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MATHEMATICA!. MODELUNG AND KUMERICAL ANALYSIS
MOUUSATON MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 31, n° 3, 1997, p 381 à 407)

ON THE STABILITY OF A STELLAR STRUCTURE IN ONE DIMENSION II
The reactive case (*)

by B. DUCOMETO

Abstract — We complete in this paper the study ofstabihty of the interface in a free-boundary
problem for a self-gravitating gas in one space dimension, with on extemal pressure P, and a
Founer coefficient À, for the thermal flux, including a chemical, self consistent, reacting proces s

In the non-radiative limit, we find different possible asymptotic behavwurs if X > 0, the
gas tends to collapse, if X = 0, we show that, when P > 0, the solution converges, for large
tune to the isothermal solution of the corresponding stationary problem, while for P - 0, under
some additonal condition Connecting the total energy and the mass of the structure, the System
is unstable, and the gas tends to fill the space

In the limit of the photon gas, we show that anologous asymptotics hold

Résumé —Nous poursuivons dans cet article l'étude de la stabilité de l'interface dans un
problème à frontière libre concernant l'évolution d'un gaz autogravitant radiatif avec pression
externe confinante et cinétique chimique du premier ordre pour la production d'énergie

Dans les deux limites, non radiative et gaz de photons, nous identifions plusieurs états
asymptotiques possibles aux grands temps, suivant la valeur des paramètres physiques conver-
gence vers un état statwnnaire, ou expansion du gaz dans tout l'espace

Mots Clés Astrophysique, Gravitation, Cinétique

1. INTRODUCTION

We study the évolution of a self-gravitating reacting gas m one dimension,
compressible, viscous and heat-conducting, which can be considered as a
simplified model for some large-scale structures described in the astrophysical
littérature [2] under the name of « pancakes ».

Apreliminary version of this model has been described in [13], but we want
to allow some, more physical, self-consistent production of energy inside the
star, producmg some interesting dynamical phenomena.

In order to get a tractable problem, we introducé a simple reacting process
with a first order kinetic.

(*) Manuscript received June 23, 1995 , revised Apnl 11, 1996
C1) Service de Physique Nucléaire, CEA-Centre d'Études de Bruyères-le-Chatel, BP 12,

91680 Bruyères-le-Chatel, France
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382 B. DUCOMET

As in [13], we consider the free-boundary case, where the boundary is
allo wed to fluctuate : the dynamics of the interface is driven by a stress
condition, including an external pressure.

The équations describing the model are those of reacting self-gravitating
radiative hydrodynamics [4], [3] (Compressible reactive Navier-S tokes-
Poisson system with radiation), we put a stress condition on the boundaries
and a flux boundary condition for the température, together with a Neumann
chemical condition for the mass fraction of reactant.

As classical in hydrodynamics (see [9]), our boundary problem can be
transformed into a problem posed in a fixed domain, by considering Lagrange
variables (2).

If x is the mass variable, u(x, t) the spécifie volume, v{x, t) the velocity,
9(x,t) the température, and Z(x,t) the fraction of reactant, the system to be
solved is :

(i)

for t ^ 0 and x e [0, M], where M is the mass of the slab. We suppose in
the following that M= 1, and we use the notation ƒ= (0, 1).

We consider, for each x in ƒ, the initial conditions :

( w, Ü, 0, Z)(x,0) = (uo, vOi 0O, Z0)(x) . (2)

We take, for each t ^ 0, the following dynamical boundary conditions :

(3)

where P is a pressure, modelling the external medium ( P = 0 corresponds
to the vacuüm).

(2) In this respect, the free-boundary character of our problem is quite different from what
is called commonly a « free-boundary problem » in the littérature.

In this last case (the Stefan problem, or the obstacle problem, for example) the free boundary
is an essential complication, the problem cannot be reduced to a fixed-boundary one and it leads
generally to a variational inequality [6].
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ON THE STABILITY OF A STELLAR STRUCTURE 383

We consider also the following thermal boundary conditions :

where X ^ 0 is a flux parameter. Then, we consider also the following
chemical boundary conditions :

Zx(O,t) = O. ( 5 )

We suppose also that the data ( u0, v0, 00,Zo)(x) have sufificient regularity (see
below), and that u0, Zo, and 60 are positive everywhere.

Moreover, we impose the following symmetry conditions, for

(M, U0, e, eQ, z , z o ) ( 1/2 + x,t) = (u, u0, e, e0, z , z o x 1/2 - x, t)
(v, »„)( 1/2 + x, t) = - (v, VOX 1/2 -x,t). ( 6 )

We describe now the various terms in (1).
The gravitational - G(x - 1/2) term has been chosen in such a way that

x = 1/2 is a symmetry center for the slab (see below).

The pressure is given by the Stefan-Boltzmann law p = Rud + % Ö4 (R is
the perfect gas constant, and a the Stefan constant). The conductivity is

defined by x = a + ~5— u^-> where a is the thermal conductivity, K is the
Rosseland opacity (taken hère as a positive constant), and c is the speed of
light. The spécifie heat at constant volume Cv is a positive function determined
by thermodynamics (see [12]), and we call v the viscosity coefficient.

The mass fraction of reactant is Z, and q is the différence in the heat of
formation of the reactants. The positive constant d is the coefficient of species
diffusion, and K the coefficient of rate of reactant. The rate function <p(0) is
determined by the Arrhenius law :

> 0 ,

where 0t is the ignition température. We are going to show that the problem
(l)-(6) has a unique global solution, and study its behaviour at large times,
under various conditions on the physical parameters. Because of the simpli-
fication of the geometry, we hope to describe precisely these asymptotic states
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384 B. DUCOMET

of the System for large time, covering the possibilities of the physical stellar
évolution [5], [10] : asymptotically stable stationary state, expansion, and
gravitational collapse, extending the analysis of [13].

The plan of the paper is the following : in section 2, we check the existence
of a global (in time) solution, relying on the analysis of [1], then we study
(Section 3) the asymptotic behaviour of the solution, in the pure gaseous limit
(ö = 0). We end the paper by a brief analysis of the radiative limit
(R = 0), and by a number of remarks.

2. GLOBAL EXISTENCE PROBLEM

We dénote by Hl(I) the Sobolev space of order /, 11-11; its norm, and
â§l+a(I) the space of functions which are, together with their derivatives of
order /, Holder with exponent a, 0 < a < 1, with the norm :

where \f\l is the norm in ^ ( / ) , the space of bounded functions, with the / first
derivatives continuous in I :

dx

For each T> 0, we note ÏT= [0, T] x / , and &a(IT) the space of Holder
functions u(x, t), with exponent ? (resp. CT) with respect to the variable t
(resp. JC).

The corresponding norm is :

f\u(t,x)-u(t',x')\}

where |MI0 ,r= U

We write also : xl

with the norm a n d :

with the norm | M | | 0 , r + U
XL,T+ uxxxxh,r
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ON THE STABELITY OF A STELLAR STRUCTURE 385

First, we have a local result,in the spirit of [8], under a smoothing hypoth-
esis of [1] for the positive reacting rate function.

2.1. Local existence

We consider a regularized rate function <pe e C1 (R + ), satisfying :

^ f ' ö > e ' + e > ° ' (8)

Then, we have :

THEOREM 1 : If the data satisfy :

if there is a positive constant Co > 0, such that :

nùn uo(x) ^ i nùn do(x) 3s -±-, max uo{x) < Co, max 90(x) ^ Co,
A fc i 0 0 x t y

function 0 satisfies (8), then for any C' > Co, tfzere ex/s*
positive constants Tx and Cx > Co, depending on C' such that the problem
(l)-(6) has a unique solution on [0, 7\] X/, satisfying:

Moreover :

— ̂ u^a, -— ^ e ^ c ,
C' c i

an<i one has the estimâtes

\\u\\i + «,Tl < Cv H»

Sketch of the proof :

vol. 31, n° 3, 1997



386 B. DUCOMET

As [8], supposing that the functions ( u, v, 0, Z) are known, we consider the
associated linear parabolic system :

>i (9)

together with the integrated form of the mass conservation :

£/(x, t) = uo(x) + vx(r9x)dT ,
Jo

with the notations : Cv = Cv(u, 0), p=p(u,6), x = X(u> ®)•
The initial conditions are :

( [/, V, 0, Z )(x, 0 ) = ( «0, ü0, Öo, Zo )(

and the boundary conditions :

1,0 =

z , (1 ,0 = 0
zx (o,o = o.

The system may be written more compactly

dl

(10)

( H )

(12)

(13)

where : Xe is the vector X ' = ( D , Ö , Z ) J is the vector I = ( V , 6 I , Z ) , with
XQ= (vQ, 0Q, Zo), ^f(X') is the differential operator in the lhs of (7),
H(X') is the vector in the rhs of the same équation, and A"(X') is the
boundary differential operator of Robin type, defined by the boundary con-
ditions.
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ON THE STABILITY OF A STELLAR STRUCTURE 387

One observes that the initial problem is then obtained by putting
X'=X into (13), getting :

O e 7x(0, T)

(14)
Ö / X ( 0 , T ) .

Let us now consider the initial boundary problem, for z small enough :

X0, (15)
o) xi = 0 for (je, 0 e a/ x (0, z) .

To transform this problem into an homogeneous fixed point problem, we
substract (15) from (14), and we dénote by Y the vector Y - X - Xv which
satisfies :

7 X ( 0 , T )

Jr(XQ)Xl = <g(XQ,X1,Y)for(x,t) e d/x(O, T)

where :

Cx + Y)](XX + Y) + H(XX + Y) - .

and :

Then (16) can be inverted :

Y=¥(z)Y7 (17)

vol. 31, n° 3, 1997



388 B. DUCOMET

where the operator P ( T ) acts on the space of vectors We Ma(Ix) in the
following way : if we note 0 = P ( T ) W e ^ 2 + O£(/z), 0 is the solution of the
linear parabolic problem :

l & = W,for(x,t) e 7 X ( 0 , T )

0 ( 0 ) = 0, (18)
JT(Xx ) 0 = 0 for (JC, t) e d /x (0 , r ) .

To achieve the proof, it remains to use Standard parabolic estimâtes, to show
that P( Tj ) is a contraction on a sufficiently small bail of ^ 2 + a{ IXi ), following
the lines of [8]. •

To get a global in time result, we must obtain now a number of estimâtes.
For technical reasons, we restrict ourselves to the non-radiative case in the

sequel of the paper (a = 0).

2.2. A priori estimâtes

LEMMA 1 : The following conservation laws hold, for any t ^ 0 :

f Z(x,t)dx+ f f K<j>(6)Z(x,s)dsdx= \ Z0(x)dx (19)
Jo JoJo Jo

= \hvl + cv 00 + qZ0 +Ax) uAdx-2X\d(Q,s)ds, (20)
*'n J 0

[v2+(p-f(x))u]dxds
o Jo

= V U(X,
Jo

t)dx- \\{x,\
Jo Jo

- v W dx + fMo(x) [*!»„( O dS dx , (21)
Jo Jo Jo

where f(x) = P + ̂

C, (22)
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ON THE STABILITY OF A STELLAR STRUCTURE 389

where :

and :

J

J O \ M 6 > UQL
/

Proof : The relation (19) is obtained by integrating the fourth relation (1) on
7 x ( 0 , t), using (5).

Multiplying by v the second relation in (1) gives :

(lv
2
+CvÔ+qZ+G(x-1/2) ^[-(pv^+vv^ +

where r=r(x,t) is the Lagrangian position, defined by :

From this last relation, one computes easily, using (1) :

f G(x - 1/2) r(x, t)dx= \f(x) u(x, t) dx .
Jo i/o

Now, integrating on [0,1], and using (2)-(5), we obtain (20).
For (21), we integrate on [0, JC] the second relation in (1), using (3) :

d
' 10

Then, multiplying by u and integrating on (0, 1) X [0, *], we obtain (12)
af ter standard intégrations by parts.

To get (22), we have, by (1) :

Dividing by 0 and integrating on [0, 1] x [0, f], we have :

f (RLogu + CvLog0)dx= f ÏPr(r)rfr+ f f qK^P~Zdxdz + CV (23)
Jo Jo JoJo ü
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390 B. DUCOMET

Now by (20), we have :

( Cv 9 + Ru + i v2 + qz) dx < C2, (24)

where C2 dépends only on P, G, and the initial data.
So, by subtracting (23) from (24) :

ƒ'
Jo

T;V2 + R(u- 1 -Logu) + Cv(0- 1-Log6))dx

ÎP(T)^T ^ C3+

But, using the maximum principle for the parabolic équation satisfied by Z, it
is clear that Z(JC, f) 5= 0, for (*, 0 e [0,1] x(0,°o), so, by (19), there
exists a constant C4 such that :

n qK<p(0)Zdxdr ^ C4,
o

and, as ^ - ^ < 1 if 0 > 1, (22) follows. D
Using the classical methods of [9], we obtain the following bounds :

LEMMA 2 :

3C2>0:0<C~ l ^ 0(t,x).

The first part is obtained in the same manner as Chen [1], and the second and
third part rely on the estimâtes of Nagazawa, already used in [13], adapted
to the reactive case. D

Now, using the above estimâtes, we can extend the result of [1] :

THEOREM 2 : If the data satisfy :

u0 e &l + a(I), (vQ, ö0, Zo) e &2 + eT(I), withO < a < 1 ,

and :

M2 AN Modélisation mathématique et Analyse numérique
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ON THE STABILITY OF A STELLAR STRUCTURE 391

and if the rate function (j) satisfies (8), then îhere exists a unique solution of
the problem (l)-(6) such that, for any T>0, there are positive constants
MX(CO) and M2(Co, e, T)9 such that :

• f i "
(25)

3. ASYMPTOTIC BEHAVIOUR

We assume in this section that the external pressure satisfies : P 5= 0.
We need first the following classical représentation formula (see [13]) for

the spécifie volume :

LEMMA 3 : The following identity holds :

B(x,t)Y(x,t) J f ö(*' s)

where :

and :

] 'ds] '(26)

Now we compute the stationary solution :

LEMMA 4 : Any stationary solution of (l)-(6) exists only if P ^ 0, and if
2 = 0. It is given by the two parameters family :

u(x) = R9
ƒ(*)'

B ( X ) = O ,

0(x) = Ô,
Z(x)=Z.

(27)
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392 B. DUCOMET

Proof : Let us suppose first that X = 0. The stationary system under
considération is :

-1/2)

(42ZX) -K(f>(Ô)Z = O,

An elementary resolution of the first équation :

px+G(x- 1/2) = 0 ,

with p(x)=-^T, and P = -Jff^r gives the first relation (27).uyx ) uyö )
Now we observe that, by integrating the second relation (28), we have the

equality :

f Ö(x))Z(x)dx = 0.
Jo

From this, as 0 and Z are positive valued functions, we deduce that the limit
regime is constrained by : <p(6) Z= 0. Now putting into (28), we get :

Z g — Q

and :

d ^ __ ^

Now, by the boundary conditions, we have C2 = C3 = 0, then, one more
intégration gives the two last relations (27).

We just remark that if P = 0, the corresponding solution (27) is singular
at the boundary (where the density is zero), which is the signature of an
external vacuüm.

If X > 0, one sees that the only possible « stationary » solution is
(ü = 0, v =0, 0—0, 2=0). It is degenerate and corresponds to the
gravitational collapse of the slab into a plane, with an infinité spécifie
volume. D
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ON THE STABILITY OF A STELLAR STRUCTURE 393

The asymptotic behaviour of our System is described as follows :

THEOREM 3:1. If X - 0, and if P > 0, the solution of the problem (l)-(6)
converge toward a stable stationary state ( ü, 0, 9, Z ) in
Hl(0,l)nC°(Q,l), when t tends to infinity, where (û(x),8,Z) are
uniquely defined by (27), the mass conservation (18), together with the
relation :

R T c J 0 ( k o o o ) (29)

and the constraint :

0(0) 2 = 0. (30)

Moreover the rate of convergence is exponential :

\\u = ü,v,0-6,Z-Z\\lt2 ^ <ge~&t, (31)

where ^ , co depend only on R, Cv, / , q, K, and P.
2. If X = 0, P = 0, and if the total energy E and the total mass M satisfy

the inequality :

E ^ qM,

the stationary solution (26) is unstable in the following sense, ifR(t) is the
eulerian thickness of the gaseous slab (Le. the width of the support of
{y '• p(y, t) =£ 0}, where p is the eulerian density), then :

R(t)**sf.t, (32)

where s$ is a positive constant depending only on the data.
3. If X > 0, the solution of (l)-(6) tends to the singular limit

(w(x) = 0, V =0, 0 = 0, Z = 0 ) , corresponding to the collapse of the
slab into a plane.

Proof : 1. The first part is an extension of the method of [13].
First, due to the assumption P > 0, one can check that the system (1) is

uniformly parabolic up to the boundary, so one can use lemma 2 to get uniform
bounds for the spécifie volume, and the température :

0 < Cx ^ K(X, t), 0(x, t) ^ C2 < 00 . (33)

vol. 31, n° 3, 1997



394 B DUCOMET

Now, using formula (26), (see lemma 3), we décompose u(t, x) as follows :

( 3 4 )

After the bounds (33) and the explicit form of Y, we see that the first termin
the rhs of (34) tends to zero, as t —» °o. Using [7], one shows that the second
and third term go also to zero.

The fourth contribution may be decomposed as follows, using (20) :

with :

X v 00(y) + qZ0(y) +f(y) uo(y)) rfy] dr ,

The first term Qx tends to zero when t —» + », as in [7], let us consider the
others.

First, by (29), we have :

^0 ±
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ON THE STABILITY OF A STELLAR STRUCTURE 395

So, putting the explicit expression of Y into the quantity Q2 :

we find :

So, by (27) :

ƒ? + (~*

lm^Q2(x,t) = —^JLü(x)+-^ZÜ(x) (35)

For Q3, we use (19) :

Inserting Z into the intégral, we have :

^"W77)fy ( x 'T )f1 ( z (^T )-2 )^^-
^ u I\x'> l) Jo Jo

q __
The first contribution in the rhs is Z

For the second one, we first observe that (19) gives :

4-1
J o J o

f1

So we see that the positive quantity Z(x,t)dx tends to a positive limit
Jo

denoted by Z, for large t :
pi

lim Z(x, t) dx = Z,
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396 B. DUCOMET

so we have :

C l

J
\Z(x9t)-Z\ dx ^ e,

o

for any arbitrarily small e, if t is large enough.
1 f'

As an elementary computation shows : T~ r Y(x9 z) dx ^ C, where
*\x> * ) Jo

the constant C does not depend on t. So we find :

) . (36)

To evaluate the term Q4 we use the identity dt Y{x,t) =-ƒ(>) Y(x, t). So
if we integrate by parts :

The second term in the rhs tends to zero for large t, and using (22), we can
show, as in [7], that the last one tends also to zero. So we have finally :

lim Q4(x, t) — lim I -—(—TT Y(x, T)I / (y) M(V, T) d'y I dr I . (37)

Collecting the limits (34), (35), (36), and (37), we obtain, uniformly in x :

lim \u(x, t) + 7f^7r [/(y ) u(y, t) dy] = ^ ^ ü(x) . (38)

To evaluate the intégral, we multiply by f(x) in (38), and we integrate on
[0,1] :

ff1 /? f1 1 R
lim f{x) u(x, t)dx + f-\ f(y)u(y, t) dy =—

t^°° LJo ^v Jo J

+C,
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ON THE STABILITY OF A STELLAR STRUCTURE 397

So we find :

lim \f(x)u(x,t)dx = RÔ.

Putting into (38), we get :

Hm M(JC, O = M(JC) • (39)

Now, as in [7], one can show that :

lim v\x,t)dx = O. (40)
'-*00 Jo

Then, if we take the limit t —» ~ into (11), using (39) and (40), we obtain :

r
lim 0(x,t)dx = 9.

The decay rate in (31) is now obtained by standard application of the
Gronvall's lemma, as in [7].

2. As u is singular for x= 0 and x = 1, we corne back to the eulerian
version of (1), using an argument of [11] :

(pE)t+ (v(pE+p))y= (vvvy)y+

The unknown eulerian quantities are : the density p(y, t), the velocity
v(y, t) the température 0(y, t), and the mass fraction of reactant Z(y, t). Let
us recall that we consider the non-radiative quantities : p = pR6,
Cv = C = Cte, x = a> (tf^ gaseous contribution to the thermal conduction).
The corresponding energy is :

x, (42)

where 77 is the density of gravitational energy, given, in one dimension, by :

x,t) = G\\x-y\p(y,t)dy.
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398 B. DUCOMET

Let us consider the second order moment :

I(t) = jx2pdx.

We compute the derivatives :

lXt) = 2\

and :

= j(pv2+p)dx-jr\t) = J(pvJ-+p)dx- J xPnxdx.

Integrating by parts in the last intégral, and using the symmetry of the kernel
\x — y\, we find :

)x. (43)

From (42) and (43), we obtain :

nl"(t) - E = ƒ ( ( * - £ ) pv2 + (nR- Cv) pO + ( ^ - ) PII - qpz) dx , (44)

which is positive if n is large enough, provided that the rhs be positive.
Due to the Lagrangian bound 0 ^ Z ^ 1, we have :

qpZ dy ^ qM ,

where M is the mass of the slab.
So, if the inequality E ^ qM, Connecting the total energy and the total

mass is satisfied, the rhs of (44) is bounded from below by - qM.
Then, if this constraint holds, we have, by integrating twice (44) :

and for t large enough :

7 (0 5* At2,

where A is a positive constant.
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ON THE STABILITY OF A STELLAR STRUCTURE 399

Now, if R(t) is the thickness of the slab, we have the bound :

\x2p dx ^ R2(t).M.

So (32) is proved, and the corresponding stationary solution (with P = 0 ) is
unstable.

3. If X > 0, we see that, if ê{ t) dénotes the lhs of (20), as 9 has a positive
lower bound :

dt < U '

for t large enough. So, the positive quantity ê is monotone decreasing, and
tends to a finite limit § ^ 0. If the limit were strictly positive, the
corresponding state would be a stationary state, which is impossible by
lemma 4. So the limit is S = 0, corresponding to the collapsing state
described above. D

As a conclusion, we briefly analyze the optimality of the bound (32), in the
special case K = 0, where only a diffusion of species take place, in the
absence of chemical reaction.

In f act, a simple argument from [7], is going to show us that, for large t :

R(t)~C.t. (45)

First, we observe that, when G = 0, the system (1) découplés into a pure
hydrodynamical system for u, v, 6, and a diffusion équation with a time-
dependant diffusion coefficient for Z

The hydrodynamical part admits the following time-dependant solution :

u(x,t) = K(1 + 0 ,
v(x,t) = ü(x- 1/2),

The fraction of reactant is solution of the équation :
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400 B. DUCOMET

Taking into account the expression of u in (46), we have to solve, for
x e [0, 1] and t >0 :

2^(0,0 = 0,
Zx(l,t) = 0.

The solution of (47) can be easily computed :

*
d

' M2(l + 0 2 ~
(47)

;>7cx),

where Z^ is the Fourier coefficient of Zo, given by :

zO-fzOOcos
Jo

When o, using Lebesgue theorem, we define :

(48)

Z( x ) = lim Z( ̂ c, 0 = 2 ^n e "2 c o s ( nnx ) *
' ~ > o ° n = o

The thickness of the slab is :

*(O-*(0) =

which is a linear bound of type (45).
Now, we have the following asymptotic result :

THEOREM 4 : Let ( ü, 6 ) be the positive solution of the system :

(49)

Then, there exist constants C > 1 and fi > 0 depending on R, v, CB, and
initial data, such that the solution of (l)-(5) satisfies :

u(x,t)
fff, v(x, t) - Ü(x-\I2), 0(x, t) - ë,Z(x, t)-Z(x)

(1+0"
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Proof : The hydrodynamic part is due to Nagasawa [14], the behaviour of
Z is an elernentary study of the formulae (47) and (48), using the inequality :

} 2 l
— e ,2

e

; 2 _ i l i
0-

Then :

iiz(x,o-z(*)iiN 2 ( 1 + *2)IZÜI2^LJ4
n^O t . U

so, for t large enough, if C is a positive constant :

where C is a positive constant, depending on ü and d. D
As the gravitation has a confining effect, we conclude that if the slab

expands at a rate linear in t in absence of gravitation, and as this rate cannot
be worse in the gravitational case, it actually expands at the same rate if
G ^ 0, due to the estimate (24).

If K ^ 0 (and G = 0 ), the above decoupling does not applied, however we
can verify that the linear bound is achieved for a particular solution.

First, we observe that, if 9 and Z are only function f, the System (1) can be
rewritten :

(50)

It admits the following time-dependant solution

M(jc, f) = - 9(s)dsv Jo

9(x, t) = 0(t), (51)
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where Ô is solutionof the non-linear Cauchy problem

U [ ( ) ]pO),

where ü, 0, and Z are positive constants.
The solution of this last problem is given implicitly by the formula :

' = ? r. „ r -i • (53)

This solution is clearly global due to the behaviour of <p : the maximal time
of existence Trmx is trivially + « , if Q < Q.t because <p = 0 in this domain,
and Tmax is also +00, if Ö > 0v because the integrand has a non-integrable

singularity for /? = 9 + -£- Z.

The thickness of the slab is :

R(t)-R(0) = v(l,r)dz =
Jo

As t —» 0(t) is not decreasing, we have :

R{t)-R{0)^\0.t

which is once more a linear bound of type (44).

4. THE PHOTON GAS (R = 0) FOR EMPERMEABLY INSULATED BOUNDARIES
(X - 0)

Let us consider the radiative limit of the System (1), corresponding to
R = 0.

In this limit case, due to a simple change of unknown, we are going to check
that the preceding result can be used without any significant modification.

Let us dénote by T the quantity : T = W04, by p the new pressure :
T 3

p = R —, and, with Cv = 4 auO , we find :
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and :

U x 3 K v /x *

with : R = f, C = a, K = ^~. The rate function dépends now on T
and M :

0, T - 01 u < O ,

So we find that the system (1) may be written :

The initial conditions become :

(u, v, T, Z)(x, 0) = (M0, t;0, To

the dynamical boundary conditions :

(54)

(55)

(56)

(57)

and the thermal boundary conditions are simply Neumann conditions :

Tx (1 ,0 = 0
Tx (0 ,0 = 0.

The chemical boundary conditions (5) still hold.
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The system (55)-(58), (5) is of the same type as the initial one (l)-(5). Then
we find in the same way that above that the problem (55)-(58), (5) has a unique
solution, satisfying :

(M, u ,T ,Z) e

and we have the same asymptotics :
1. If X — 0, and if P > 0, the solution of the problem (55)-(58) converges

toward a stable stationary state ( w, 0, T, Z), when t tends to infinity, moreover,
the rate of convergence is exponential :

|| M - M, t>, T - T, Z - Z|| lf 2 ^ * r œ\ (59)

where co is a positive number.
2. If A = 0, P = 0, the stationary solution is unstable : if R(t) is the

eulerian thickness of the slab, then :

sf.t7 (60)

where sé is a positive constant depending on the data.
The proof is similar to that of theorem 3.
Using this argument, we conclude that, for any small « gaseous » pertur-

bation of the photon slab, the stationary state corresponding to an external
vacuüm is unstable. So, it seems physically unlikely that the total absence of
gaseous internai pressure could stabilize the expansion of the slab. •

5. FINAL REMARKS

1. As we have considered a regularized version of the rate function 06, (see
formula (8)), our solution (w€, u£, Qv Ze) dépends on e.
Ho wever a lirrüting argument, as in [1], shows that there exists a strongly
converging subsequence such that our results hold for the limit
( M, v, 0, Z) and one has :

| | (M € _ u9 v€ -v,8€- 0, Ze - Z) ||Hl -* 0 ,

when e —> 0.
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2. As in [1], we have two different physical situations for the asymptotics
corresponding to different initiai data.

If the initial température is sufficiently high :

then Z = 0, so the reaction process is complete and the structure burns
ail its available combustible. In contrast, if 90 is too low :

u°\

then, the asymptotic température satisfies : 6 < 0t, and the process stops
after a certain time.

3. In this paper, we have made rather strong regularity assumptions on the
data. In the pure compressible Navier-Stokes system with finite mass,
Hoff [15], [16], [17] and Serre [18], [19], [20] have shown that it is
possible to relax these assumptions, to obtain weak solutions, as soon as
the spécifie volume has a finite total variation. At least for a strictly
positive external pressure, we can reasonnably expect that their results
hold also in the above gravitational situation.

4. Another one-dimensional situation commonly considered in the astro-
physical context [21] is the spherical symmetry, leading to interesting
stability problems (see [22]), for which some global existence results are
known in the viscous barotropic case [23] and also the non-viscous
(Euler) isothermal case [24].
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