Neumann-Neumann algorithms for spectral elements in three dimensions
ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 4, pp. 471-493.
@article{M2AN_1997__31_4_471_0,
     author = {Pavarino, Luca F.},
     title = {Neumann-Neumann algorithms for spectral elements in three dimensions},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {471--493},
     publisher = {Elsevier},
     volume = {31},
     number = {4},
     year = {1997},
     mrnumber = {1457457},
     zbl = {0881.65121},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1997__31_4_471_0/}
}
TY  - JOUR
AU  - Pavarino, Luca F.
TI  - Neumann-Neumann algorithms for spectral elements in three dimensions
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1997
SP  - 471
EP  - 493
VL  - 31
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/item/M2AN_1997__31_4_471_0/
LA  - en
ID  - M2AN_1997__31_4_471_0
ER  - 
%0 Journal Article
%A Pavarino, Luca F.
%T Neumann-Neumann algorithms for spectral elements in three dimensions
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1997
%P 471-493
%V 31
%N 4
%I Elsevier
%U http://archive.numdam.org/item/M2AN_1997__31_4_471_0/
%G en
%F M2AN_1997__31_4_471_0
Pavarino, Luca F. Neumann-Neumann algorithms for spectral elements in three dimensions. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 4, pp. 471-493. http://archive.numdam.org/item/M2AN_1997__31_4_471_0/

[1] C. Bernardi and Y. Maday, 1992, Approximations Spectrales de Problèmes aux Limites Elliptiques, vol. 10 of Mathématiques & Applications, Springer Verlag France, Paris. | MR | Zbl

[2] J. H. Bramble and J. Xu, 1991, Some estimates for a weighted L2 projection, Math. Comp., 56, pp. 463-476. | MR | Zbl

[3] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, 1988, Spectral Methods in Fluid Dynamics, Springer-Verlag. | MR | Zbl

[4] M. Casarin, 1995, Quasi-optimal Schwarz methods for the conforming spectral element discretization, in 1995 Copper Mountain Conference on Multignd Methods, N. D. Melson, T. A. Manteuffel and S. F. McCormick, eds., NASA, 1995. | Zbl

[5] T. F. Chan and T. P. Mathew, 1994, Domain decomposition algorithms, Acta Numerica, Cambridge University Press, pp. 61-143. | MR | Zbl

[6] M. Dryja, B. F. Smith and O. B. Widlund, 1994, Schwarz analysis of itérative substructunng algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal., 31, pp. 1662-1694. | MR | Zbl

[7] M. Dryja and O. B. Widlund, 1990, Towards a unified theory of domain décomposition algorithms for elliptic problems, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. Chan, R. Glowinski, J. Pénaux and O. Widlund, eds., SIAM, Philadelphia, PA, pp. 3-21. | MR | Zbl

[8] M. Dryja and O. B. Wldlund, 1995, Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems, Comm. Pure Appl. Math., 48, pp. 121-155. | MR | Zbl

[9] P. F. Fischer and E. M. Rønquist, 1994, Spectral element methods for large scale parallel Navier-Stokes calculations, Comp. Meth. Appl. Mech. Engr., 116, pp. 69-76. | MR | Zbl

[10] P. Le Tallec, 1994, Domain decomposition methods in computational mechanics, in Computational Mechanics Advances, J. T. Oden, ed., vol 1 (2), North-Holland, pp. 121-220. | MR | Zbl

[11] P. Le Tallec, Y.-H. De Roeck and M. Vidrascu, 1991, Domain-decomposition methods for large linearly elliptic three dimensional problems, J. of Computational and Applied Mathematics, 35. | Zbl

[12] J. Mandel, Balancing domain decomposition, 1993, Comm. Numer. Meth. Engrg., 9, pp. 233-241. | MR | Zbl

[13] J. Mandel and M. Brezina, 1993, Balancing domain decomposition : Theory and computations in two and three dimensions, tech. rep., Computational Mathematics Group, University of Colorado at Denver, UCD/CCM TR 2.

[14] S. S. Pahl, Schwarz type domain decomposition methods for spectral element discretizations, Master's thesis, Department of Computational and Applied Mathematics, University of Wittwatersrand, Johannesburg, South Africa, December 1993.

[15] L. F. Pavarino and O. B. Wldlund, 1997, Iterative substructuring methods for spectral elements : Problems in three dimensions based on numerical quadrature. Computers & Mathematics with Applications, 33, pp. 193-209. | MR | Zbl

[16] L. F. Pavarino and O. B. Wldlund, 1996, A polylogarithmic bound for an itérative substructuring method for spectral elements in three dimensions, SIAM J. Numer. Anal., 33, pp. 1303-1335. | MR | Zbl

[17] L. F. Pavarino and O. B. Wldlund, 1995, Preconditioned conjugate gradient solvers for spectral elements in 3D, in Solution Techniques for Large Scale CFD Problems, W. Habashi, ed., John Wiley & Sons, pp. 249-270.

[18] E. M. Rønquist, 1992, A domain decomposition method for elliptic boundary value problems : Application to unsteady incompressible fluid flow, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. F. Chan, D. E. Keyes, G. A. Meurant, J. S. Scroggs and R. G. Voigt, eds., Philadelphia, PA, SIAM. | MR | Zbl

[19] E. M. Rønquist, 1995, A domain decomposition solver for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. To appear.

[20] B. F. Smtth, P. E. Bjørstad and W. D. Gropp, 1996, Domain Decomposition : Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press. | MR | Zbl