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MATHEMATICAL MODELLING AND NUHERICAL ANALYSIS
MODELISATION MATHÉMATIQUE ET ANALYSE NUMERIQUE

(VQL 32, n° L 1998, p. 25 à 50)

JUSTIFICATION OF A TWO DIMENSIONAL EVOLUTIONARY
GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL (*)

Zhiming CHEN (**) C. M. ELLIOTT ( t ) and Tang Ql ( 1 )

Abstract — It is proved that a two dimensional evolutionary Ginzburg-Landau superconductivity model is an approximation of a
corresponding thin plate three dimensional superconductivity model when the thickness of the plate uniformly approaches zero Some related
topics such as existence ofweak solutions to the three dimensional variable thickness model and the convergence when the variable thickness
tends to zero are discussed A numencal experiment using the now model is reported © Elsevier, Paris

MOS subject classification: 35K55, 82D55

Résumé — On introduit un modèle de superconductivité bi-dimensionnel instatwnnaire de type Ginzburg-Landau comme la limite du
modèle de plaque mince tn-dimensionnel correspondant quand Vépaisseur de la plaque tend vers zéro On discute l'existence de solutions
faibles du modèle et leur limite quand l'épaisseur tend vers zéro On présente une expérience numérique qui utilise le nouveau modèle
© Elsevier, Pans

1. INTRODUCTION

The Ginzburg-Landau Superconductivity model descnbes the phenomenon of vortex structure in the super-
normal phase transition. From the mathematical point of view, the stationary two dimensional model allows a
rigorous proof that for most of the physically relevant (gauge invariant) boundary conditions, the order parameter
takes the value zero on isolated points (cf. [EMT 93]). This supports the theory of vortex structured phase
transitions in the super-normal transition. In the three dimensional case, to the authors' best knowledge, there are
no such results except for the study of Jaffe and Taubes in the self-dual case (cf [JT 80]). We also observe that
a two dimensional model is easier to be studied from the numerical point of view. It is therefore interesting to
prove that the two dimensional model is a good approximation of the corresponding three dimensional model
when the size of the sample is small in one particular dimension.

The particular model of evolutionary (or rather quasi-static) superconductivity dealt with in this paper was first
studied in [GE 68]. The model involves three quantities, a magnetic potential, an electrical potential and an order
parameter. The existence and uniqueness of solutions to such System subject to the homogeneous Neumann type
boundary conditions are established in [CHL 93] and [Du 94] respectively. In this paper, we adopt the notation
of [CHL 93] and study the convergence of the thin plate model. For the evolutionary équation with some other
boundary conditions, existence and uniqueness of solutions have been established and properties of solutions have
been analysed (cf. [T 95]). Recently, a more generalized resuit on existence (without the assumption that the initial
data of the order parameter is bounded in L°°) was proved in [TW 95]. It was also established in [TW 95] that
the evolutionary system admits a global attractor. In this paper, we only give a brief sketch of the existence and
uniqueness proof because the domain is not as smooth as in the previous papers and we want the paper to be self
contained.

In [DG 93], the similar problem of showing that a two dimensional model is an approximation of the three
dimensional model in the steady state case has been studied. Here, we allow the thin film to have different upper
surface and lower surface and give the proofs in greater detail concerning certain regularity estimâtes. It is also
worth noting that the geometry of the thin films with variable thickness is related to the pinning mechanism of
the vortices in the superconducting material samples.
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address Institute of Mathematics, Academia Sinica, Beijing 100080, PR China
(Î) Centre for Mathematical Analysis and lts Applications, Umversity of Sussex, Falmer, Bnghton BN1 9QH, United Kingdom

M2 AN Modélisation mathématique et Analyse numérique 0764-583X/98/01/$ 7 00
Mathematical Modelhng and Numerical Analysis © Elsevier, Pans



26 Zhiming CHEN, C. M. ELLIOTT and TANG QI

2. PRELIMINARIES

Let £20 be an open bounded subset of IR2 with dü0 e C2. We consider a thin film of variable upper and lower
surfaces defined by Qe = {x = (xv x2, x3) : x'= (xv x2) e Qo, x3 e e ( - b(x'), a(x'))} where s > 0 is a small
parameter, a, b are assumed to be functions in C2(QÖ), and a(x') ^ ca > 0, b(x') ^ cb > 0 for all jc'e Ï2O.
Throughout the paper we will assume that Qe has a Lipschitz boundary dQs,

Let 3/ be an open subset of Rn with Lipschitz boundary d&, where n = 2 or 3. For s 5= 1, p 5= 1,
W*'p( ^ ) will dénote the Standard Sobolev space of real valued functions having all the derivatives of order up
to s in the space Lp(@). Let Hs{@) = WS'2(2$). We will also use the subspace

For any Banach space X and any integer m ^ 0, dénote

Wm>p(0,T;X) = \ u(t) e Xfora.e.te (0 ,7 ) , J {||M||£ + • • • + || w(m)|| Px} dt < ~ l .

Let Lp(0, r ; X) = W°îjP(0, T ; X) and H\O7 T\X) = W 1 Î 2 ( 0 , T ; X). If X dénotes some Banach space of real
scalar functions, then the corresponding space of complex scalar functions will be denoted by its calligraphie form
X and the corresponding space of real vector valued functions, each of its components belonging to X, will be
denoted by its boldfaced form X. However, we will use || . \\x to dénote the norm of the Banach space X, X or
X.

The standard gradient, divergence and curl operators in U3 will be denoted by grad, div and curl, respectively.
Let A'dénote the projection of a three dimensional vector A G U3 onto the (x2, x2)-plane. On the
(xv x2)-plane, it is convenient to introducé two curl operators

1 T» 2 ""i _, i/ / du/ du/ \T

curl B = —— - —— and curl w = -~^-9 -^- .
óx^ ®x2 y o^2 ^i /

We also need the divergence and gradient operators

Here, we notice that the following inequality holds on Hl
n(Qe) (cf. [GR 86])

II AII*.(o,, « C( l|A|| i2(f ie)+ ||divA|L2(f2e)+ || curl A || ̂ f l , , ) , VA e H^ (üe) (2.1)

where the constant C dépends on the domain Qe. The fact that C in gênerai dépends on e has been ignored in
[DG 93] {cf. Lemma 3.1). In section 4.2 we will show that C is indeed independent of e.

When the température is close to the critical température Tc where the transition from normal state to
superconducting states starts taking place, the Ginzburg-Landau evolutionary superconductivity model is as
follows

y/+ y/{\\{/\ - 1) = 0, in Qs (2.2)

— + grad 0 + curl2 A •+- Re ( — grad y/ + y/X ) y/ \ = curl H, in Q (2.3)
ui L \ 7C / J

where Qs = Qe x (0, T1). Here y/ : QE —> *$ is a complex valued function and is usually referred to as the order
parameter, \y/\2 represents the density of superconducting électron pairs; y/ is the complex conjugale of y/ ;
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TWO DIMENSIONAL APPROXIMATION OF THE GINZBURG-LANDAU MODEL 27

A : Qb —> R3 is a real vector potential for the total magnetic field; 0 : Q& —> R is a real scalar function called the

electric potential which satisfies the constraint 0 dx = 0 for almost every t ; rj, K are physical constants;
3 *Q

H : Qe —> U. is the applied magnetic field. The boundary and initial conditions are as follows:

( - grad + A J y/ . n = 0, curl A A n = H A n, on Fe (2.4)

y/(x, 0 ) - y/0(x), A ( X , 0 ) = A 0 ( JC) , in Qe, (2.5)

where Fe - düe x (0, T). Hère "." is used to dénote the vector inner (scalar) product, "A" is used to dénote
the vector exterior (vector) product and "n" is the unit outward normal vector of dQs.

The assumptions on the data are:
(Al) y/0 e Jfl(Qe)9 \y/0\ =£ 1 a.e. in Qe;
(A2) Ao G Ul

n(Qe);
(A3) H G H1 (0, T;L2 (&e)).
It should be pointed out that this is a rescaled version of the original model. For the details of rescaling, we

refer to [EMT 93], [Du 94] and [CHO 92].
It is straightforward to verify that for this model, if ( y/9 0, A) is a triple of solutions, then for any smooth

function 9, ( y/elK , 0 — 9t, A + grad 9) is also a triple of solutions. This invariance property is called gauge
invariance and a transformation of the type

( y/, 0, A ) -> ( y,elK\ 0 - 0,, A + grad 0 ) (2.6)

is called a gauge transformation. It is therefore enough to discuss the properties of solutions for one particular
gauge equivalent class of our choice.

PROPOSITION 2.1: For any vector valued function Â e H1 (Qe x (0, T)) and complex valued function
2 2 f *

0G L ( 0, T ; L (O€)) with <p dx — 0 for almost every t, the re exists a function
0G ïJ-(0,T\H2(Qe))nHl(0,T;Ï2(Qs)) such that 9(x, 0) = 0 and A - Â + grad 0,
0 = 0 — 9t satisfies

' div A + 0 = 0, in Qe,
A. n = 0, on Fe.

 (2"7)

The proof of this proposition will be given at the end of Section 4.2. In the following, we will only discuss
solutions in the gauge equivalent class satisfying (2.7): under this gauge choice, we conclude that the system
(2.2)-(2.5) can be rewritten as follows:

: div Ay/ + ( — grad + A J y/ + y/( \ y/\2 - 1 ) = 0, in Qe

= curl H, in Q
e ( 2 8 )

grad y/ . n = 0, A . n = 0, curl A A n = H A n, on Fe

y/(x,0) = y/0(x), A(JC,O) = AO(JC), in Qe.

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Since the domain is not as smooth as required in [CHL 93], we sketch the existence proof independently. As
e is considered to be a constant in this section, to simplify the notations, we use Q for Qe and drop the notation
of dependence of solutions on e. To begin with, we define

) . (3.1)

vol 32, n° 1, 1998



28 Zhiming CHEN, C M ELLIOTT and TANG QI

The weak formulation for the System (2 8) is then to find ( y/, A ) e W x Wrt such that

y/(x, 0) = y/0(x\ AU, 0) = Ao (x) (3 2)

and

rj ~^f co dxdt - irjK div Ay/co dx dt
Jo JQ

 ÖT Jo JQ

+ ( ~ grad y/ + Ay/ ) ( - — grad co + Aco ) dx dt
Jö JQXK / \ K /

+ ( k l 2 - O ycodxdt = 0, for any co <= <&2(0,T,Jf\Q)) (3 3)
Jo J*2

^ B d x ^ r + [curlAcurlB + divAdivB] ^c^r
Jo Ĵ 3 d r Jo Jo

+ i?e [ ( - grad y/ + A^ ) ^1 B dx dt
Jo JQ

 LXK 7 J

= [ | H c u r l B ^ x ^ , foranyB e L2 (0, 7\ H^ (O) ) (3 4)
Jo JÖ

The purpose of this section is to prove existence and uniqueness of solutions to (3 2) (3 4)

THEOREM 3 1 Let the assumptions (A1)-(A3) be satisfied Then (3 2)-(3 4) has a unique pair of solutions
( y/, A ) satisfying

y/ G JT~(O, T,34?\Q)) r^ J^\0,T ,^2{Q)) , (3 5)

A G L°°(0, T,Hl
n(Q)) r^Hl(0, 7\L2(£2)), (3 6)

| y/\ ^ 1 almost everywhere on Q x (0, T) (3 7)

The theorem is the conséquence of the lemmas that follow

LEMMA 3 1 (Uniqueness) The solution ( y/, A ) of (3 2)-(3 4) satisfying (3 5) (3 7) is unique

Proof Let ( y/v Ax ) and ( y/2, A2 ) be two solutions of (3 2)-(3 4) satisfying (3 5)-(3 7) and set
y/ — Wi — y 2 ' Â = Ai — A2 Then, subtracting the correspondmg équations, we have

*l ~x7 œ dx dt H—2 grad y/ grad œ dx dt
Jo JQ

 öt
 K Jo JQ

~ irjK (div Â ^ x + div A2 y/) œ dxdt
Jo JQ

— i ( Â grad ^ j + A2 grad y/) co dxdt
K Jo Jo
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+ -M j (ky/x + A2 v)gradcodxdtK Jo JQ

n [Â(Ax +A2)y/l+\A2\
2ip]codxdt

Q

i/O J&

n ^ B <£c dt + f [ [curl Â curl B + div Â div B] dx dt

= - Re \ ( — g r a d y/ + A ^ 2 + A 2 y/) y / 1 \ B d x d t
J O J Q LXK ; J

~Jo J ^ ^ [ ( i g r a d ^ + A2 ^2)^]BdxA
= ( i i ) 1 + (n ) 2 . 0.9)

We note that since ( y/v Ax ), ( y/2, A2 ) satisfy (3.5)-(3.7), we have

for 7 = 1 , 2 and for almost every t e (0, T). Let o> = ^x ( 0 f) in (3.8) and take the real part of the équation,
then

\2dxdt;it ^ Z f f l < ü v A | 2 < ^ + c f ' f \y/\
^Jo JQ JO JQ

\Re(l)2\ ^ [ || A||L*{Q)||grad ^l lL i ( o ) l l^l lL4 ( û )+ II A2 ||L4(û)||grad ^| |Li
Jo

f
O VQ

[||Â||L
Jo

T ^ f f \ p \ \ l
\Re(I\\ (

o

\Re(l)5\ « c f* f
Jo Ji

vol. 32, n° 1, 1998



30 Zhiming CHEN, C. M. ELLIOTT and TANG QI

By Nirenberg's inequality, we have

and, by (2.1),

^ [ | | d i v Â | | L 2 ( i 2 )

Consequently, by choosing ö appropriately, we have

ff \ip\2(x,t)dx + \ n |grad |̂2 dxdt

I r 7 ^
QJQ\-4K

xdt, (3.10)
^ j

Similarly, taking B = A in (3.9), we obtain

~\ |Â|2(x, t)dx+\ [|curlÂ|2+ |divÂ|2] dxdt
Z J Q Jo JQ

^ 2 |§ r ad w\ +T|curlÂ| + ^ |d ivÂ| + c( |Â| + | ^ | ) \dxdt. (3.11)

Now uniqueness follows from (3.1O)-(3.11) by using GronwalTs inequality. D
In order to show the existence of the solutions of (3.2)-(3.4), we introducé the following semi-discretized

approximation problem: let iV ^ 1 be an integer, At = T/N be the step size, Ĥ  = H(xJ At) for
j = 0, 1, 2, ..., Af The approximation problem is then to find ( y/f Ay. ) e 3fé?l( Q ) x H^ ( Q ) ,
j = 1, 2,..., TV such that

f y/ — y/ _ x ç
rj -r- co dx — irjK div A^ y/ co dx

f a \ i i \
+ 1 i — grad w + A- w I I — — grad co H- A. co I dx

f 2 1
+ 1 i\W \ — 1) W (o dx = 0, for any co e 3rc (£2). (3.12)

Ja J J

r A., - A ! C
T- Bdx+ [curl A. curl B + div A. div B] dx

ia At
 JÜ

 J J

f Ui \ 1
+ / ? e ( — g r a d y/ _ x + A . _ 1 y/ _ x ) y/ _ l \ ' B d x

- Uj curl B dx, for any B e Ĥ  (Q ) , (3.13)

where ( y/0, Ao ) is given by (3.2).
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LEMMA 3.2 (Existence of solutions of (3.12)(3.13)): Let At > 0 be sufficiently smalL Then the problem
(3.12)-(3.13) has a unique solution ( y/j9 Ay ) G J^\ü) x H^ ( f i ) for each j = 1, ..., N.

Proof: We first notice that (3.12)-(3.13) are independent of each other. (3.13) is a standard linear elliptic
problem for Ay. with y/ _ 1 given by the previous step. Thus the existence and uniqueness
of Aj G H^ (Q) follows from a standard argument. When Â . is determined, (3.12) is a semilinear alliptic
problem with respect to y/. The existence and uniqueness of y/} again follows by a standard argument. D

LEMMA 3.3: For any j ^ 1, \y/ \ ^ 1 for almost every x G Q.

Proof: This lemma can be proved by taking ca = ( | ^ | 2 - 1 )+y/J in (3.12) and using the method in
[CHL93]. D

In the foUowing, c is used to dénote various constants independent of Af, At and e. We show a number of lemmas
which will enable us to take the limit in (3.12)-(3.13) when iV->oo and consequently, prove that (3.2)-(3.4) admits
solutions.

LEMMA 3.4: We have

dx .max \y/\2dx + ̂ At\ ~ grad y/ + A. y// dx ^ c\ \y/

Proof: Take co = y/] At in (3.12). D

LEMMA 3.5: We have

max
l

\A\2dx+^At\ [\di\ Aj \2 + \curl Aj \2] dx
JQ 1 = 1 ia

Proof: Taking B = A. At in (3.13) and applying Lemma 3.4, we obtain

2 Ar f |Hy. \
2dx « c[ | |H 0 | | 2

2 ( Q ) + | |H| |2
f f l ( a r ,

This complètes the proof. D

LEMMA 3.6: We have

2 Ar f [|A0 |2 -f dx |H 0

Proof: Use the results of Lemmas 3.4 and 3.5. D

LEMMA 3.7: Let dA3 =(Aj - A3 _ x )IAt. We have

N

iv A. |curlAy dx

vol. 32, n° 1, 1998
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Proof: Let B = At dAy in (3.13), then for any m ^ N,

y\ At \ [|aAJ2 + i divA |2 + fleuri A |21

^ =• [|div Ao |2 + |curl Ao | 2 ] dx

j= 1 Ji2

Use the results of Lemma 3.4, we have

curl= f Hm curlAmdx- [ Ho curlAodx-2 f (H - / /

|curiA'H |2^+"Hm " ^ ( f l ) + I I H ° " ^ ( f i ) + i i c u r i A ° "'

± At[ || âH. || 1>W + \ || curl A, _
n = 1

f
Ji3 n - 1

+ ^[IIHO W2L\Q)+ II A0 Il^(i2)+ HH

The Lemma then follows from the Gronwall's inequality. D

LEMMA 3.8: Let dy/j = ( ^ - ^ _ 1 )/At. We have

( ( ) ) IIHo I I L 2 ^ ) ] •

Proof: Take w = d\j/}At in (3.12) and apply Lemmas 3.3-3.7. D

Proof of Theorem 3.1: The uniqueness has been proved in Lemma 3.1. The existence of the solutions
( y/9 A) satisfying (3.5)-(3.7) can be proved from the estimâtes given in Lemmas 3.3-3.8 by employing standard
convergence argument (cf. e.g. [T 95]). D
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As a direct conséquence of Theorem 3.1 and Lemmas 3.3-3.8 we obtain the following result.

COROLLARY 3.1: The solution (y/, A) of (3.2)-(3.4) satisfies the following estimate

33

esssup0 t < T \ [ \ y / \ 2

Ja
|grad y/\2 + |div A|2 + |curl A|2] dx

[JQ dt

where the constant c is independent of e.

4. THE LIMIT WHEN e

From now on, Q = Qe and we dénote by ( y/e, Ae ) the solutions to the system (3.2)-(3.4).
Let p(x') = a(x') + b(x'). For any (real, complex and/or vector valued) function f(x,t) =f(x\xv t) defined
on Qe x (0, r ) , we define the average

The purpose of this section is to prove that as e —» 0, the average ([ye], [Ae ]) of the solutions (
three dimensional problem (3.2)-(3.4) converge to solutions of a two dimensional problem.

We first describe precisely the assumptions on the boundary dQ£. Let

Qo} ,

e, Ae ) of the

JC3 ) e öfla : JC3 = - eb(x'), x' G f20},

x3)e dQE:x3e (-sb(x'), 8a(x')),x'e dQ0}

then it is clear that

u u

From the assumptions made at the beginning of Section 2, we know that Fv F2, F3 are of class C1. We impose
the following corner conditions for the boundary parts Fx n F3, F2 n F3. We point out that each F} dépends on
e, just for notational convenience, we drop the subscript e.

vol. 32, n° 1, 1998



34 Zhiming CHEN, C M. ELLIOTT and TANG QI

HYPOTHESIS (H): For every xQe Fx n P3 (similar for x0 e F2n\ F3) the re exist a neighborhood V of
x0 e IR3 and a C2 mapping r\ - (rjv r\v rj3) from V into R3 such that r\ is injective, r\ and r\ ~ J (defined on

V)) are continuously differentiable, and

Fxr\V={xG düs: ^ ( x ) > 0, rj3(x) = 0}

F3 n V = {x G dQe : rjx(x) = 0, ?/3(x) < 0}

Furthermore, we assume that the matrices W= (V T])" l and W~ 1 e Cl(V), det W > 0 such that

\r} n v ( - £ax, - sa,, 1 ) r /V^2 |grada|2+l - (0, 0, 1 f,

where n dénotes the unit outward normal vector of dQe along F3 n V. D
The geometrie meaning of this hypothesis is fairly ohvious. We just point out here that if

a(x') = constant, b(x') = constant (the case of a plate), it is straightforward to verify that Hypothesis (H) is
satisfied provided that dQQ is sufficiently smooth. Another important remark is that the assumption
det W > 0 in (H) prevents that the edge of the plate forms a reentrant angle, this coincides with the assumption
that a and b are C functions up to the boundary and the requirement that r\ is a C mapping which preserves
the orientation of the domain. However, we choose not to verify rigorously these assumptions here and give the
facts in the form of an hypothesis instead. For more detailed discussions about orientation préservation, image
of a domain under a C1 transformation, see [MTY 93] and références cited there.

We note that in gênerai ( V, r\ ) and the matrix W in Hypothesis (H) depend on e, we drop the dependence on
e of the quantities and the quantities involved in the change of variables later in the proof of Lemma 4.2 for
notational convenience. We made sure that the proofs will not be affected by this technical point.

In order to dérive the two dimensional model, we make the following assumptions in this section in addition
to (A1)-(A3):

(A2)'A0 =

4.1. The main resuit

The following theorem is the main resuit of this paper.

THEOREM 4.1: Let the assumptions (A1)-(A3) and (A1)'~(A3)' be satisfied. For any e > 0, let ( y/e, Ae ) dénote
the solution of (3.2)-(3.4). Then, there exist two functions

y/e JP\0,T \Se2(QQ)) n J^°°(O,r ; Jf\ü0)) and A' e H1 (0, T;L2 (fl0)) n L~ (0, T\ Ĥ  (û0))
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TWO DIMENSIONAL APPROXIMATION OF THE GINZBURG-LANDAU MODEL 35

such that as e —» 0

[yg -» ^ wafc/y m J f *( 0, r ; JS?2( Üo) ) an</ weoifcZ/ in J5f°°( 0, 7 ; Jt?\ Qo ) ) , (4.1)

[Ae ] -> A wdtfy m H1 (0, T ; L2 (fî0) ) a«<2 weakly* in L~ (0, T ; H^ (Üo) ) , (4.2)

A = ( A', 0), and ( y/, A' ) satisfies

), A'(x',0)=A'0(x') (4.3)

*7 I f P(x') ̂ 7 œ dx'dt ~ iflK I I diy/ O O ' ) A' ) ̂ ^ ̂ *

+ p(x') (^grad' ^ +A' y/) (-^grad' co + A' co)dx'dt
Jo JQÖ

 KK / \ K /

+ />(*') ( M 2 - 1) if/œdx/dt = 0, foranycoG ̂ 2(0,T;Jf\Q0)) (4.4)
Jo J^o

/?(x0 - T - B dx'dt + f f p(x) curl A' curl B dx dt
Jo Ji30

 d f Jo Jü0

+ | f div'(/?(x')A/)div'Bdx'A
Jo Ji30

+ KxO^Tf-^grad' ^ + A' y/) y/] B dx'dt
JOJQO

 L V / C 7 J

/>(jOHcurlB<£c'<#, / o r a n j B e L 2 (0 , r ; H i ( f i 0 ) ) . (4.5)
Jo JD0

Moreover, the electric potential <pe given in (2.7) satisfies, as e —» O,

[0J -> - —^r div'(/?(jc') A' ) weakly in L2(0, T;L2(Ü0)) . (4.6)

Remark 4.1: (4.3)-(4.5) is the weak formulation of the folio wing problem:

iiv' (p(x') A' ) w + ( — grad' + A' ) /?(x') f — grad' -f A' ) u/

- 1 ) ^ = 0, in Qo

ÔA'
p(x') — + curl' [/?(x') curl A' ] - grad' [div' (/>(*') A' )]

+ p(x)Re[(^~grsid/ y/ + A' y/) ̂ ] = curl' (p(x')H), in Qo

grad' ^ . n' = 0, A' . n' = 0, curl A' = H, on Fo

y/(x\0) = y/o(x), A ' ( x ' 0 ) = A0(JC') , in Qo
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where Qo = Qo x (0, T), Fo = dQQ x (0, T), and n' is the unit outer normal of düQ.

Remark 4.2: It is clear from (4.3)-(4.5) that when p(x') is a constant, we are able to dérive the Standard
2-dimensional Ginzburg-Landau équations.

Remark 4.3: We only have weak convergence in Theorem 4.1. Better convergence results require high regularity
estimâtes independent of s which we do not have.

The proof of Theorem 4.1 will be given in Section 4.3. We close this subsection by stating the following
theorem conceming the solutions of (4.3)-(4.5) which can be proved by using the same methods used in the
previous section and in [CHL93].

THEOREM 4.2: Let y/Qe J^l(üQ), AQ e Hl
n(Ü0) satisfying \y/0\ ^ 1 a.e. in QQ. Assume that

H e H (0, T \ L (QQ) ). Then (4.3)-(4.5) has a unique pair of solutions ( y/, A' ) satisfying

y/ e jSr°(O, T; Jf?\Q0)) n JT1(O, T; JS?2(fl0)) ;

A' G V* (0, T; H^ (Q0))n H1 (0, T; L2 (fl0) ) ;

anJ | ^ | =£ 1 a.^. m D 0 x ( 0 , T ) . Moreoven if H e Hl(0, T ; Hl(Qo)), then we also have the regularity

y/ e jSf2(0, T; JT2(DO)), A' e L2 (0, T; H2 (f i0)) .

4.2. Some estimâtes

In the following, c is used to dénote the vanous constants independent of a. We begin this sub section with some
elementary results on the average operator [. j .

LEMMA 4.1: Let ƒ e L2(Qe) be a given function, we have

^ ) - (4-7)

Let ƒ e H (£2e) be a given function. For almost every x e. QQ, we have

| (*') (4.8)

for all x3 G [— eb(x'), sa(x')] where c is a constant independent of both s and x'. Consequently,

w (4-9)
Proof: First, we note that by a regularity theorem due to Morrey and Necas {cf. [Mo 66], Chapter 3.1 or [Ne 67],

Theorem 2.2.2, see also [MTY93]): any W1*1(Qe) function ƒ(x\ x3) is absolutely continuous in x3 for almost
every x e QQ and the derivative in x3 (which exists in an almost everywhere sense with respect to the Lebesgue
measure of U1 ) coincides with the generalized derivative almost everywhere. Hence we have
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( - eb(x'), sa(x')). Consequently, using the Cauchy-Schwartz inequality, we obtain

37

L \ -

It is straightforward now to obtain (4,9). Dg ( ) D
It is easy to see from (4.8) that for any ƒ G Hl{Qe) and almost every X'G QO and

x3 e [- sb{x'), we have

(4.10)

The next step is to show that the constant C in (2.1) is independent of s. First, we prove a preliminary result.

LEMMA 4.2: Under Hypothesis (H), ÏLl
n (ÜE) n H2 (Q£) is dense in H*(£2£).

Proof: For any Q G H*(£?e), with the help of a family of local charts and of the partition of unity, we need
to consider only 0Q with <p being a nonnegative ) function such that supp 0 n Fx c\ F3 =£ 0 (same for
supp <p n F2n P3 ^ 0 and simpler for supp 0 n f ^ 0 , ; '= 1,2,3). In this case, let (V,r\) be the
corresponding local chart in Hypothesis (H) and P( . ) = ( W~ T 0 Q ) (r\ ~ 1 ( . ) ) , the condition that
Q . n = Q r n = 0 on dQe is transformed to (note that n is transformed to Wn) P1 = 0 on ^j = 0,
P3 = 0 on 3?3 = 0. Our problem is then to approximate such Hl functions while keeping these boundary
conditions.

We just sketch how to approximate Px and the rest of the proof can be carried out in a similar way. We define
a new function P\ as follows:

w h e n ^i > o, y3 < o,)

- Pii-y» y2, - y3) whenyx <0,y3> 0,

-Pl(-yv v2, y3 ) when yx < 0, y3 < 0.

P\ can be regarded as a function defined in U3 with compact support. Use a radially symmetrie mollifier
a^( . ) where p is the standard mollifier parameter which goes to zero, we have obviously P[*^fl\yi = o = ®
( * dénotes the standard convolution) and the séquence {JP^CT^}^ is the desired approximation of Px when restricted
to the région {y G R3 :yl> 0, y3 < 0}. This complètes the proof. D

LEMMA 4.3: For any Q e H^ (fle), we have

IIQHjïHfl.) ^ C ( l + e ) ( | | Q | | L a ( O - ) + | |divQ||L2(Oe)+ | |curlQ| |L a ( f i )) , VQ G B£(flB)

w/zere f/ï€ constant C is independent of e.

Proof: By Lemma 4.2, it is obvious that we only need to prove the lemma for Q e H {Qe) r\ Hn (£?e). For
any Q G H2 (Oe) n H^ (fie), we have (c/ [G 85], Theorem 3.1.1.2),

f |di - 2 f (4.11)

where ^ is the second fundamental quadratic form of F, j = 1, 2, 3, and <ia is the surface element of
dQe. An elementary définition of $ is recalled in [G 85], p. 133. If x0 is a point of Fj9 we consider a
relatednew orthogonal coordinates system {yv yv y3} with origin at x0 defined as follows: there

} 2
exist

v v 3 0

cube V={(yvy2,y3) : - a3<y}<a}, 7 = 1 , 2 , 3 } and a function tp of class C2 in
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y2 ) : — a} < y3 < a}, j = 1, 2} such that |(p(y') \ ^ a3/2 for every y' = (yv y2 ) e V',
2e n V= {y = (y\ y3) e V: ;y3 < ç?( ƒ ) } , /^ n V= {y = (y\ y3) e V: {y3 = Ç9(/)}* We can even choose the

new coordinates so that the plane y3 = 0 is tangent to F at x0, which implies Vç?( 0 ) = 0. Then, if £, ̂  are tangent
vectors to /^ at x0 with components ( £v <^2) and {rjv rj2) in the direction of {yv y2}, we have

It is obvious that

1 ^ ( ^ ) 1 s=c|£| |>7|, foralU0e r 3 ,

for any tangent vectors £, tj to F at x0, and the constant c is independent of e. Thus

L Ç /•ea(jc')

Jaf30 J -eè(xO
do',

where da' is the intégral element on dQQ. By applying the trace theorem

\u\ da' ^ C ( ^ o ) | |grad' u| rfx'+ |w| dx
JdQ0 \_JQ0 JQ0

for all u G W l j l(O0) , we get

l da L grad'
1 f f«(xO

_l

It is easy to see that

grad'
fea(x') 1 feaijt)

|Q|2^3 =
J -ebix") \ J -eb(

grad'| | 3
bix") \ J -eb(x')

2 grad' a(x') e|Q(^ eb(x'))\2+ e\Q(x', ea{x'))\2 grad' a(x') - e|Q(^, - eb(x'))\

But as in the proof of Lemma 4.1, we have

f |e|Q(x', ea(x'))|2grad'a(x')|^'

=S ce f |Q(x',ea(x'))|2^'
J^30

^ c£ 11Q |2] dx' + c
J Qa
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for some £ e ( - eb(x'), aa(x')). Thus we get
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f \e\Q(x\ ea(x'))\2 %T2LÙ'a(x')\ dx'*k c f \Q\2 dx'+ ce \
JQ0 JQE Ja

dx

for any ö > 0, where the constant c is independent of e and ö.
Similarly, we get

JQ Ir
for any ö > 0, where the constant c is independent of e and (5. By applying Cauchy's inequality and Young's
inequality, we have

so that

L da (4.12)

for any 3 > 0, where the constant c is independent of s and <S. On 7^, it is easy to obtain that

for any tangent vectors £,, rj to F at JC0, and the constant c is independent of e. Therefore

J , cel \Q(x',ea(x'))\2dx'
iQ0

(4.13)

for any 5 > 0 with the constant c independent of £ and S. In deriving (4.13), we have used the argument leadint
to (4.12). Similarly, we have

L (4.14)

for any ô > 0 with the constant c independent of e and ö. Now the lemma follows from (4.11)-(4.14) by choosing
<5 = 1/16 for e «= 1 and <5=l / (16e 2 ) for 6 ^ 1 . D

In the following we will always assume that e ^ 1. From Lemma 4.3 and Corollary3.1 we obtain the
following lemma.
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LEMMA 4.4: We have

esssup0 ^ t ^ T [ ||

To proceed further, note that

grad' ÎÛ = grad' —-—

i^,]+nr
dy/e

dt

2

+
dt dxdt

+ —}— [sf(x\ Ea(x') ) grad' a(x') + ef(x', - eb(x')) grad' è(x')
sp(x')

Çsa(x')

-77

= - ^ grad' a(x') [f(x', sa(x') ) - [/) (x')

grad'
p(x')

+ [grad' /] .

Therefore, by (4.7) and (4.8), we get

LEMMA 4.5: We have

- 1/1

^ ||grad'/!!L2(fie)

e s s s u Po*r*r HOT II « f
Jo

c9

esssup0 ^ t ^ T \\ [Ae ] || Hi(Q ) •

Proof: It is obvious from Lemma 4.4 and (4.16). D

LEMMA 4.6: Lef Ae = (A],A2
e,A]). We ^ave

C ^ U O U L I ^ J Q < ^ ^ 71 L II g \ • s où-y • / s •• / || ^ 2 C Q } II e v • ' c t ' V • / > * / ! ! L ( Qn} II | e J) V • » * / II ƒ /

Proof: From the boundary condition Ae . n = 0, we obtain

A]{x', sa(x'\ t) = e grad' a(x') . A'e (x', ea{x'\ 0 ,

A](x', - sb(x'), t) = -e grad' b(x') . A'e (x', - eb(x'), t) .

By (4.10) and Lemma 4.4, we get

|| A ( . , ea( . ) , t) || , ! , n „., ^ ce II A ' ( . , ea( . ),t)\\ri,n^ ^ es .

(4.15)

(4.16)

ce .

(4.17)

(4.18)

(4.19)
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Similarly, we have

Finally, by (4.8), Lemma 4.4 and (4.19), we have

l lA £
3 ] ( . ,O-A e

3 ( . , £a ( .X-

+ CE ^ CE ,

41

(4.20)

which complètes the proof. •
Now we can give a sketch of proof for Proposition 2.1.
Sketch of proof of Proposition 2.1: In the following, to simplify notation, we dénote QE by Q. The function

9 satisfies

~8t - Afl = div Â + 0, in Q x (0, T) ,
: = - Â . n, on dQ ,

ö (x ,0 )=0 , inQ.

Using a standard energy estimate, it is easy to show that Bt e L2( (0, T) x Q) by, for example, the
Faedo-Galerkin method. The remaining problem is then to show that, for a solution of

= g, in Q,
i = - B . n on d£2

with B G H1 (Q) and gr G L2(O) such that \ g = \ B . n, we have
JQ JdQ

<pe H2(Q).

Had the boundary of the domain been C2, the regularity would be obvious. But our domain is only Lipschitz. Now
let's look at the problem from a different perspective. Let a — grad ç, we need to show that

knowing that

Introducing W =

while knowing

a G H1 (Q)

div a - A<p e L2( Q ), curl a = curl ( grad <p ) = 0 .

L2( i3) , we wish to show that

w e H1 (Q)

rdiv w = div a + div B G L2(Q) ,

curl w = curl B G L2 (Q) ,
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Or equivalently, we want to show that if w e X, where

X = {v e L 2 (D) , divy e L2(Q), curl v e L2 (Q), V . n|ao = 0},

then w e H1 (Q) But we know from Lemma 4 3 that under Hypothesis (H) for the domam Q, we have

l |w | | H i ( f l ) ^C( | |d iv W | | L 2 + ||curlw||L2+ \\w\\L*\

If we can show that Hl
n(Q) is dense in X, then Proposition 2 1 is proved

LEMMA 4 7 L#f Q be a bounded domain in R with piecewise C boundary satisfying (H) and hoving the
following property

for any point xQ e dQ, there exists a neighborhood of x0, say B(x0) <z R such that there is a one to one
mapping

with grad V and grad V 1 bounded in LT and det grad V> 0 such that W(B(x0) n dQ) is a bounded smooth
domain in the plane x3 = 0

Then H* ( Q ) is dense in X

The proof of Lemma 2 1 then follows almost ïdentically from that of [DL 76], pp 362-364

Our domam obviously satisfies the conditions in the above lemma, Proposition 2 1 now
follows D

4.3. The convergence

In the weak formulation (3 3-(3 4), choosing the test functions co, B as

co = co{x\ f), B = (B1 U', f), B2 <X f), 0)

and noting that

div B = div'B', curl B = ( 0, 0, curl B' ) ,

we have

n\ p(x') -rf co dx'dt - irjK p(x') [div Ae y/e] co dx'dt

co dx'dt

0 />O') [( | ¥e\
2 - 1 ) Vej co dx'dt = 0, for any co G J§?2(0, T, JtT\ü0)) (4 21)
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+ f f p(x) [div Ae j div'B' dx'dt

o

\ p(x) H curl B' <£c'<fc, for any B' e L2 ( 0, T ; H^ ( Qö ) ) . (4.22)

In order to let s —> 0 in (4.21)-(4.22), we prove several lemmas.

LEMMA 4.8: We have

Proof: By (4.15) and (4.17)-(4.18), we have

[div' A'! + — — I -r-1 dx3

• ) , 0 - A](y, - fift(^)f O]

= [div'A;J + - 1 - [grad' fl(^) . A;(y, ea(x'\ t) + grad' fc(^) . A ^ , - fiè(x'), O]
p\x )

|div- A;] + - L - [gr,d' o(y) + grad'

This complètes the proof. D

LEMMA 4.9: We have

esssup 0 4txTW I c u r l Kl - cmllKl II LHQ0) ^ c£ ^ (4-23)

esssup0 ^ r ^ r || [grad' ^ j - grad ' l^j || L2(QQ) ^ ce . (4.24)

vol. 32, n° 1, 1998



44 Zhiming CHEN, C M ELLIOTT and TANG QI

Proof: We only prove (4.23). The estimate (4.24) can be proved similarly. By (4.15), we have

[curl A ]̂ - curl [Â J

= - i - curr a(x') [A'e(x', ea(x'), t) - [AJ] (x\ *)]
P\X )

+ - Î — curïb(x') [A'e(x\ - eb(x'), t) - \A'e] (x', t)] .

Now (4.23) foilows from (4.8) and Lemma 4.4. D
LEMMA 4.10: We have

esssup0 s , s T ||/?[div Ae y/e] - div'(/?[A;j ) \y/e\ \\ L,(ûo) ^ es ; (4.25)

esssup0 s , s T || Jgrad' y/e. K't\ - grad'[^j . [A ]̂ || L>(öo) ^ ce . (4.26)

Proof: We only prove (4.25). The estimate (4.26) can be proved similarly. By Lemma 4.8 we have

p[div Ae y/e\ - div'(/>lA;j ) \y/e\ = p|div Ac ( y/e - [^j )J.

Note that by (4.9) and Lemma 4.4, we have

Ae ( y/e - {y/e\ )] || L,(f2o) ^ f II div A £ || L,(Qi) || y/e - {y/e\ \\ L2(Qt)

c r- • cVs • es

This complètes the proof. D
LEMMA 4.11: Let Qo - Qo x (0, T). We have

II [Ai W.\ - iKl WA II L\Qo) « ce ;

IIK \vf - 1 ) V.} - (

es .

- 1 )

Proof; We only prove (4.27) and (4.28). The estimate (4.29) can be proved similarly. Since \y/e\
Q , we have

(4.27)

(4-29)

1 a.e. in

r/j-
-n

Jo JQ0

n _L_
Jo JQQS p(x')

r r r M*') dA'€ I 2

1 ~ dxr3 dx;7^
Jo J^oLJ-eK^) 3 J

•r dbc3 dx'dt

dxdt ^ ce2 ,
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where in the last inequality we have used Lemma 4.4. This proves (4.27). In order to show (4.28) we observe first
that

But

= I|A;I2(V.-[VJ)] + [A;<

lji\K\2(Ve-m)]\dx'

f _ L EaCx">

2 -| 1/2

'1
where we have used Lemma 4.4. By the embedding theorem Wl>1(QQ) u. L 4 (^ o ) , we get

c(f l0) [||grad'[|A;|2,||Ll(fio) +

It is easy to see that

where we have used Lemma 4.4. By (4.15), we have

||grad'[|A;|2]||Ll(f io)

[grad' |A;| ; | 2 ( .,sa( . ) , t) - [ |A;|2] ( . , t) | | L , ( û b

where we have used Lemma 4.4. Thus, by (4.31)-(4.33), we have

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

vol. 32, n° 1, 1998



46 Zhiming CHEN, C M ELLIOTT and TANG QI

On the other hand, since \y/E\ =S 1 a.e. in £2£x(0, T), we have £ ] I I L - ( G O ) 1- Thus

V£. ,- c ve .ca

ca ,

dx3
dt

(4.35)

where we have used Lemma 4.4 and (4.9). Now (4.28) follows from (4.30) and (4.34)-(4.35). This complètes the
proof. •

LEMMA 4.12: We have

esssup0 ^t

Proof: At first, by using (4.9), Lemma 4.4 and Lemma 4.6, we have

ce\ ce

ce . c Ve + ca ^ ca

Thus

VicVi

where we have used Lemma 4.4. •

LEMMA 4.13: We have

y/£ - grad'[ ca ; (4.36)

s. (4.37)
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Proof: The estimate (4.36) can be proved by using (4.15), (4.8), Lemma4.4 and the fact that \y/e\ ^ 1 a.e.
in Qs. To prove (4.37) we observe first that

= [( Ai - [K] ) \¥fl + [Kl [( y,e -W£) y,A . (4.38)

On the one hand, similar to the proof of (4.27) in Lemma 4.11, we can obtain

l l l (A;-[A; j ) i |^ | 2 | | L l ( f l b ) ! Sc8. (4.39)

On the other hand, by Hölder's inequality, the embedding theorem L4(Q0) u Hl(QQ) and Lemma4.5, we have

il \K\ [( y , - i v j ) VA il Lkü0) < ii iKi II L*(fio) il K ve - wà ) VA il L2

Again similar to the proof of (4.27) in Lemma 4.11, we can prove

Now the estimate (4.37) follows from (4.38)-(4.40). D

Proof of Theorem 4.1: From Lemma 4.5 we know that there exist two functions y/-> A such that after possibly
extracting a subsequence, (4.1)-(4.2) are satisfied. From Lemma 4.6 we have that A3 - 0, that is,
A = (A', 0). By letting s —> 0 in (4.21) and using Lemma 4.7-4.10 we know that ( y, A') satisfies (4.4) for any
CL> e J&?2(0, T',JP\Q0)) nJ5f"(Q0) thus also for any co e JSf2(0, T\ J f \QQ)) by the Standard density
argument. That ( y/9 A' ) satisfies (4.5) can be obtained by letting s -> 0 in (4.22) by using Lemma 4.7-4.12, the
embedding theorem H^ ( Üö ) u L4 ( ü0 ) and employing standard convergence argument. D

5. A NUMERICAL EXAMPLE

We now present s ome numerical computations obtained by using the model derived in Section 4. The numerical
method used to solve the system (4.4)-(4.5) is based on a semi-implicit finite element scheme using piecewise
continuous biquadratic polynomials based on a subdivision of Qo into a quadrilatéral grid. This scheme was
proposed and analyzed in [CH 95] for the case p = constant. One of the purposes of the computations is to show
that the model derived in this paper is effective in simulating the pinning mechanism of the vortices in
superconducting thin films with variable thickness. A more detailed study of the numerical aspects of the model
and more numerical simulations will be reported elsewhere.

In the numerical example here, we take the domain O0 = (0, 1 ) x (0, 1 ), the length of the time interval
T= 50, K- 10, the time step size At = 0,1. The grid over ü0 is obtained by subdividing Qo into a uniform
grid having 40 intervals in each direction. The vertical shape of the thin film is created by setting
p(xvx2) = 0.9 for (xvx2) in the circle centered at (0.25, 0.25) with radius 0.1, p(xvx2) = 1 for (JC19JC2)
outside the circle centered at (0.25, 0.25) with radius 0.2, and in between, p is smooth. The applied magnetic field
H dépends on t with H(t) = 0, 1, 2, 3, 4 for t e [0, 10), [10, 20), [20, 30), [30, 40), [40, 50), respectively.
The contour plots of the magnitude of the density | y/ \ are given in Figure 1. We observe that in the magnetization
process, one vortex first forms in the région near the lower left corner of Qo (where the film is thinner) when the
applied magnetic field H is increased to 2, and later this région is kept in the normal phase as the applied magnetic
field is increased. Moreover, this région absorbs the new vortex coming from the left side of the domain as the
pictures in Figure 1 indicated. This simple numerical example shows that the model derived in Section 4 can
indeed be used to simulate the "pinning" mechanism of the vortices in variable thickness thin films.
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6. CONCLUDEVG REMARKS

In this paper, a new two-dimensional evolutionary Ginzburg-Landau model for thin super-conducting films has
been derived by letting the thickness of the film uniformly approach zero in the corresponding three-dimensional
Ginzburg-Landau model. When the thickness function is constant, the standard two-dimensional Ginzburg-Landau

time =«20 . 5 , H»2 .0 t ime»35.0 ,

time=4 0 . 0 , H»4 .0 time=42,0, H=4.0

t ime=44 .0 , H=4.0 t ime=46.0 / H=4.0

Figure 1. — Contour plots of the magnitude of the density.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



TWO DIMENSIONAL APPROXIMATION OF THE GINZBURG-LANDAU MODEL 49

model is recovered. The dérivation was carried out under the Lorentz gauge (2.7). Ho wever, the method in this
paper can also be used to prove the convergence in the other gauges, for example, Coulomb's gauge. Hère we
describe briefly this case.

By Coulomb*s gauge, we refer to the gauge equivalent class where

div Ae =0 in Qe x (0, T ) ,

A . n = 0 on a f i . x ( O J ) ,

ƒ. (pEdx = 0 a.e. in (0, T) .

This is different from our previous case because the electrical potential will then be involved in the formulation
of the problem explicitly and the condition div Ae = 0 becomes an explicit constraint. However, since all the
estimâtes in this paper holds, we have no difficulty in pro ving that the variational formulation converges as
e —> 0. For the explicit constraint div Ag = 0, let A be the weak limit of [A£ ], it is then straightforward to show
that div Ar tends to

weakly in L2(QQx(0, T)) (cf. Lemma4.7).
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