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MATHEMATICA!. MODELLING ANO NUMEflICAL ANALYSIS
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 31, n° 5, 1997, p 559 à 597)

ON THE OPTIMIZATION OF NON PERIODIC HOMOGENIZED
MICROSTRUCTURES (*)

D. CHENAIS 0), M. L. MASCARENHAS (2) and L. TRABUCHO (2)

Abstract —In this work, based on some ideas of N Kikuchi and M P Bends0e ([10]) and
using some prelimmary results by D Chenais ([4], [5], [6] and [7]), by M L Mascarenhas and
D Pohsevski ([13]), we present an analytical study of the optimization of a domain, with respect
to a brood class of admissible holes, (microstructures), in order to maximize, or minimize, some
functionals This includes, for instance, the maximization of the torsion constant of the cross
section of a rod and the cases treated in [10] and m [18] For the sake of simplicity and without
loss of generality all the calculations wül be done for the torsion constant We introducé some
improvements of [13], in order to specify the class of admissible microstructures

Résumé — Dans ce travail, nous présentons des résultats théoriques concernant l'optimisa-
tion d'un domaine dans une large classe de domaines perforés, analysés par des techniques
d'homogénéisation Une large classe de fonctionnelles à optimiser est considérée Le cas de la
maximisation de la constante de torsion d'une barre est un exemple possible particulièrement
étudié Ce travail est basé sur des idées d'abord introduites par N Kikuchi et M P Bendsoe
([10]), et utilise des résultats préliminaires de D Chenais ([4], [5], [6]) et M h Mascarenhas
D Pohsevski ([13])

INTRODUCTION

We are interested in the optimization of the shape of a domain on which a
partial différenciai équation is given. We want the solution to be as good as
possible with respect to a given critérium.

The now standard way to handle this problem is to search a shape which is
the transformed of a référence shape by a well-chosen homeomorphism. S o the
shape which can be found has the same topology as the référence one. The
optimization is done withm a range of shapes which have a given topology.
This is satisfying in several engineering problerns, but not in others.
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560 D. CHENAIS, M. L. MASCARENHAS, L. TRABUCHO

In the last decade, the question of the topological optimization has been
studied by several authors.

In 1985, Murat and Tartar [16] and [17] gave a way to handle this question
using homogenization techniques. In their work the question is : how to mix
two different materials. They use homogenization techniques in order to
modelize the different mixtures which can appear. As a matter of f act, in this
work, they can get rid of periodicity (which often interfères in homogeniza-
tion), but void-material materials are not allowed.

The results have been pretty much improved since then, by Allaire and
Francfort [1] and Allaire and Kohn [2]. There are very interesting numerical
results including void-material mixtures. Yet there are two restrictions : only
particular partial differential équations are possible (Laplace équation, elas-
ticity) and the functional which is optimized has to be the observance. Also in
the « void-material » mixture, the void is approached by a very soft material.
There seems to be instabilities in this approximation.

Bends0e and Kikuchi [10], using an idea of Kohn and Strang [11] and [12]
also propose a way to deal with this problem using homogenization tech-
niques. In their studies, for sake of simplicity in the numerical treatment, they
consider that each finite element is formed by a periodic array. In each cell of
one finite element, there is a rectangular hole of given size and orientation.
They use a descent method in order to chose the parameters of the periodic
structures as well as possible. They also get very interesting results which can
closely by related to the results of Allaire, Francfort, Kohn, Murat and Tartar
in the cornmon examples they treated. Notice that the derivatives of the
homogenized coefficients with respect to the three real design parameters (size
and orientation of the rectangle) on each finite element are computed numeri-
cally. This still restricts the class of admissible solutions and prevents the
possibility of a direct mathematical study,

The method we present here is strongly related to the Bends0e and Kikuchi
ideas. We deal with « quasi-periodic » structures, as defined and studied by
Mascarenhas and Polisevski [13]. The basic idea is to use periodic cells on
which non-periodic holes are included. For a given microstructure (which is
a law giving the holes in each cell, for each size of the cell), Mascarenhas and
Polisevski [13] give with a mathematical proof the homogenized équations for
the problem of the torsion of a rod (real void-material structures are allowed,
no approximation needs to be done). The homogenized équations can be
solved theoretically and numerically for any microstructure belonging to a
broad class.

The following work consists in the mathematical computation of the
differential of a given criterium which dépends on the microstructure through
the solution of the homogenized équations. The aim is of course to use it in
a descent algorithm. In the problem of the torsion of a rod, it is reasonable to
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ON THE OPTIMIZATION OF NON PERIODIC 561

optimize the torsion constant, which is nothing but the observance. Though the
methodology can clearly be used for a large class of other functionals, and also
for a whole class of partial differential équations.

This work gives a generalization of the work by Bends0e and Kikuchi. The
optimization is done in a wider class of admissible structures, and it is based
on more précise mathematical results. Numerical experiments need to be done,
in order to see wether really better results can be found.

It is noticeable that we chose concepts to work on, which transform the
initial problem into another problem of shape optimization in R4 if the rod
section is in R2 .

A microstructure needs to be defined in a précise mathematical manner. This
has been done in Mascarenhas and Polisevski [13]. As a matter of f act, the
définition they had given did not seem exactly appropriate for the optimization
problem. So in this paper we give a slightly different one, and some improve-
ments of [13] which become necessary for the proofs to be complete.

Now we briefly summarize the content of the paper.
In Section 1, we give the gênerai setting. In subsection 1.1 we give the

définition of a microstructure as it will be used in the sequel. We give the
proofs which are necessary to get the complete results analogous to those of
[13], and give the homogenized équations for the torsion of a rod. In
subsections 1.2 and 1.3 we recall the basic notions of optimal control and
shape optimization which are used in the following sections.

In Section 2, we write down the optimization problem that we have to study
and give some of its properties.

Section 3 is devoted to the study of the differentiability of the relevant
quantities showing up in the homogenized torsion problem.

Using all the previous results, in Section 4, we present the explicit differ-
entiation of the torsion constant with respect to the class of admissible
microstructures and establish the optimality conditions.

The paper ends up with some final remarks concerning the numerical
computation of the gradient of the torsion constant and with an appendix
where two gênerai and technical results are proved.

1. SOME PRELEVUNARY RESULTS

1.1. Modelling of the torsion of a homogenized bar

Let Q be a bounded, open, connected and lipschitz subset of R 2 , and set
y=]o, i[2.

Let r c F b e the closure of a regular, open, connected subset of F, and
F* = Y\T,

vol. 31, n° 5» 1997



562 D. CHENAIS, M. L. MASCARENHAS, L. TRABUCHO

Consider x the characteristie function of F* and, keeping the same notation,
extend it, periodieally, to all of R2 .

For any small positive parameter £, R2 is covered by squares
Yek = eY+ ek, where k e Z2 .

Let &\ dénote the set of all & <= Z2 such that Yek is included in Ü. Define :

QnYek,

The subset Qe er ü, defined by the characteristie function xe, corresponds to
a sF-periodic perforation of Q, all the holes having same size and shape : we
say that Q is periodieally perforated.

Classical homogenization results allow us to treat asymptotically, ie., as
e goes to zero, a wide class of P.D.E. problems, in particular the torsion
problem (see [8]).

The case where the size and shape of the holes vary from cell to cell, is
called quasi-periodic and has been considered in [13].

In this last case we consider, instead of a unique référence perforated cell
F*} a familly of perforated cells {Y*(x)}xeQ9 Le., the référence hole varies
with the zone of the perforation.

We say that the function

xe Ü^Y\x)aY (LI)

is the microstructure of the perforation.
Since we are interested in the optimization of the microstructure, we briefly

summarize here the homogenization results obtained in [13]. Our present
setting is slightly different from the one in [13], but more appropriate for the
classical methods of control by domain. This new setting requires some minor
changes in the proofs given in [13] in order to get similar results. We give
these new proofs here.

Instead of (LI), we will define a microstructure as an element

J5e C = *€ 1(Û;O 0 ) , (1.2)

where <D0 cz Wl' °°( F ; R ) is the set of all the bilipschitzian homeomorphims
of F into F, that coincide with the identity on the boundary BY of F and such
that the image of the fixed lipschitz subdomain Y*Q of F is still lipschitz (3).
Fo is a given open subset of F We suppose that Y\Y0 is connected and
contained in the interior of F <I>0 is endowed with the usual norm of
Wh°°(Y;K2 ).

(3) We note that the image of a lipschitz domain, by a bilipschitzian homeomorphism, is not
necessarily a lipschitz domain (cf. [5] and [20]).
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ON THE OPTMIZATION OF NON PERIODIC 563

Then we set,

Y*(x) = B(x)(Yl)={B(x)(z):zG F^}, (1.3)

and we let % be the charaeteristie fonction of \J [{x} XB(x) (Y*o)~\, in
xe Q

Q x F, extended by periodicity in the second variable, to all of D x R 2 .
As in the periodic case, we define Qg c Q by the following characteristic

function :

x(x)

Let us describe this set Og. Consider Ygk x a Y, defined by

Notice that it does not coincide, in gênerai, with any Y (x), for x e YBk,
k e ^E. In fact, let x e Yek, ü ; e 5 £ and x = e(y + ik). One has

( f ) d)(y;), (1.5)

which means

We notice that Y*ek 1 is, in a way, implicitely defined by the above équation.
More precisely» we have :

LEMMA 1.1 : Consider, for e and for k fixed, such that k e Ze?

W:YxY-ïR2

For s small enough, the relation *F{y, z) = 0 defines, implicitly, a global
bilipschitzian homeomorphism F£k : Y —» Y, satisfying

Kk,i = Fek(Yl)> forsome FA e %

and

VS>O3eo>ö:e<eo^ \\FEk^B(ek)\\w^(YRzy<S, \/k G Ze. (1.7)

vol. 31, n° 5, 1997



564 D CHENA1S, M L MASCARENHAS, L TRABUCHO

Proof : For all y e Y there exists a unique z e Y satisfying
,z) = 0, namely

Conversely, let z e Y be given, and fix y0 e Y. Define, for n 5= 1,

By compactness there exists a subsequence of (yn), converging in Y':

ynk —> y and then y = B(ey + ek) (z) .

Suppose that y also satisfies xF(y,z) = 0, with y ^ y. Since the maps
x •-> [B(x)Y l(y) and x >-> [£(;*;)]" ^y ) are continuous from Q into F(4)
and y ^ y, one has :

inf | | [ f l (x)]- 1( ) ; ) - [B(x)]- 1(y) | |=<J 0>0, (1.8)

and, for e small enough,

|| [B(8y + sk)~\~ 1{y) — [B(ay + sk)Y 1(y) \\ <ô < ôQ. (1-9)

From (1.8) one obtains that

and, from (1.9) and (1.10),

0 =

which is a contradiction.
Defining, then,

(4) If F, G are bihpschitzian homeomorphisms of F onto F, so are F , G and, for all

\\F~ \z) ~ G- \z)\\ « ( l / a ) | | 2 - F ( G " 1C«>>|| = ( l / a ) | | G ( G ' ^ z ) ) - F ( G " X<^>) )| ,

so that II*" ' - G - ' I I L - ^ . R ' ) ^ ( l / « ) | | F - G | | L - ( r > R 2 )
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ON THE OPTIMIZATION OF NON PERIODIC 565

we prove (1.7). For S > 0, using the continuity of B, in Q, one has» for e small
enough,

\\B(ek) - B(ey + ek)\\wi,~(Y.R2 y <ô/2 , V y e F ,

which means

sup \\B{ek)(z)-B(ey + ek){z)\\ <èil, (1.11)

and

H5(fi^)(z)~JB(ej + ^ ) ( z ) - J B ( ^ ) ( z / ) + 5 ( ^ + ^ ) ( O I I £,osup < <5/2 ,

(1.12)

for ail y E F.
From (1.11) one obtains \\B(sk) (z) -B{ey + ek) (z)\\ < S/2, Vz,

y G F, and, in particular,

ze r

Analogously one obtains. From (1.12), that

\\B(ek) (z) - Fek(z) - B(ak) (z') + FA{€) II
sup < (5/2 ,

Hz-s ' i l

and, consequently,

Since the set of ail bilipsehitzian homeomorphims of F is open in
Wio°( F ; R2 ) (5), one concludes that, for e small enough, Fek is a bilipsehit-
zian homeomorphism. Besides it is clear that it eoineides with the identity, on
the boundary of F The faet that FBk G <I>0 , will be a conséquence of Propo-
sition 1.4. D

Now, in order to apply the homogenization results stated in [13], we need
more than the lipschitz property stated in Lemma 1.1. We will prove that, for
e small enough, the familly {F*J£ keZe is in Lip(L, r ) , for some L and r in
R + . We recall the définition of Lip(L, r ) (see [4] or [13]).

(5) W1>o°(y;R2) = ^ 0 > I ( Y ; R 2 ) : Wl'°*(Y;n2) coincides with the set of Hpschitz
continuous maps defined on K

vol. 31, n° 5, 1997



566 D. CHENAIS, M. L. MASCARENHAS, L. TRABUCHO

DÉFINITION 1

r e R+ , define
DÉFINITION 1.2 : Let Y be as introduced before. For each x e R2 and L,

PL r(x) = {y e R : \yx — xx\ < r and \y2 — x2\ < Lr}

and Lip(L, r) as the set of all the open subsets œ of Y such that : for all
x e dco, there exists a local coordinate System and a function

with has lischitz constant L, satisfying

y e PLr(x)r^co iff y e PL r(x) and y2 > <t>x(y, ) . D

We recall that for each lipschitz subdomain co a Y there exists L,
r e R+ such that co e Lip(L, r ) .

The following auxiliary result holds :

LEMMA 1.3 : Let L , ^ e R + . ïfco G Lip(L, r) , and W ̂  O0 is
| | !P-7| |w i . - ^ o, then

T\œ)e Lip(L\r'),

, L + Ö(L+ 1) , L [ 1 ( 5 ( L + 1)] _ i

where L = _ _ _ _ w r ^ , _ _ _ _ _ _ _ , «y,î<rTT. D

The proof, due to M. Zerner [20], is presented in the Appendix.

PROPOSITION 1.4 : There exist three constants in R*, L, r and e0, such that,
for e < 80,

{Y:k}E,k.ze^Lip(L,r). (1.13)

Proof: Let x e Ü and 7*U) = £<>) ( F*) e Lip(L(x), r(x)). Since the
map F •-> F" 1 is bounded in a neighborhood of 5(JC), in Wl'°°( Y ; R2 ) (see
[15]), let 5 and c be two positive constants such that

\\F-B(x)\\wu-<3=> \\F-l\\wi.-*c.

Suppose that F is a bilipschitzian homeomorphism, satisfying

( L 1 4 )

M2 AN Modélisation mathématique et Analyse numérique
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ON THE OPTMIZATION OF NON PERIODIC 567

Since

using Lemma 1.3,

F(Y*0)e Lip(LXx,ô),rXx,ô)),

where

and

l + < 5 ( L ' + l ) L ' + < 5 ( L ' + 1 ) J L + 2 J ( L + 1 )

From the compactness of B(Q ), we obtain the existence of a finite number
n0 such that

1 = 1

. r n
Defining L = max \L \ and r = min \ r -j- } , we have, then,

Finally, since Y£k satisfies (1.5) and (1.6), for e small enough, we obtain
(1.13). D

In order to ensure that O0 is adapted to the variational calculus, we prove
the following lemma :

LEMMA 1.5: Let W e O0 ; then there exists e0 such that

f e Wl
0>°°(Y;R2), U\\w, » < e < e0 => Y+ £ e % . (1.15)

Proof : Since the set of all bilipschitzian homeomorphisms of Y into Y is
open in W1>e°(Y; R2 ), for e small enough !F+f also is a bilipschitzian
homeomorphism. Using the argument presented in Proposition 1.4 we also
conclude that if ¥(Y*0) is lipschitz continuous, the same holds true for

( ÏP+OCO' for 8 sma11

Let us prove that

Y, Vy e F. (1.16)

vol 31, n° 5, 1997



568 D CHQENAIS, M L MASCARENHAS, L TRABUCHO

If yedY then W(y) + Ç(y) = W(y) e Y. Let y e int Y,
= d{ *F(y), dY) > 0 and y0 e dY be such that Ô = || W(y) -yo\\.
We have

\\ay)\\ =

If e < a, then ¥(y) +
ô, which is included in K

is in the bail centered at ^(y) and radius
D

Remark L6 : The previous lemma says that, although <D0 is not an open
subset of the Banach space Wrl'°°( Y ; R2 ) it is an open subset of the affine
subspace I + Wj'~(y ; R2 ), where / stands for the identity of Y This fact
allows us to apply the gênerai classical setting presented in the sequel. D

We now recall the homogenized torsion équation (see [13]).

Let f /1
#(y*(x)) stand for the set of the H1 functions <p, defined on

Y (;c) which are periodic in the sense that :

where, for example,

' V i = l , 2

dénotes the trace of q> on

Let {ev e2} be the unit euclidean basis of R2 . For each x e Q and each
i = 1,2, we consider the function T*, the unique solution of the following
elliptic problem :

JY\X)

f <V<, V̂ >} (y) dy = -[ (V<p, et) (y) dy,
ÙY\x) JY\X)

Vip e H\ ( Y*(x) ) such that | ^(y) t/j = 0,
JY\X)

(1.17)

where ( . , . ) dénotes the usual inner product in R .
Let, for fixed jee Ö,

mi3(x)^öi]\Y\x)\+\ ^ (Vxx,ej)(y)dy, (1.18)
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ON THE OPTIMIZATION OF NON PERIODIC 569

define the (ij) term of a matrix M(x), which is positive definite (see [13]),
representing by \Y (x)\ the usual Lebesgue measure of Y (x), The homog-
enized torsion is the function y/ defined by the following elliptic problem :

(1.19)

It is clear that the coefficients of the équation (1.19) depend on the chosen
microstructure B, introduced in (1.2) and (1.3), and so does the solution y/.

Our aim will be the optimization of a functional depending explicitly on B
and also through y/, One example could be :

Q

1.2. Setting of the optimization problem

Our aim is the following : let

Jo\ C xH\(Q) ^ R : (B, 0) >̂ Jo(B,0)

and

> R : (B,&) >-> J((B, <Z>), i= 1, ...

be n -h 1 given functionals. For each i G {0,..., «}, we define

where y/ is the solution of (1.19). In tins paper, we investigate the problem :

min jQ(B)
Be^(fî;<Dfl)

under the constraints

i =

We would like to find a solution B* which is as good as possible. This means
that all the constraints have to be satisfied, and the quantity 70( B ) has to be
as small as effectively possible.

vol. 31, n° 5, 1997



570 D. CHENAIS, M. L MASCARENHAS, L TRABUCHO

In particular, in this paper, as very often in this type of problem, we will not
study existence and uniqueness of solutions. What we plan to do is to try an
arbitrary Bo and follow a descent algorithm for jQ, under the constraints :

j£B) ^ 0 , i = l , „ . , n .

In the most usual algorithms, if the functionals jt, i = 0, ..., n are differ-
entiable, the crucial point is the computation of their differential or, more
generally, approximations of these differentials, which become gradients in
finite dimensional spaces. If this can be done, these gradients together with
appropriate approximations of the functionals jt, i = 0, ..., n, are given as
input parameters to a Standard optimization algorithm (whith linear or non-
linear constraints).

We see here that the mathematical work which needs to be done is the same
for the functional jQ and for the constraints jt : we need a computation of their
differential. So, in what follows, we give one fucntional j and compute its
differential.

We can make one remark : each of the functionals Jx may or may not depend
on 0. If it does, its differentiation has to be done according to optimal control
techniques, which are recalled in the following section. If not, then
jt(B) = Jt(B) can be differentiated directly.

Examples

1. The functional Jo : in solid mechanics, the usual quantities which are
interesting to optimize are related to displacements or stresses. In a rod, both

iare proportional to 1/ y/(B). So the most interesting problem is :

max J0(y/(B)) with J0((p) = \ (p dx .

In other problems, for example in solid mechanics the following functionals
are classically considered :

/ ( « ) = [ \ \ u ( x ) \ \ 2 d x o r ƒ ( « ) = [ \ \ a ( u ) ( x ) \ \ d x ,

where u is the displacement, and G the Cauchy stress field associated with the
structure. It is also interesting to optimize

max || w(;c)|| or max || o(u) (JC) || .
x e Q jee Q
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ON THE OPTIMIZATION OF NON PERIODIC 571

These are not Fréchet-differentiable, but they can be treated by non-smooth
optirnization techniques, whieh also require the Frechet-differentiation of
appropriate fonctions.

Examples of constraints
1. A usual constraint consists in giving an upper bound for the total quantity
of material available for the optimal solid body. In the problem stated before,
this can be written as :

= f
4Q

(for a given positive y) which is equivalent to writting :

B(x)(y)dydx**y.
Joh:

This functional is clearly linear and continuous in B e ^(Q ; <P0) (with
the norm <g\Q ; Wloa(Y; R2 )), so its differentiability is obvious.
2, Another natural constraint is

P<l, V* e O, Vy e Y*

for given positive constants a and fi.
This is a max-type function which is not Fréchet-differentiable. The ad-

missible directions can be found using subgradient techniques, which are
obtained through Fréchet-differentiation of pointwise functionals.

In what follows, we treat the following question, which constitutes the first
step in this type of problems. Let / : C X H J ( ^ ) - ^ R be a given %l

functional, and let j be defined by :

j(B)=J(B,W)

where y/ is the solution of (1.19). The question is to prove the differentiability
of j , and find a way to compute its differential, which can give an effective way
of using it in a numerical computation.

1.3. A standard result in optimal control
Let V be a Hubert space (state space), yibea Banach space and <P be an

open subset of A (control space). We are given the functionals :

• a: # x V x V -» R
(p,u,v) h-» a{(p ;u,v)

» L: 0xV -» R

m J: 0xV -* R

(q>,v) I-» J(ç>;v)

vol. 31, n° 5. 1997



572 D. CHENAIS, M. L. MASCARENHAS, L. TRABUCHO

For each <p, a{ <p ; . , . ) is supposed to be bilinear, continuous, coercive in
u and v ; L is supposed to be linear and continuous in v. Both are supposed
to be of class &1 with respect to <p, in the spaces of continuous bilinear
functionals and continuous linear functionals, respectively. As for J, it is
supposed to be of class ^ with respect to the pair (<p, v).

The problem we are s tu dy ing is the folio wüig. We consider u9 e V uniquely
defined by the state équation :

a(<p\up,v) = L((p\v) , Vi; e V,

and j{ <p ) = / ( q>, u9). We wish to compute :

maxy'O) .

More precisely, in order to use descent type methods we want to differen-
tiate j( (p ) with respect to (p. We have the following classical result (see for
instance [6]) :

THEOREM 1.7 : Under the above conditions, the functions (p >-> u9 and
<p *-^> j(<p) from 0 into V and R, respectively, are of class ^ . Moreover, for
any ö(p G A :

where p9 is the adjoint state variable, which is given as the unique solution
of the équation :

Vw e V . D

1.4. Summary of some basic techniques in optimal design

The problem we are interested in is close to the problem of the preceding
section. It is still an optimal control problem, but the control now is the domain
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on which the partial differential équation assoeiated to the bilinear form a is
posed. So, consider U some appropriate family of open bounded subsets Z of
Rn :

• a Hubert space V(Z) depending on the controî variable Z,

• az:

• Lz:

• Jz:

V(Z)xV(Z)

(«,»)
V(Z)

(O
V(Z)

-^ R

K^ az(M,i;)

-> R

H> L z ( r )

-> R

For each Z, a is supposed to be bilinear, continuous, symmetrie and
eoereive on V(Z), Lz is linear continuous, and Jz is <g?1. Consequently, the
équation :

M
Z G V ( Z ) , a\uz,v)=Lz{v), V i )€V(Z) , (1.20)

has exactly one solution. Our problem now is the following :

max;(Z), (1.21)
Z Ê 77

where j ( Z ) = / ( / ) .
As in the previous section, we are interested in the differential of j with

respect to Z This needs first to be defined because the variable Z does not
belong to a vector space. We work hère in the very classical following setting
(cf. [3], [7], [9], [14], [15], [19] and [21]) :

A regular bounded part Zo e Rn is given as well as an open part $F of
W^'^XZQ ; Rn ) consisting of homeomorphisms of R* with Wk'°° regularity.
Let us define :

The spaces V(Z) we have in mind are Sobolev spaces. We choose k such
that the change of variable

induces an isomorphism from V(Z0) onto V(Z). Then the design variable is
now F G I " c Wk' °°( Zo ; R" ). It belongs to a vector space. We are back to the
setting of the previous section and therefore in a position to use its results.
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Let us add in this section a very classical resuit which will be used several
times in what follows. One of ten has to deal with the bilinear form :

az(u,v)= f (Vu{z),Vv(z))dz,
Jz

where Vw dénotes the gradient of u with respect to z. When one makes the
change of variable :

z = F(z0), M(Z) = Ü(Z0) ,

the gradients of û and v have to be taken with respect to z0 instead of z. After
some computations one gets :

so that :

az(u,v) = â(F;û,v ) (1.22)

= f <[D(F-1)oF]<.V» f[D(F-1)oF] r.Vfi } (z0) |det {Dip) (zo)\ dz0 ,
Jz0

where we have written V instead V_,o for simplicity. One then has :

LEMMA 1.9 : Let 3F be an open subset of the set of bilipschitz homeomor-
phisms of Zo cz R" on their image. Then, the mapping :

F^ D(F~l)oF

is *$l and its dijferential at the point F -l {where I stands for the identity
ofün ) is:

[ | ^ ) . v ] ( z o ) = -W(zo), a.e.zo. •

LEMMA 1.10 : In the same setting as in the previous lemma, let us consider
the mapping :

F \-> det DF.
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This map is of class ^l, and its differential at the point F = I is :

a.e. z0 . O

Remark 1.8 : In what follows (Section 4.1), we will show how (as is usual
in shape differentiation), one can get the differential of a functional at a current
point F using the differential of another one evaluated only at F — I. So, with
the previous lemmas, one proves immediately that the bilinear form â is
continuously Fréchet-differentiable with respect to F e WlfOO(Z0 ; R

w ) and its
differential can be obtained by partially differentiating with respect to F under
the intégral sign. The differentials can be computed with the formulas given
in these lemmas. •

2. SETTING OF THE OPTIMAL TORSION PROBLEM

2.1. General setting

Let us now rewrite the homogenized torsion équations with these notations.
We get them from Section 1.1. The set C = ^ (Q ; <&Q ) is now chosen. For
any F e # 0 , we define öf G H1^(F(FQ)) as the unique solution of the
elliptic problem :

öfei^CFcr;)), f öf = o,

f (Vöf,Vff>(y)d[y = - f (V9fei){y)dy9 (2.1)

\ff e H\ (F( 7* ) ) such that [ tp(y) dy = 0,
JF(YI)

which is similar to (1.17). For any B e C and for any x e Ü, we have
5 ( x ) e # 0 . Since we dénote Y*(x) = B(x) (FQ) (see (3)), this équation
defines öfw e H\(Y\X)).

We emphasize here that the space H\ ( F*( x ) ) = H1^ ( B( x ) ( F* ) )
dépends on B. Since we want to study variations when B moves in C, this has
to be taken with great care.

Then, in the same way as m^.(x) has been defined in (L18), we define :

a (F) = S J dy+l <Vöf, e) (y)dy; A = [a.-] (2.2)
; JJF(Y*Q) h(Yl) J 3
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so that aij(B(x)) is defined for each x e Q.
Finally, we define :

(2.3)

where A(B(x)) is the 2 x 2 matrix with coefficients
{aJB(x)) ; i,j = 1, 2}. Note that because of équation (2.1), we have

f (V0*ix\ej)(y)dy = - f <Vöfw, V0*M) (y) rfy ,

so that A(/?(x)) is a symétrie matrix. Consequently, we have defined the
function

B i-> y/(B) .

Let us now give a function :

/ : CxHl
0(Q) ->R

The question we address is the following :

maxj(B) ,

Be C

where

(2.4)
This question almost fits in the gênerai framework of optimal control which

has been recalled in Sections 1.2 and 1.3. There is one thing we have to deal
with before directly using the results of these sections. For F = B(x), the
équation (2.1) defines the function öf(x) which belongs to the space
# # ( Y*(x) ) = H\ (B(X) ( K* )) and which has a zero mean value. We will
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have to differentiate #f(x) with respect to B. This function belongs to the
space H1^ (B(x) ( Y*Q) ), which dépends on B. As described in Section 1.3, we
can get rid of this dependence by using the change of variable

After this change of variable, the function öf(x) o B(x ) belongs to the space
H\(Y*Q), which does not depend on B. Nevertheless, this function has no
longer zero mean. It is such that :

[ ö f ( x ) oB(x)] (z) Det(DzB(x) (z)) dz = 0 ,

which is a condition depending on B. This condition could be treated as a
constraint in the problem. We chose to address this question differently. We
remark that this zero mean value condition is only necessary for the unique-
ness of the solution öf. Since the function #f(jc) is used to compute a^F) only
through lts first derivatives, we are not concerned with any constant which
could be added to one particular solution. This question can be delt with by
using the quotient space H1^ ( F* )/R. We prove in the following subsection
that this is a way to proceed which fits in the setting of Sections 1.2 and 1.3.

2.2. The use of quotient spaces

Let F be chosen in <D0 . We dénote :

V(Y*0)=H^(Y*0)/R, V ( F >

where Y* = F(Y*0).
They are endowed with the following norm :

y/e y/

and simiïarly for V(F*). These are two Hubert spaces, the first one does not
depend on F. In order to be able to use the technique described in Section 1.4,
one has to check that the following mapping ï : V( Y* ) —> V( 7Q ) defined by :

: y/z £} ,

is a topological isomorphism. This requires checking that the image of q> by
ï is exactly one équivalence class in V( Yo ), which can be easily done.
Moreover, it is easy to see that it is linear, one to one, and continuous.
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In these quotient spaces, the équation (2.1) can be rewritten :

f
J Y

V(y*),

f y,Vpe V(Y*)

Using the Poincaré-Wirtinger inequality, it can be proved that the space
V( YQ ) can be endowed with the norm :

= f
JY

\V<p\\y)dy,

which is equivalent to the classical norm. Thus, the left hand-side of the
équation (2.5) is associated to a coercive, bilinear form, and it has exactly one
solution. Then, using the change of variable y = F(z) in this équation, one
gets the following corresponding équation, posed in the space V( YQ ) which
does not depend anymore on F :

Öi(F)

f (IDF-l oF]\z). Vz Ö.(F) (z), [DF~ * oF]\z). Vzç(z)) dotDF(z) dz

= - f
(2.6)

where we have used the notation :

, DF~ loF(z).Vzq) = {DF~ : oF(z) . V^ ; q> G ̂ } .

the last set being reduced to one single element. The left-hand side of this new
équation is also coercive.

We will now see that the optimization problem we have to deal with, fits in
the gênerai setting of optimal control, which has been recalled in Sections 1.2
and 1.3. Several questions arise : existence of a maximum, local or global,
regularity, computation. In most of these problems not much is known about
a global optimum. Even when existence is known, because of lack of con-
cavity, one does not know wether a maximum is global or local. On the other
hand, it occurs (and it does hère) that the functional which has to be
maximized is Fréchet-differentiable and its differential can be numerically
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computed. Therefore, gradient type algorithms can be used in order to make
the objective functional j increase. This is of interest as soon as it makes it
increase, even if it does not reach the global maximum.

In what follows, using the results of Sections 1.2 and 1.3, we prove that the
functional j is Fréchet-differentiable and in Section 4 we are going to show
how to compute its differential.

3. DIFFERENTIABILITY OF THE HOMOGENIZED TORSION

We use all the notations defined in Section 2. We want to differentiate the
function j(B) introduced in (2.4), with respect to B e C = ̂ (Q ; O0 ). This
function is the result of the following composition :

B -> flf -* âtJ(B) « W{B)

where we define

âij(B) = aljoB and Â(B)=AoB, (3.1)

so that équation (2.3) can be rewritten in the form :

4>(x)dx,

In this section, using the standard techniques of optimal design, we show
that all the mappings of this séquence are ̂  and we compute the differential s.
In what follows, differentiable always means Fréchet-differentiable.

Let us dénote, as previously, Ôt(B(x)) = #f°° o B(x) and § t(B(x)) its
class of équivalence in the quotient space V(70) which does not depend on
B(x) any longer. Thus, as for each x, B(x) e <I>0 strictly speaking, t)x is a
function from <l>0 a Wh°°(Y; R2 ) into Y(Y*Q), and we can study its regu-
larity.

Let us now rewrite équation (2.2) using the change of variable. The
formulas changing a gradient have been given in (1.22) of Section 1.3. We get,
for each F e O 0 :

tetDF(z) dz

+ f ([D(F~1)oF]t.VA(F) (z).e)detDF(z)dz.
SY'

 ]
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Note that Vj). may as well be replaced by Vz Ô. because there is only one
function in this class of équivalence. We have :

PROPOSITION 3.1 : The mappings V0i : F ^ VÖ-(F) :
<&0 dWh°°(Y;R2 ) ->L 2 (F*) 2 are <ë\

Proof : We use the techniques described in Sections 1.2, 1.3, and 2.2. We

recall that t)t{F) e V( F*), and is uniquely defined by (2.6).
If we choose :

a(F;Ô, q>) (3.4)

[D(F~ x) o F]{(z) . Vz fa)) dotDF(z)dz ,

;Ïj>)^- f {[D(F-l)oFV(z).Vzf(z),ei)detDF(z)dz, (3.5)

for each F, a( F ; . , , ) is bilinear, continuous, symmetrie, coercive on
V ( K Q ) X V ( F * ) . lts coefficients are ^l with respect to F with values in
L°° (see Lemmas 1.9 and 1.10). Therefore, it is straightforward to prove that
the hypotheses of Theorem 1.7 are fulfilled, thus the mapping :

is ^ \ as well as its gradient, with respect to z, in L . D
We immediately deduce the following :

PROPOSITION 3.2 : The mappings F*-* a^F) : % er Wl'°°(Y; R2 )

Proof: We recall that (3.3), defines atj(F) after the change of variable
= F (z ) . The mappings (see Lemma 1.9) :

F «-> det (DF) : % c WlïO°( F ; R2 ) -> L°°( F*) ,

F ^ Vö-(F) : <&0 c W l ! l F ; R 2 ) -» [L 2 (F; ) ] 2 ,

are ^ . One gets a-i F) by composing these mappings with multilinear ones.
This gives the resuit. D

M2 AN Modélisation mathématique et Analyse numérique
Mathematica! Modelling and Numerical Analysis



ON THE OPTIMIZATTON OF NON PERIODIC 581

We now prove that ât] : B ^> âtJ{B) maps C c ^ Û ; Wh °°( Y ; R2 ) ) into
Ô land is <gl. We recalï that ây is defined by (3.1) and that ay(F) is

<^?1 with respect to F, as we just proved. The continuity of â ( J5 ), with respect
to x, and the differentiability of 5 , with respect to 5, result from the following
abstract proposition, whose proof is presented in the Appendix.

PROPOSITION 33 : Let A be a Banach spaee, <I> be an open subset of A and
let:

G:® a A -»R:F*->G(F)

be a ^ mapping. Moreover let C be a subset of ^l(Q ; A ) such that :

VBe C, V X G Ô : B(x) e O.

Let G : B -» G(£) be defined by G(B) (x) = (G oB) (je). Then G maps
c ï ^ û M ) into ^ ( f î ) , G is ^ x with respect to B and, for each

X)^{B{X)) .H(x) .

Proof: See the Appendix. D
From Propositions 3.2 and 3.3, and recalling Remark 1.6, we obtain ;

COROLLARY 3.4 : The mappings ât : C c / ( Û ; WU°°(Y] R2 ) )
re ĝ71 a«4 /or a// ( 1,7 ) and H e <é(Q ; W1^ °°( F ; R2 ) ),

(3.6)

D

4. EXPLICÏT DIFFERENTIATION OFj

We now give some lemmas which will help us to differentiate j :

LEMMA 4.1 : The mapping t : C c <g\ù ; Wl'°°(Y; R 2 ) ) -
defined by

detA(fi)
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is &1 and, for H (E <il{Q ; W^°°{Y \ R2 )) :

[det A(B)TX[%(B). H -tr(Â-\B)j^{B).H).Â]. (4.1)

Proof: As we already remarked in Section 1.1, for each x e Ü the matrix
)) is positive definite and, consequently, there exists a e R+ , such

that det A(B(x) ) > a > 0.
Again using Propositions 3.2 and 3.3, and recalling Remark 1.6, with, for

each ( I , J ) ,

we conclude that G : C a <€1{Q ; A) -» ̂ ( O ) , defined by

G(B) = — ^ , (4.2)

is ^ and that

\%(B).H\ (x) = ̂ (-T^r){B(x)).H{x). (4.3)

L dB J dr \ det Af

For each ( I , J ) and /i e Wl
Q'°°( F ; R2 ), we have,

= [detA(F)]-1 ^(F).ft-ïr(A-1(F)g ;(F).ft).aJ, (4.4)

noting that, in two dimensions, -JJ (detA) .B= (detA) fr(A~ ' iS).
From (4.2)-(4.4), we obtain (4.1) and this concludes the proof. D

PROPOSITION 4.2 : The mapping j , introduced in (2.4) is <êl, and, for any
He Vl(ù;W%-(Y;R2)):
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where, for ail u, v e H\{ Q ) :

a(B;u7 v) =
ia

Wu,Wv\(x)dx,
ydet(A(5))

%(B;u,v).H=! ([-fef Â(B)—VH|.VII,VI;
dBK iü\ldB \det (A(B))J J

and p(B) e H^iÜ) is the unique solution of

a(B;wyp(B))=^(B;¥(B)).w Vw e tfj(fl).

Proof : This is a direct conséquence of the gênerai optimal control theorem
(c/ Theorem 1.7). The functional a( . ; . , . ) fits in the gênerai framework,
and, using the previous lemma 4.1, we know that F is ^ \ thus :

\\H\\A HKIIVIMIV,

(with A = ̂ l ( Ö ; W1>O°(Y; R2 ) ) and ( V = Ü / Q ( O ) ) , and:

a(B + H ; u, v ) - a(B ; M, V ) - — (B ; u, v ) .

e(H) i v •

Thus, the bilinear form a is differentiable with respect to B. Moreover it is
clearly continuously differentiable.

r ;ü) = 2 fThen, for L(B ;v) = 2 | v(x) dx, we have :

Then we can conclude that j is <^1. In order to compute its difïerential, we
have to compute the solution of the adjoint équation which is given by :

Y,

^ . w , V w e V .

Again using Theorem 1.7, we get the resuit. D
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In this last section we studied the differentiability of the homogenized
coefficients but we gave no explicit formulas. We now need to compute the
differential of each ax with respect to F.

Recalling the définition of at]{F) (see (2.2) and (2.5)), the situation fits
exactly in the framework of Sections 1.2 and 1.3. What we have to do in order

day
to get —fj=; (F) . H is to rewrite équation (2.2) and relation (2.5) in terms of

intégrais on the fixed domain Fo, which means writing down the change of
variables y = F(z) (see (3.3) and (2.6)), and then using the formulas given
in Theorem 1.7 with atj instead of the functiony, a and L being given by (3.4)
and (3.5), respectively.

dâl}

Expression (3.6) allows us to compute -r^ (B).H, expression (4.1) to

compute -jn ( z 1 and, with Proposition 4.2, we finally get an expres-

sion for ~jk(B) • H- This is of course a heavy séquence of computations.

Although this will not become very simple, one simplification can be done. It
is classically done in shape optimization : the localisation of the differential.

4.1. Localisation and computation of the differential of a

We want to see hère how Remark 1.8 can be used in order to differentiate
with respect to the shape, around the identity only.

We are looking for formulas in order to use them numerically in a
gradient type algorithm. In such an algorithm, a séquence
(Bn)n ŒC Œ<ë\Q ;Wh°°(Y ;R2 )) is generated. When Bn is known, the
differential of j is used to choose Hn e ^(Q ; Wl

Q' ~( 7, R2 ) ) such that :

gives to j an incrément as big as possible. The n^ shape in Q x Y is :

{ — *T I I #

XB Q

where Y*o has been fixed at once.
Let us choose a point x e Q. Recalling notations (1.3) and (2.2), we set

Y*n(x) = Bn(x)(Yl);

at]{Bn{x)) = ôtJ j ^ ^ dy + j ^ <V0f"w, e}) (y) dy . (4.5)
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Let us consider an incrément H(x) of Bn(x) such that Bn(x) + H(x) is
still in % c WU°°{Y\ R2 ). We define V(x) by :

(*„ + H) (x) o [Bw(x)]~ l = (/ + V)(x)

(sothat V(x) = tf(x) o [B^x)]" ' ) .

where / stands for the identity of Y. V(x) is now a ^ ' " ( F ; R2 ) mapping
which is such that / 4- V( x ) is an homeomorphism of F, and such that :

Comparing expressions (2.2) and (4.5) we see that, in (4.5), F has been
chosen as the homeomorphism which relates Yn(x) to Fo. At the next step, we
look for a good Hn(x) giving

y; + 1(x) = (Bn(x) + Hn(x))(Y*0) = (ƒ + Vn(x)) (Y*J .

The main feature in the choice of F as a change of variable is to go back
to a fixed domain when H moves. At this point, there is no reason to go back
to FQ. We can just as well go back to Y*n(x) only in order to look for
F* + 1(JC) because F*(JC), at step n, is fixed when H(x) moves.

So, let us define, for a given incrément H(x) of Bn(x) :

oÇ((7 + V) (x)) = atj(Bn(x) + lï(x)) ,

(with (V(x) = H(x) o [Bn(x)Y l). More generally, let F e $ 0 be fixed
and V G WQ °°( F, R2 ) be an incrément such that ƒ + V is still a homeomor-
phism. We define, in a neighbourhood of ƒ,

/ ( / + V ) = fl(F+i), h=VoF. (4.6)

As a straightforward conséquence of the définition of differentiability and
since F(Y) = F, one can prove that OL*(U) is differentiable at the point
U = I, and :

h. (4.7)

Defining

c£(( /+ y) (*)) ^ av(Bn(x) + H(x)) = atj(Bn + H) (x) , (4.8)
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we also obtain, from Corollary 3.4,

dâ 1 dan

^ -5 j /( /) .V(x). (4.9)

day daF
y

We now compute -jp (F) . h = —rrj ( / ) . V. In addition to the previous

notation, we set :

• xisfixed, aswellasF = B(x), h = H(x) e W^iY; R2 ) ,

' ( h ) " ) ( ) ( l )
We recall that :

h) = aF(U) = ö \ dt+\ {VO?+\t),e)dt, (4.10)

where

f
f

(we have omitted the bar on the éléments of (H1^ ( Y )/R).

In these équations, let us make the change of variable
t = U(y) = ( / + V) (y) which carries F* back to Y*F. We obtain, using the
notation (p = <p o U :

= 3$ àsXDU{y)dy+\ ([D(IT *) o U]'V(F+h, e) (y) det DU(y) dy ,

(412)(4.12)
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where :

f {[D(Lr1)o[/]'VÖf+*, [D(irl)oU]"V<p)(y)detDU(y)dy
Jy'p

= - f ([D(lT1)oU]'V(p(y),ei)detDU(y)dy, Vy e Hl*{YF)fR .

(4.13)

Let us define :

• & = {U = I+V;V<E Wl
0-°°(Y;R2 );UoF<= ®0},

(UoF=(I+V)oF = F + h),

, (4.14)

x V x V -^ R : ( [ƒ, <9, ̂ ) H^ fc( u ; 0, ̂ ) ,

detDU(y)dy, (4.15)

^(17;^) = - f {[D(fT1)oC/]t.V^();),e |)detDC/(3;)^. (4.16)
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We are precisely in the setting of Sections 1.2 and 1.3, so, by Theorem 1.7 :

^ ( J ; p f ) . V , (4.17)

(4.18)

THEOREM 4.3 : Using the previous notations, one hos :

da daF

= S f div V(y) dy + f [<V^(y), V0f div

f .
- f

, e,)] div

Y*F = F(Y*0), V=HoF~\

Proof: From (4.14) and (4,16) we have :

*(U; ë) = SJ det/Wdfy - A/ f/, Ô) ,

so that :

(4-19)

(4.20)
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Differentiating (4.14), (4.15) and (4.16), with the help of Lemmas 1.9 and
1.10, one obtains :

OU ' VjyJ OU

| | ( / ; ö , ^ ) . y = - [ ((DV + (DV)') .VÔ,Vp) (y) dy

f ^

j-j(I;Ù). V=\ ^(VÔ,DV(y).ej)~ \ (VÔ, e^ div V(y) dy .
» yF v YF

From (4.17) and (4.20) we obtain the resuit.

4.2. Calculation of the differential of the functional j

We are concerned hère with the computation of -Â(B).H where
1 — 1 oo o CLM5

H G *£ (Q ; WQ ( F ; R ) ) . We want to get a formula, or a séquence of
formulas, for this differential, which allow us to obtain its numerieal approxi-
mation. In this section we give such a séquence of formulas.

As a matter of fact, all the formulas have already been previously computed.
Ail that is left to us is to put them together in a proper way.

First we remind that the fonctions âf(B) (x) are continuous with respect
t o x e Ô (Proposition 3.2), and the mappings B i-> âtj(B) are %>l (Corol-
lary 3.4). So we can use Proposition 4.2 which gives the differential of j , in
terms of the differential of F, which is in turn given in Lemma 4.1, in terms

of -TO- (B) .H. Then, in Corollary 3.1, this last differential is given for each

xeQ, in terms of -jp(F)*h, for F = B(x), h = H(x). Finally,

dan
—Pp (F) . h is given in Theorem 4.3.

Let us write down this séquence of derivatives. Let there be given

F*c=F; S e <g\Ù;Q>0 ) ; H e <i\£à ; W^°°(Y; R2 )) .
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THEOREM 4.4 : The following list gives the dijferential of the functional j
• For F w O 0 and h e wj'°°(Y;R2 ) ,

da

= ög f div V(y) dy + f [<Vef(y), Vfif(y)>] div V(y) d

- f , [<Vef(y), DV(y) . «,> + (V0f(y),W(y) . e,)] dy

- ƒ <(DV+ (DV)1). Vöf, VÉf) (y)

1 Ĉ ee Theorem4.3).

dâ

/or F = B(x), h = H(x), (see Corollary 3.4),

For all

.H= f ([^

(see proof of Proposition 3.2).
• Finally :
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where :

\
Ja

0(x)dx,
a

(r(B) .p(B), 0) (x)dx = -^(B;W(B)). 0, Vtf> e

4.3. A few remarks about the numerical computation of the gradient of j

The methodology used here is basically the same as the one used in [7],
[15], [19] and [21]. The basic principle of descent methods can be seen on the
usual formula :

One chooses an appropriate subspace AN of A and tries to optimise j in this
subspace. Let {sv s2, ..., sN] be a basis of AN, If S is an element of AN, we want
to incrément it in B + H e AN such that j(B + H) be as small (locally) as
possible. As H belongs to AN, there exist Xv A2, ..., ÀN such that :

so the discrete unknowns are the coefficients Afc. We have :

k=l

and the best choice (at first order) is :

Thus, the question is to compute
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for H = sv sv ..., sk,..., sN. We see hère that one has to write down a routine
computmg -jL (B) . H where B and H are input parameters, and to call it for
B := Bn given by step n of the algorithm, and H = sv s2, ..., sN.

Such a routine can be written following the séquence of formulas given in
Theorem 4.4. Let us mention where the approximations have to be done :

— the functions 0t (which give the coefficients atj) are solutions to a
variational équation which will certainly have to be approximated (using finite
éléments or any other appropriate process). This gives approximations 0lt h,
associated to a discretization of Y ;

— the function *F(B) is also computed through an approximation process
corresponding to a discretization of Q. Let Wh,(B) be this approximation ;

h is given by an intégral :

da

where !F is a function coming from Theorem 4.4. This will certainly be
computed by a quadrature formula of the form :

da

So, a routine needs to be written which has 0, F, h, y as input parameters, (F
and h are FORTRAN type functions each), and which computes

— Ijjl {B ; W, &) . H is also given by an intégral which is likely to be
approximated by :

|§(fl; ^. <?).«= f' Q(B,V,*,H)(x)dx

Thus, a routine needs to be written which has B, W, 0, H (functions) and
x (real) as input parameters, in order to compute &(B, *P, 0, H) (x).

Therefore, the formulas given in Theorem 4.4 can be re written in an
appropriate software language, each one eventually calling the previous ones
for appropriate values of the input parameters. Each intégral is replaced by lts
approximation. Each time 0x or W are called, they are replaced by their
approximation coming for instance from a finite element procedure.
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This is a very brief description of the structure of a software which could
be written in order to compute -rk (B) *H. Of course it needs to be more
detailed in order to be completely implemented- An error analysis would also
be necessary.

5. CONCLUSION

The problem of the optimization of the cross section of a rod, in the
framework of Saint Venant's torsion theory, has been considered by several
authors both from the analytical and the numerical points of view.

In recent works, the use of homogenization theory allo wed for a unification
of both the shape and the topology optimization methods. Ho wever, this has
been done essentially on a numerical basis, which makes it hard to study
analytically and to generalize to other situations.

In this work, we defined the class of admissible perforations to be used with
the homogenization technique and showed how to compute the differential of
both the homogenized coefficients and the cost functional, with respect to the
class of admissible perforations.

Moreover, the theoretical setting used makes it possible to generalize this
type of analysis to other optimization problems governed by a state équation
of elliptic type, including the linearized elasticity case.
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APPENDIX

Proof of Lemma 1.3

We first prove the Lemma for œ = {x = (xvx2) e R :x2>(p(xl)}>
where <p : R2 —> R, satisfies

We consider, in R2 , the norm \\x\\ = \xx\ + \x2\. Let W= / + 9, where
O=(Ö1,Ö2) satisfies \\0\\lt„^S. We prove that

W~ l(œ) = {x e R2 :x2 + 02(x) > (p(x1 + 0x(x))}

= {%€ R2:x2>h(x1)} ,
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for some h : R2 —> R, such that :

For each fixed xv f{xvx2) = x2 + 02(x) - (p{xx-\- dx(x)) is strictly
increasing in xT if S(L + 1 ) < 1. Since/(x l s. ) changes sign at infinity, we
conclude that it has only one zero. Define, then,

h(xl)=x2, if j{xvx2) = 0.

One has :

x2>h(xl), iff / ( X 1 , J C 2 ) > 0 ,

and (2) is satisfied. In fact, from

h(xx)- h(x[ ) + 02(x) - 02{x') - (p{Xl + OX(JC)) + <p(x[ + ̂ ( y ) ) = 0 ,

we deduce that

which means that h is Lipschitz continuous, with constant L\
Consider, now,

co = {x e R2 : |xx — a| < r, | JC 2 - Z?| < Lr, x2 > q>{xx), b = <p(a)} ,

where ç? and W satisfy the previous conditions. Set a = Çx + B^Ç),
b = Ç2+02(O, f2 + Ö2(f) = ̂ (f1 + ö1(f)), for some ^=( f 1 , f 2 ) , in
R . Then, in view of the définition of / ,

satisfies the inclusion

{xe R2: l ^ - ^ l </, \x2-£2\ <L'r\x2 > h^)} c ÎT x
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which, in view of Définition 1.2, allows us to conclude the proof. D

Proof of Proposition 3.3

G(B ) is the composition of two continuous functions and thus is continuous
with respect to x. Then, it is enough to prove that

1 =

sup

sup \\H(x)\

when sup \\H(x)\\A—> Q. We know that for each B e C and for each

H G <$l(Ù\A) such that B + H also belongs to C, G(B)(x) and
G(B + H) (x) are continuous with respect to x. Moreover, as G is ^ \
-Tp ( F) is a continuous linear operator from A into R, continuous with respect

to F. As B belongs to ^ ( f l ; ^ ) , we know that ^ (B(x) ) . H(x) is
continuous with respect to x So there exists *0 e Q such that :

sup

= G(B + ff)(*0)-G(B)(jc0)-^ .H{xQ)

So

\\H(xo)\\A

\G«B + H)(XO))-G(B(XO))-^

ll»(jto)IL

i.//(x0)

Using the differentiability of G at B(x0) we conclude the proof.
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