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MATHEMATICA!. MODELUNG AND NUMERICAL ANALYS1S
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

32, fi° 4, 1998, |> §5 à 99>

BACKWARD EULER TYPE METHODS FOR PARABOLIC
INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACE (*)

N. Yu. BAKAEV (X), S. LARSSON (2) and V. THOMÉE (2)

Abstract — Time discretization by backward Euler type methods for a parabolic équation with memory is studied Stability and error
estimâtes are proved under conditions that permit quadrature rules for approximation of the memory term that have reduced storage
requirements The analysis takes place in a Banach space framework, and the results are used to dérive error estimâtes in the L2 and
maximum norms for piecewise linear finite element discretization in two space dimensions © Elsevier, Pans

Key words Integro-drfferential équation, parabolic, backward Euler, sparse quadrature, finite element method, Banach space, maximum
norm

Résumé — On étudie la discrétisation en temps d'une équation parabolique avec mémoire par des méthodes de type Euler rétrograde
On montre la stabilité et on donne des estimations d'erreur sous des hypothèses qui permettent d'utiliser des formules de quadrature peu
exigeantes en stockage pour l'approximation du terme de mémoire L'analyse est effectuée dans le cadre des espaces de Banach Appliqués
en dimension deux, ces résultats permettent d'obtenir des estimations d'erreur L2 et uniforme pour une discrétisation utilisant des éléments
finis linéaires par morceaux © Elsevier, Paris

1. INTRODUCTION

We consider the initial value problem

(1.1) ut + Au=\ B(t9s)u(s)ds+j{t)9 for t e [0 , T ] , w i t h w ( 0 ) = i>,
Jo

m a Banach space X, where A is a closed linear operator with dense domain D( A ), and B( t, s ) is a smooth linear
operator with D(B(t, s)) ZD D(A) and such that Q(t, s) = A~ l B(t, s) and Qt(t9 s) are umformly bounded-
f or 0 ^ s ^ t ^ T.

We assume that -A générâtes a bounded analytic semigroup E(t) = e~tA, so that

(1.2) ||£(OII+*HA£(OII ^M, forr>0.
It then follows, by GronwalFs lemma (see Theorem2.1 below), that for the solution of (1.1),

(1.3) IKOII *eciT)MlJ\\v\\ + J V l l < A fort* T.

We shall consider the time discretization of (1.1). Let k be a time step, set tn ~nk^n- 0, 1, 2, ..., and dénote

by Un the approximation of u(tn). We shall replace the time derivative by the backward différence quotient

dUn = (Un - Un ~ ! )/k and approximate the memory term by a quadrature formula

(1.4) <
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86 N. Yu. BAKAEV, S. LARSSON, V. THOMÉE

The backward Euler discretization of (1.1) is then

(1.5) Wn -f AUn = 2 conjB(tn, f ) lf +f(tn)
j = o

= a\Bn U) + / , for n ^ 1, with C/° = v .

Our aim is to extend stability properties such as (1.3) to this discrete problem, and to use these to dérive error
estimâtes. In doing so we need to make the following more spécifie assumptions about the choice of the quadrature
formula in (1.4), namely, for some positive integer/?,

(1.6) en(<p)\ ^Ck\tn^\<pO)(t)\dt, where eB (p) = <7 n (p ) - |
Jo i=i Jo

and, for some positive number q,

(1.7) 2 K - » » l « Ck*> forO<tj^ tn^T.
5 = 0

Under these hypotheses we shall show (Theorem 2.3), that, for small k,

(1.8) || tril <CeaT)MM(\\v\\ + * 2 H/11 Y îortn^T.

One example of a quadrature formula satisfying (1.6) (with/? = 1 ) and (1.7) (trivially) is the left-side rectangle
rule, corresponding to œnj = k forj < n. Since this rule requires the storage of all previous U\ sparse quadrature
rules have been proposed, e.g., in [4], [6]. A short discussion of such rules is given in Section 5 below, where it
is shown that our present assumptions on an are different from those made in the earlier work and do not require
so called "dominated weights".

Assume that we want to apply the above result to the case when X = Co( Q ) equipped with the maximum
norm, where Q is a smooth domain in R , and where A is a discrete analogue of the Laplacian — A based on
piecewise linear finite element spaces Sh defined by a family of quasi-uniform triangulations and where
B(t,s) is appropriate. In this case it is known, cf. [3], that (1.2) holds with M- Clog (1/h). This means that
(1.3) and (1.8) contain the stability factor eclog ( l/h) = h~ c , which is unbounded as h tends to 0, and these stability
estimâtes are therefore of little value.

In order to find a remedy for this we shall assume that, in addition to (1.2), we also have

(1.9) II£(011 +t\\AE(t) || ^Môf
â, f o r*>0 , for any ö G (0, 1 ) .

This is the case in the above finite element application with Mè independent of h, see Lemma 4.1.
Under these assumptions we shall show that, for the solution of (1.1) (Theorem 2.2),

(1.10) | |K(0| | « C(T,MS,Ö) M(\\V II + f || ƒ || d A ferrer,

and, for the solution of (1.5) (Theorem 2.4), if ö and k are sufficienüy small,

(1.11) || tril ^C{T,MS,Ö)M(\\V\\ +kjï H/11 j , forrn^7\

M2 AN Modélisation mathématique et Analyse numérique
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BACKWARD EULER TYPE METHODS FOR PARABOLIC 87

In the above finite element application the bound now contains a single factor log (l/h).
We note that, in the case of one space dimension, (1.2) holds in maximum norm for finite éléments of any order

with a constant independent of h, cf. [1], so that (1.8) shows a uniform bound for T bounded.
The above stability estimâtes are proved in Section 2 below, and in Section 3 we give corresponding error

estimâtes. In Section 4 we discuss the application to the finite element case in more detail, and Section 5 is
concerned with sparse quadrature rules.

2. STABILITY ESTIMATES

We begin with the basic stability result (1.3) for the continuous équation.

THEOREM 2.1: Assume that (1.2) holds. Then, for the solution of (1.1),

'AfHM|| «(011 «S eaT)MM[ \\v\\ + | 11/11 ds ) , fort^T.

Proof: Using Duhamel's principle, we have

u(t)=E(t)v+\ E(t-$)f(s)ds + f E(t-y) f B(y, s) u(s) ds dy

Jo Jo Jo
(2.1)

= F(0 + G(t,s)u(s)ds,
Jo

where F(t) = E(t)v + \ E(t - s)f(s) ds, and, since AE(t)=-E\t),
Jo

G(t,s)=jtAE(t-y)Q(y,s)dy

where Q(t, s) = A~ 1 B(t, s). Since by our assumption

(2.2) I I Ö U O I I + I I Ö / M ) I I ^ C , O^s^t^T,

we may use (1.2) to conclude that

(2.3) l | G ( f , * ) | | ^ C ( l + \\E(t-s)\\) + C\O-y) \\AE(t~y)\\ dy ̂  C(T) M,
V S

and we hence obtain from (2.1)

( j ' \ ^ \u(s)\\ ds, for t*k T,

from which the desired result follows by Gronwall's lemma. •
We now turn to the modified stability estimate (1.10) for the continuous équation.

vol. 32, n° 1, 1998



88 N Yu BAKAEV, S. LARSSON, V. THOMÉE

THEOREM 2.2: Assume that (1.2) and (1.9) hold. Then for the solution of (1.1) we have, for any ö e (0, 1 ),

t( IMIl ii(O II « C(T,Ms,â)M\ \\v\\ + 11/11 ds , fort ^ T.
\ Jo /

Proof: This time we use (1.9) in the first inequality of (2.3) to obtain

\\G(t,s)\\ ^C

Hence, by (2.1),

(2.4) IKOII ^M[ \\v\\ + \ \\f\\ds) + C(T,Ms)\(t-syâ\\u(s)\\ds,

and our result follows by a variant of Gronwall's lemma (cf [2, Lemma 5.6.7]; it also follows easily from the
time-continuous version of Lemma 2.2 below). D

We note that under assumption (1.9) one may also show for the solution of (LI)

(2.5) ||M(r)|| ^C(T,Mô,o)(râ\\v\\+j\t-syS\\f(s)\\ds\ fart* T.

In fact, instead of (2.4) one has, with C = C(MS),

il «(o ii «s c(fö\\v\\ +j\t-srê\\f\\ ds) + cj\t-srâ\\u(s)\\ ds,

from which (2.5) follows by a variant of Gronwall's lemma.
In order to prove the discrete analogues (1.8) and (1.11) we introducé the backward Euler one step évolution

operator Ek = ( I + kA)~ 1 and first show the folio wing discrete analogues of (1.2) and (1.9) (with the former
contained as a special case with Mo = M ).

LEMMA 2.1: Assume that, for some ô e [0, 1 ),

*M6f*, fort>0.

Then

\\En
k\\ + f n | |A^ | | ^CM6fn\ fortn>0.

Proof: We have, cf, e.g., [2, p. 21],

En
k=(l + kA)~n= , }_ . f' l e~% E(kt)dU forn ^ 1 .yn 1 ) . JQ

Hence, by our assumption on E(t), and since F(n- S)/F(n) ^ Cn~à,

M2 AN Modélisation mathématique et Analyse numérique
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BACKWARD EULER TYPE METHODS FOR PARABOLIC 89

The estimation of AE\ is snnilar for n 5= 2 : for n = 1 we jise kAEk = I - Ek. D
Our proofs in the discrete case will depend on the following version of Gronwall's lemma. We remark that,

in the earlier work [4], [6], instead of (1.7) the analysis was based on the assumption that the weights cons are
"dominated" in the sense that there are weights cos, independent of n and such that œm ^ cos for

n- 1

0 ^ ts < tn ^ T with 2 tt>s ^ C, which makes it possible to apply a more standard Gronwall lemma.
s-Q

LEMMA 2.2: Let un, n = 0, 1,..., be nonnegative numbers such that

(2.6)

Assume that the coefficients jJin

independent of k, such that
nonnegative and that there exist positive numbers y, x and

(2-7) ^Mm^y<h for * ! _ ! - * „ S T, OGtm<t,*tH, kük0.
s = m

Then, with C = log ( ( 1 - y)~ J ),

(2.8) un^Kec(t"/x+l\ fortn^O, k ^ k0 .

Proof: Let /, = [(j - 1) T J T ] . Then, by (2.6) and (2.7),

j
max w ^ K + y "V max u ,

from which we easily conclude that maxMn ^ K( 1 — y)~7, which implies (2.8) since j ^ tnlx + \ for

In the following we let T be fixed (but arbitrary) and we let C dénote various constants that may depend on
T.

We now show the following stability resuit for (1.5). For the purpose of our error estimâtes below it is phrased
in a more gênerai way than (1.8), which latter is contained for Q3 - 0.

THEOREM 2.3: Assume (1.2) and let { ^ J c X be arbitrary. Then we have, for the solution of (1.5), for
tn^T, k^ ko(M),

\\f-g>\\ "2
J=2

Vil ).
J

Proof: The proof is modeled on the proof of Theorem 2.1. We have by Duhamel's principle and a change of
the order of summation in the double sum, cf. (2.1),

(2.9)

where, since kAEn
k = E\ ~ x — En

k, we may write

s = 0

vol 32, n° 1, 1998



90 N Yu. BAKAEV, S. LARSSON, V. THOMÉE

~ 1 B we have G = k 2 AE\~J + land, with Qjs = A~ 1 Bjs, we have Gns = k 2 AE\~J + l coJS QJS. Here, by (1.2) and Lemma 2.1, for small k
and fB ^ 7, J = s+1

il F" y ̂ CM( II « il + * 2 il/-^ii + m a x H" Vil + * 2 HA-Vil
\ 7 = 1 J 'n J=2

In view of Lemma 2.2, the result therefore follows once we have shown that, for small k,

(2.11) y, \\G\\ s

so that (2.7) holds for jjm= ||GM||, with y = i , T = ( 4 C M ) " 1 and kö = k0(M).
In order to prove (2.11) we write

^ ± knsns ± r n s (
J — S + 1 J = S + l

+ k ± AEn
k-J

+\œjs-œns)QJS=Gl + Gl + G

Here GJis = (I - En
k~

 s) a>nsQns, so that by (1.2) and Lemma 2.1 (cf. (2.3))

Also

We shall show

* - i

s — m

and, for small k and tn ^ T,

which together show (2.11). In order to prove (2.12) we note that the quadrature formula is exact for eonstants
(cf (1.6)) and use (1.7) to get

2-1 l-\ m-l / - 1 m-\

^^^ ^ Is ns * .^^^ ^ tns ns * t — m
5 = 0 5 = 0

M2 AN Modélisation mathématique et Analyse numénque
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For the proof of (2.13) we use (1.7) as follows:

91

1-1 n

tn~j+l\™js-COns\=k £
m i n ( / - l t J / - l )

2
j = m+ 1

I % "

2
j=m+1

| . D

The following is a modified stability result for the time stepping method.

THEOREM 2.4: Assume (1.2) and (1.9), let {g3} a X and r <E ( 1, ©o] be arbitrary. Then we have, for the solution
of (1.5), for some ô G (0, 1), for tn ^ T, k^ ko(Mô),

l/r

\un\\ *C(T,MS,S)\MI\\V\ I I f f ' I I "Jl

Proof: Again we have (2.9) and instead of (2.10) we use (1.9) and Lemma 2.1 to get, for S sufficiently small,

l/r

It remains to bound 2 II Gns ||, so that Lemma 2.2 may be applied with juns = || Gns || and with T depending on
Ms instead of M. For tfïis purpose we use (1.9) and Lemma 2.1 to get, with the above notation,

r + 1 7 = 5 + 1
CMsfn

s_

and

Estimating 2 II G3
ns\\

 w e n a v e> uniformly in Ô (cf the proof of (2.13))

s = m j = s

> t * \CD — i
^ J B - / + 1 I JS

. - co»

C

vol 32, n° 1, 1998
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In order to bound 2 II Gl
ns + G2

ns || in terms of tl _ m and k, we argue as in the proof of (2.12). We have
s = m

l-l l-l m-l

s=m s=0 s=0

l-l m-l
_ ^ i - ö / _ \ i ^sp f-

 â ( \

S=0 5=0

where, uniformly for small S, and using the elementary inequality (x + y)r =S x7 +yy for x, y > 0,
y e (0 ,1) ,

Moreover, according to (1.6) we have

\ = N'((tn- • r*)i « e* f ' S lö!(*»-
Jo 1 = 0

again uniformly for small Ô, where for simplicity we have replaced ö by 1 in the final step. Also, according to
(1-7),

[ - 1 t - \

is ns I
s = C

w\ =
Together these estimâtes show

i-i

(2.14) 2
s = m

Since our estimate of e may be as large as Ck ~ p (when tx = t _ x ), we have to make a refined estimation. Let
* - i

e > 0 be arbitrary. The contribution of the terms in 2 tn _ cons with tn _ ^ (k/e) p is then bounded by
s= m

Ctl_„l + Ce + Ckq according to (2.14). On the other hand, the contribution of the terms with
tn_s< (k/€)Up can be bounded, using (2.12), by

tn_s<(k/e)yp

Thus, putting these bounds together we have (cf. (2.11))

2 \\GJ\ ^CM3(t]:
s
m + e + k-s+^e-^ + k"-âlog{)

s = m

so that (2.7) holds for ^ = 1 1 G J U if 0 < ó < min (<?, l/p), by choosing e = k(l "^ ) / ( 1 +p\ with
k^ko(Mö) sufficiently small, and i= (4CM^)" 1 / ( 1 " ( ï ) . D

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelhng and Numencal Analysis



BACKWARD EULER TYPE METHODS FOR PARABOLIC 93

In analogy with (2.5) one may also show that under assumption (1.9) we have for the solution of (1.5)

\\Un\\ ^C(T,Mô,ô)(fn
ô\\v\\ + fc iXf , + J / IM, f o r ^ T.

Since this will not be used below, we refrain from the details.

3. ERROR ESTIMATES

We show the following error estimate in our abstract framework.

THEOREM 3.1: Assume that (1.2) holds. Then we have, for the solutions of (1.5) and (1.1), with
C=C( T), for tn^T

ptn / p \

\\Un-u(tn)\\ ^ CeCMMk ( | |wj + 2 IIAM(°II ) d t

If also (1.9) holds, then the result holds with the stability factor C(T, Mô) M, for some (sufficiently small)
ö>0.

Proof: Set en = Un - u. Then

den

where r" = - ( dun - ut( tn) ) and x\ = en(Bnu). Here, || T" [| ^ I || utt\\ dt, and using (1.6),

2
o i=i

(Note that, by duality, the assumption (1.6) for scalar fiinctions implies the corresponding statement for vector
valued functions.) By the stability result of Theorem 2.3, we now have

from which the first result follows. The proof of the second is analogous, using Theorem 2.4 instead of
Theorem 2.3. •

4. APPLICATION TO PIECEWISE LINEAR FINITE ELEMENTS

In this section we consider the case of the initial value problem (1.1) when A is a self-adjoint positive definite
elliptic operator, and B( t, s ) is a second order partial differential operator with smooth coefficients, in a plane
convex domain Q and with Dirichlet boundary conditions. Together with this problem we shall consider its spatial
discretization in piecewise linear finite element spaces Sh. With ( . , . ) the standard L2-inner product on Q, the
spatially discrete analogue of (1.1) is to find uh(t) e Sh for t ^ 0 such that

(4.1)
(uhtX)+A(uh,x)= B(t9s;uh(s),x)ds + (f9x), ^X e Sh, tG [0,7] ,

vol. 32, n° 1, 1998



94 N Yu BAKAEV, S LARSSON, V THOMEE

where A( . , . ) and B(t, s , . , . ) are the Standard bilinear forms associated with A and B(t, s) Introducing the
discrete operators Ak and Bh( t, s) Sh—>Sh by

the problem (4 1) may be expressed as (1 1), with A and B(t, s) replaced by their discrete analogues Ah and
Bh(t, s) in Sh It is to this spatially discrete problem that we now apply the backward Euler discretization (1 5),
which yields the completely discrete problem to find Un e Sh such that, with Bn(s , . , . ) = B(tn, s , . , . ),

(4 2)

We shall begin by considenng this problem in the Hilbert space L2(Q) In order to apply the above theory to this

•h(t) — e~ Ah \ we have, with respect to the L2~problem, we recall the well known fact that for Eh(t) — e Aft\ we have, with respect to the L2-norm,

| | ^ ( r ) | | +t\\AhEh(t)\\ ** C, f o r r > 0 ,

so that (1 2) is valid We also need to assume that, uniformly in h,

(4 3) WAl'B^sn + \\Ah
1BhtUs)\\ + \\Bh(t9s)A'h

1\\ <C

(cf (2 2)) This is the case, e g, if the triangulation underlying the définition of Sh is quasi uniform, or if the
principal part of B(t, s) equals a scalar function b(t,s) times the principal part of A, see [4], [5], [6]

Under these assumptions we have the following We assume for simplicity that the discrete initial value is
Rh v, where Rh H\{Q) —> Sh dénotes the Ritz projection, i e , the orthogonal projection with respect to the inner
product A( . , . )

THEOREM 4 1 We have, for the solutions of (1 1) and (4 2) with vh = Rh v,

\\Un-u(tn)\\ ^C(T,u)(h2 + k),

Proof We wnte

en=Un-un=(Un~Rh u) + (Rh u
n

It is well known that

(4 4) ||p-1| sS C*21| «"H*,

For 6n e Sh we note that, with Bh n(s) = Bh(tn,s),

(4 5) d0n+Ah9n = an(Bhne) + z \

where, with en defined in (1 6),

u - u ) + (du- < ) + en(BhnRhu)+\'\BhnRh-PhBn)udt

= Tï + T2 + Xi +

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



BACKWARD EULER TYPE METHODS FOR PARABOLIC 95

Hère, by standard estimâtes,

Further, since \\BlhnAh
1\\ s£ C and Rh = Ah

l PhA,

\\Tn
3\\ = \\*n(BKnRhu)\\ <Cl _

J o t = ]

For T4 we have, with Zh n = Bh nRh- PhBn,

k ^T4 = Zk nu dt — Zh n _ lu dt = Zh nu dt + k dZh nu dt.
Jo Jo J tn_} ' Jo

We shall show presently that

4
We now apply Theorem 2.3 to (4.5), with f = 2 T", gn = T", to obtain, since 0° = 0,

110" II [2 ; i ^ V J 2
\ 7=1 J=2

T o g e t h e r w i t h ( 4 . 4 ) t h i s c o m p l è t e s t h e proof .
I t r e m a i n s t h u s t o s h o w ( 4 . 6 ) . W e h a v e , t a k i n g t h e s u p r e m u m o v e r a l l / e ^ w i t h | | / | | = 1,

= supBn(p, All x) * supfl„(/>, (Al 1 - A' l) x) + supBn(p,A' l
 X)

^C\\p\\Hlh+C\\p\\ SUD \\B*nA-lx\\ ^C(u)h2,

which complètes the proof of the first part. The second part follows similarly from

\\A-h
ldZKnu\\ ^Ck-1sup(Bn(p,A-h

1
X)-Bn_l(p,A-h

l
X))^C(u)h2. D

We now turn to a discussion of the above problem in the Banach space Co( Ù) and throughout the rest of this
section we now use the maximum norm \\v\\ = SUD | Ü ( X ) | . We note that in the gênerai case A~ l B(t, s) is then
not a bounded operator and (4.3) cannot be expected to hold. We therefore
now restrict the considérations to the case that A = — A, B = — b(t,s)A1) where A is the Laplacian
and b(t, s) is a smooth scalar function. In this case A( . , . ) = ( V -, V . ) and
J3(r, s ; . , . ) = b(t, s) (V . , V . ), and the discrete analogues of A and B(t, s) are defined by Ah = -Ah,
Bh{t,s)=-b(t,s) Ah, where

- (^^ , j ) = (V^,V/), V^,/G Sh.

vol. 32, n° 1, 1998



96 N Yu BAKAEV, S LARSSON, V THOMÉE

In order to apply our abstract theory in this case, we note that A~ l Bh(t, s) — b(t, s) I is bounded together
with its derivatives. We also need to know to what extent the assumptions (1.2) and (1.9) are satisfied for
Ah — — Ah. We first recall from [3] that, if the family of triangulations underlying the définition of Sh is
quasi-uniform, then for Eh(t) = e~ Aht we have, with respect to the maximum norm,

(4-7) \\Eh(t)\\ +t\\AhEh(t)\\ < Clogi , for;>0,

so that (1.2) is satisfied with M = Clog ( l/h). We also want to show that (1.9) is satisfied with Mô independent
of h.

LEMMA 4.1: Under the present assumptions we have, for any ö e (0, 1 ) and for h ̂  hâ,

\\Eh(t)\\ +t\\AhEh(t)\\ < Cêf\ f o r r > 0 .

Proof: We use techniques from [3, Theorem 3.3]. It is easy to show that ||Eh(t) || and \\AhEh(t) || are bounded
for t ^ tQ > 0 and decay exponentially (uniformly in h) as t —> oo, so it suffices to consider 0 < f ̂  1, say.
By the maximum principle, | |£(f) | | ^ 1. We shall show that, with Ph the L2-projection onto Sh,

(4.8) \ \ E h ( t ) P h v - E ( t ) v \ \ ^ C 3 r â \ \ v \ \ , f o r O < r ^ l , h ** h ó ,

which, applied with v G Sh shows the desired estimate for Eh(t).
From [3] we quote that, for any e > 0,

(4.9) \\Eh(t)Ph-E(t)\\ ^ Ceh
2-3ef1+€,

which implies (4.8) for any ö ^ Ô". To consider smaller <5, we use (4.9) with e = «, say, together with (4.7),

to obtain, for 0 < ö ^ « and h ^ hs,

\\Eh(t)ph-E(t)\\

We now turn to the estimate for AhEh(t) = — E'h(t). As bef ore the statement is valid for the continuous
analogue E'(t), so it suffuces to swho

t\\E'h(t)Phv-EXt)v\\ <Cât-
s\\v\\ .

With uh(t) = Eh(t) Phv and u(t) = E{t) v we write

Here, since Ph is bounded in maximum norm,

tKt(t)\\=t\\Phut{t)-ut(t)\\ ^Ct\\

For rj we note, with p = Rhu — w,

ti,+ Ahr, = Ah(Rh- Ph) u = AhPhP .
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Differentiating and setting œ = tnt we have

so that, since a>(0)=0 and 77(0) = 0,

a,(O= f ' i
Jo

JO

We recall from [3] that, since ( a +ƒ?)"* ^ cT * + y/T 7, for a, ƒ? > 0, 0 < y < 1, we have

K£A(OII*

Further, using the stability of Ph, the logarithmic stability of Rh, and the analyticity of E(t) in Lp(Q), we have
for a suitable v < oo,

s \ \ P h P t ( s ) \ \ * C s \ \ p t ( s ) \ \ ^Clogh inf \\ut(s)-x\\

It is easy to show rj(t) ̂  Côf
ô and, moreover, from [3, (3.17)] we have

and we conclude

Ch2y - ^f j \ t - sT y s- l + < ds\\v\

by the choice e = S, y = 2 ö. This complètes the proof. D
We now show the analogue of Theorem 4.1 in the case of the maximum norm.

THEOREM 4.2: With respect to the maximum norm we have under the above assumptions, for the solutions of
(1.1) and (42) with vh = Rhv, for h ̂  hQ9 k ̂  kQ,

, u) log \(h2 + k), fortn^T.

Proof: We foUow the lines of the proof of Theorem 4.1. In maximum norm we have

\\pn\\ <Ch2logl\\un\\wl.
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Similarly to above we now get

Further, since Ah Rh = Ph A,

'0 1=1

4
In this case Zh = - b( r , . ) ( Ah Rh - Ph A ) = 0 and hence x\ = 0. Theorem 2.4 with f = 2 T",

n l= 1

0 =Tj, therefore shows (recall that now M=Clogl/h)

\\en\\ ^ C(T9 w ) l o g i ( ^ 2 + A:) . D

5. QUADRATURE RULES

We now give some examples of quadrature rules satisfying our assumptions. As mentioned in the introduction,
the most obvious choice is the rectangle rule, which corresponds to taking ail œns = k, for s < n. Clearly then
(1.6) holds with p = 1 and the sum in (1.7) vanishes.

A drawback of this method is that all the previously computed values of the solution enter into the
équation (1.5), so that all of these have to be stored for future use. Following the philosophy of [4] and [6] we
shall now turn to some sparse rules, that reduce the storage requirement.

We begin with a quadrature rule based on the trapezoidal rule on intervais of lengths O(km), with a slight
modification near tn. Let m= [k~ 1 / 2 ] , set kx — mk and t = jkv and let jn be the largest integer with
tj < tn. For the interval (0, tn) we then apply the composite trapezoidal rule with stepsize kx on (0, t} ), then
the one-interval trapezoidal rule on (^, tn _ 1), and finally the left side rectangle rule on (tn _ v tn). Thus

Since the rule is second order in kx over (0 , tJn) and ( ^ , tn _ 1 ) , and first order on (tn_ v tn), (1.6) holds with
p - 2, Here cons ^ km for s < n, and it is easy to see that (1.7) holds with q = 1/2. The number of time
levels that enter the computation is of order O(k~ 1/2) for this rule, as compared with O(k~ l) for the rectangle
rule.

In [4] a similar quadrature rule was used, with the différence that the left side composite rectangle rule with
stepsize k was used on (tJn, tn). Again (1.6) and (1.7) hold with/? ~2,q- 1/2. The reason for using the rectangle
rule on (iT tn) in this way was that here the cons are "dominated weights" in the sense described before
Lemma 2.2. In this example, we may take cos = O(kY) = O(km) for s divisible by m and cos = O(k) for all
other s. Even though the storage requirement is increased compared to the above method, it is still of the same
order O( k~ 1/2 ). We remark that the first sparse rule described above does not have dominated quadrature weights,
since cos s _ x 5* ckm with c > 0 for all ts in the right hand halves (say) of the intervals (t _ v t), so that

n - 1 i

cos 5= cons implies 2 co5 ^ ^ ck~

Going one step further with the idea of reducing the storage requirement, we may set m = [ F ] and
k2 = m k= O(km), and do the following. We first use Simpson's rule on as many intervals of lengths
2 k2 that can be fitted into [0, tn _ x ), and then, on the remaining interval, which is of length at most O(kln), the
composite trapezoidal rule on as many intervals of lengths k1 = m2 k~ O(km) as fit in, thus reaching t , then
the one-interval trapezoidal rule on the interval (t , tn _ x) , and finally the left rectangle rule on (tn _ v tn).
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Sinülarly to above, (1.6) and (1.7) hold withp = 4, q = 1/4, and the number of time-levels that need to be stored
per unit time is now O( k^ l ) + O(k2 k\^) + 1 = O(k~^f4). This rule does not have dominated weights. Thus,
our present assumptions allow some advantageous rules that were not covered in [4] or [6].
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