(II Hl,

Hence, we see that ( H6 ) holds with K3 = cM and y = 1

Further, £>2 ^ ( z ) [i>, w ] = ~ PQ[(VW)X] f o r ^ ^ W 6 ^ Hence, we
easily obtain

\\D2fPh(z)[viw]\\ S c H | | ! > | | Ikll ,

where c dépends on the constants in (7 1 5) and (7 1 6) Thus, (Hl) holds with

K4 = c and S = ̂

Now for 0 ^ t s£ T, choosmg / G 5^ suitably and using (7 1 3), (7 1 4),
(7 1 6) and (7 1 7), we obtain

(7 1 11) || OJ-U\\1OO^ | | a > - x | | I o . + I I Z - M I I , M

3/2

It then folio w s from the triangle mequality that

II II < —

Hence, ( # 8 ) is satisfied in view of (7 1 10) Indeed, this motivâtes our choice
of M (H9) is mequahty (1 35) of [8]

As for (Z/10), it is proved m [12] that the (temporal) rate of convergence
of the base scheme is the classical rate a = v The results of Sections 4
and 5 apply, yielding approximations Un satisfymg

max \\Un -co(tn)\\ ^ c(ka + hr) Hence, from (7 17) and the triangle
ïne'qüality it follows that

max \\u(tn)~Un\\ =£c{/:ff + / / } ,
0 ^ n =£ N

where u is the solution of (7 1 1)
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Let us note that the above results require certain relations between k and h
to hold. Specifically, Theorem4.1 requires

(7-1.12) *» " 2<? * <*

for sufficiently small c'o. This is a mild condition except for the case
/? = 0 corresponding e.g. to the Backward Euler method. Also, (7.1.12)
guarantees that taking tn= 1 in Newton's method will suffice.

On the other hand, condition (v/) of Theorem5.1 translates into the re-
quirement that kh" be sufficiently small. We may weaken this restriction say

to khT small by taking $ = -= in Remark 5.1. This will however corne at the

expense of doubling the number of itérations.

7.2. The nonlinear Schrödinger équation

We consider the problem of approximating the complex-valued solution u
of the following initial and boundary value problem for the Cubic Schrödinger
équation :

( ut — i Au + i\u\ u , in Q x [0, T] ,

u = 0 , on a D x [ 0 J ] ,

W(JC,Q) = M ° ( X ) , in Q

where Q is an open, bounded, connected subset of R^ and w is a given
complex-valued function defined on Q. We assume that (7.2.1) possesses a
unique solution u which is sufficiently smooth up to dQ.

We shall operate within the framework established in [11]. In particular, we
shall use the space C(Q) of continuous, complex-valued functions defined on
Q, and we let Ho dénote the subspace of H1 consisting of those functions that
vanish on 3Q in the sensé of trace.

For integer r ^ 2 and 0<h<\, Zr
h a H1 n C(Q) will represent an

approximating finite-dimensional space of functions. Such spaces typically
consist of piecewise polynomial functions of degree ^ r — 1 defined on a
suitable partition of Q. Note that the éléments of Zr

h are complex-valued. In
particular, we assume that Zr

h = Sr
h + iSr

h where Sr
h is an approximating space

of real-valued functions. Indeed, the properties of Zr
h listed below are ail

derived from corresponding properties of Sr
h.

We assume that these spaces possess good approximation properties ;
indeed that there exists a constant c independent of h such that for each
v e Hr n H]

Q, there exists x £ Z>\ such that

( 7 . 2 . 2 ) I I » - * II ^ c h r | | u | | r ,
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and if in addition v e W2^(Q), then

(7-2.3) \\v-x\\o.-<ch2Wvh--

We shall assume that the éléments of Zr
h satisfy the following inverse in-

equalities

(7-2.4) d/2

(7-2.5)

Let V— Zr
h + (H2 n Hl

0). We assume the existence of a family of
sesquilinear forms Br

h : V x K - > C with the following properties

(7.2.6) Br
h(v,v) isrealforve V,

(7.2.7) Br
h(v,v) ^ c\\v\\2 f o r c > 0 , V u e Z ^ ,

(7.2.8) £;(i>,*)=-(^,*) V/GZ>6//2ntfJ.

With 5^ we associate an elliptic projection operator PE : H n 7/Q —> Z^ by

(7.2.9) Z? ; , (P £ i ; , ;O=B>,z ) = - ( ^ , * ) V/ € Zr
h.

We assume that for some constant c independent of h

(7.2.10) \\PEv-v\\ ^chr\\v\\r Vv^HrnHl
0.

The most well-known family of such sesquilinear forms is provided by the
so-called Standard Galerkin Method. In this case Zr

h a Ho and

Br
h(v,w) = Vu. Vwdx.

Let uh : [0, 7] —> Zr
h dénote the elliptic projection PE u of the solution of

(7.2.1). Then

(7.2.11) (uhrX)=-iBr
h(uh,x) + i ( \ u h \ 2 u h + y / ( t \ x ) ,

w h e r e y/ = P 0 [ u h t - ut - i( \ u h \ 2 uh - \ u \ 2 M ) ] a n d P o d é n o t e s t h e
L -orthogonal projection operator onto Zr

h. Then y/ satisfies

(7.2.12) sup, dj y/
ch\ 7 = 0, 1,....

j
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To prove this one just needs to note that

283

sup dt>
r 7 = 0 ,1 , . . . ,

0 , <*>

for Cj independent of h under the hypothesis that r > ~ Set

We equip Hm with the inner product

(vw) = (vw) = f (v +v

V =

)U2and associated norm ||v|| = | |v| |w = (v, v)U2. We define the operator
àh'.S

r
h-> Sr

h by

and thence the operator L : Hm -^ Hm by

0 -

o

Now consider the function g : R2 —» R given by

naturally induces a map Ç>(vvv2) = (ç^v^v^, ç>2(vv v2))
T

With the maps co, a : [0, T] -> 7/m given by co = ( 5ÏIMA, 3MA ) r ,
a = (3ly/5 S^/) r , we see that (7.2.11) can be written in the equivalent form

(7.2.13) cot = Lco + <p(c

which is the required form (2.1).
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However, it turns out that (p does not satisfy hypothesis {HA). In order to
overcome this diffïculty, we introducé a map (p : Hm —> Hm as follows : Let
z e C^(R) be a cutoff function

3= 2M.

We let g : R2 —» R2 be given by

2{x,y)f

Now let (p be the map naturally induced by g

v = (vl,v2?eHm, Ç = (v2 + v2
2)

m .

We shall show below that œ also satisfies the équation

(7.2.14) œt = Lco + <p(œ) + e(t), 0 s£ t ^ 7 .

Now ( / / l ) follows from (7.2.12) and the fact that m~ s = hr. Also, it is
easily seen that {Lv, v ) = {<p{v ), f ) = 0, Vv e Hm. Thus (H2) and
(/ /3 ) hold with X - rj = 0, respectively.

Also, setting

(7.2.15) llli;ll|.= l l ü l l o ^ s m a x j l l i ; , ! ^ ^ , \\v2\\öJ, i = l ; 2 f 3 , 4 ,

for i; = ( ü p ÜJ)7" G /ƒ„, we see that (2.2) holds with s- = X,
i = 1,2, 3,4.

Now set

where w is the solution of (7.2.1) and c is a constant depending on the constants
in (7.2.2), (7.2.3) and (7.2.4).

It is clear that g and all its derivatives of arbitrary order are bounded on
R2. Hence it follows at once that q> satisfies hypothesis {HA) without the
stipulation that the argument of (p belong to
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Also, for v,ws H with £ = ( w] + w?)1/2,

D(p( w) v =

It is easy to see that ( H5 ) and ( H6 ) hold with ƒ? = 0 and y = 0, respectively,
again without any restriction on the argument of cp.

Let z,v,w e //m with lllzlll4 ^ M. Then,

= D2<p(z) [y.w] =

From (7.2.4)

so (Hl) holds with 5̂ = i
To ascertain (//8 ), proceeding as we did in the case of the KdV équation»

we obtain from (7.2.2), (7.2.4) and (7.2.10),

Since

sup

f o r r ^ 2 W e o b t a i n

[c\\u(t)\\
L 11 \ y 11

+ ll«(Ollo.J ^ f •

In view of (7.2.15), this not only establishes (H8), but also shows that
(7.2.14) is satisfied. Also, since the operators -r and P£ commute, we may
easily verify (H9) using (7.2.10).

To obtain the results of Sections 3, 4, 5 and 6, we argue as foliows : In the
case of Theorem 3.1, given any v satisfying (3.24), we obtain the existence
of a unique séquence { ( V " ' ' } ^ ] , ^ ^ } ^ satisfying (3.20) with
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f=L + r/?, with { V " } ^ 0 satisfymg (3 21) In view of (3 26), (7 2 15) and the
définition of ^ it foliows that V°, {{Vn l}f= v Vn+ ' }*Z* IS a solution of the base
scheme Furthermore, it is proved m [11] that the followmg improved estimate
holds

0 J O - V l ^ c[kff + hr} ,

where the integer a is given by

f v if Q is polyhedral or d = 1 ,

mm {/? + 3, v} otherwise

Let us note hère that these results require the conditions r > -^ and

A similar reasomng can be applied to the results of Sections 4, 5 and 6
Indeed, all of these apply with f~L+(p Recall that a cornerstone of the
proofs was the fact that Un

e ' e BX(M), and in addition Un = U* e B}(M) in
the case of Theorem 5 1 Since <p(v) = <p(v), Vi> e B,(M), the conclusions
of Theorems 4 1, 5 1 and 6 1 remain in force for f~L+q> as well
Furthermore, the itérative procedures (4 1), (5 1) and (6 1) m volve linear
Systems that are mvertible under their respective prevailmg conditions Hence,
the schemes outhned have unique solutions, which may be calculated by using
either <p or <p Obviously, it would be more convenient to use q>, m which case,
Dep would be given by

D(p{ w ) v =

Fmally, usmg (7 2 10) and the triangle inequality, we obtam the convergence
of the numencal approximations Un to u(tn) at the rate 0{kG + hr)

Of course the conditions of Theorems 4 1,51 and 6 1 hold, under the guise
of spécifie constramts on k, h, r, d In particular, the conditions s < s translate

into r > -7), which was a basic assumption for the convergence of the base

scheme In addition, we also require that kf)+l h' m ^ c0 This is shghtly
more restrictive than the condition k° h~dn ^ cQ For d ^ 3 and
p ^ 1 a mild condition of the type k = o(h /4 ) must be satisfied Also,
Newton's method will require only one itération under the condition that k be
taken sufficiently small On the other hand, condition (v) of Theorem 5 1 is
equivalent to khT c being sufficiently small, which could be restrictive for
d = 3 Hence, the Exphcit-Implicit itération could provide a better alternative
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