@article{M2AN_1997__31_4_471_0, author = {Pavarino, Luca F.}, title = {Neumann-Neumann algorithms for spectral elements in three dimensions}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {471--493}, publisher = {Elsevier}, volume = {31}, number = {4}, year = {1997}, mrnumber = {1457457}, zbl = {0881.65121}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1997__31_4_471_0/} }
TY - JOUR AU - Pavarino, Luca F. TI - Neumann-Neumann algorithms for spectral elements in three dimensions JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1997 SP - 471 EP - 493 VL - 31 IS - 4 PB - Elsevier UR - http://archive.numdam.org/item/M2AN_1997__31_4_471_0/ LA - en ID - M2AN_1997__31_4_471_0 ER -
Pavarino, Luca F. Neumann-Neumann algorithms for spectral elements in three dimensions. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 4, pp. 471-493. http://archive.numdam.org/item/M2AN_1997__31_4_471_0/
[1] Approximations Spectrales de Problèmes aux Limites Elliptiques, vol. 10 of Mathématiques & Applications, Springer Verlag France, Paris. | MR | Zbl
and , 1992,[2] Some estimates for a weighted L2 projection, Math. Comp., 56, pp. 463-476. | MR | Zbl
and , 1991,[3] Spectral Methods in Fluid Dynamics, Springer-Verlag. | MR | Zbl
, , and , 1988,[4] Quasi-optimal Schwarz methods for the conforming spectral element discretization, in 1995 Copper Mountain Conference on Multignd Methods, N. D. Melson, T. A. Manteuffel and S. F. McCormick, eds., NASA, 1995. | Zbl
, 1995,[5] Domain decomposition algorithms, Acta Numerica, Cambridge University Press, pp. 61-143. | MR | Zbl
and , 1994,[6] Schwarz analysis of itérative substructunng algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal., 31, pp. 1662-1694. | MR | Zbl
, and , 1994,[7] Towards a unified theory of domain décomposition algorithms for elliptic problems, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. Chan, R. Glowinski, J. Pénaux and O. Widlund, eds., SIAM, Philadelphia, PA, pp. 3-21. | MR | Zbl
and , 1990,[8] Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems, Comm. Pure Appl. Math., 48, pp. 121-155. | MR | Zbl
and , 1995,[9] Spectral element methods for large scale parallel Navier-Stokes calculations, Comp. Meth. Appl. Mech. Engr., 116, pp. 69-76. | MR | Zbl
and , 1994,[10] Domain decomposition methods in computational mechanics, in Computational Mechanics Advances, J. T. Oden, ed., vol 1 (2), North-Holland, pp. 121-220. | MR | Zbl
, 1994,[11] Domain-decomposition methods for large linearly elliptic three dimensional problems, J. of Computational and Applied Mathematics, 35. | Zbl
, and , 1991,[12] Balancing domain decomposition, 1993, Comm. Numer. Meth. Engrg., 9, pp. 233-241. | MR | Zbl
,[13] Balancing domain decomposition : Theory and computations in two and three dimensions, tech. rep., Computational Mathematics Group, University of Colorado at Denver, UCD/CCM TR 2.
and , 1993,[14] Schwarz type domain decomposition methods for spectral element discretizations, Master's thesis, Department of Computational and Applied Mathematics, University of Wittwatersrand, Johannesburg, South Africa, December 1993.
,[15] Iterative substructuring methods for spectral elements : Problems in three dimensions based on numerical quadrature. Computers & Mathematics with Applications, 33, pp. 193-209. | MR | Zbl
and , 1997,[16] A polylogarithmic bound for an itérative substructuring method for spectral elements in three dimensions, SIAM J. Numer. Anal., 33, pp. 1303-1335. | MR | Zbl
and , 1996,[17] Preconditioned conjugate gradient solvers for spectral elements in 3D, in Solution Techniques for Large Scale CFD Problems, W. Habashi, ed., John Wiley & Sons, pp. 249-270.
and , 1995,[18] A domain decomposition method for elliptic boundary value problems : Application to unsteady incompressible fluid flow, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. F. Chan, D. E. Keyes, G. A. Meurant, J. S. Scroggs and R. G. Voigt, eds., Philadelphia, PA, SIAM. | MR | Zbl
, 1992,[19] A domain decomposition solver for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. To appear.
, 1995,[20] Domain Decomposition : Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press. | MR | Zbl
, and , 1996,