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MATHEMATICA!. MODELLING AND NUMER1CAL ANALYSIS
MODÉLISATION MATHEMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 32, n° 2, 1998, p. 153 à 175)

SOME NUMER1CAL METHODS FOR THE STUDY OF THE CONVEXITY NOTIONS ARISING
IN THE CALCULUS OF VARIATIONS (*)

Bernard DACOROGNA (*) and Jean-Pierre HAEBERLY (2)

Résumé — Nous proposons des méthodes numériques pour la détermination de la convexité, polyconvexité, quasiconvexité et la convexité
de rang un d'une fonction Ces notions sont d'importance fondamentale pour les problèmes vectoriels du calcul des variations

Abstract — We propose numencal schemes to détermine whether a given function is convex, polyconvex, quasiconvex and rank one
convex These notions are of fundamental importance in the vectonal problems of the calculus of variations
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1. INTRODUCTION

One of the most important problems in the calculus of variations deals with the intégral

/(«)= f f(Vu(x))dx (1)

where
1. Q a Rn is a bounded open set,
2. u : Q cz ERn -> Um belongs to a Sobolev space,
3. ƒ : lRm x n —» F8 is a continuous function.

Usually one wants to minimize (1) subject to some constraints, e.g. certain boundary conditions, isoperimetric
constraints, etc.. The only gênerai method to deal with these problems consists in proving the sequential weak
lower semicontinuity of / (M). When m = 1 or n = 1, this property is equivalent to the convexity of/ Ho wever,
when m, n > 1, it is equivalent to the so called quasiconvexity of ƒ, a notion introduced by Morrey [23].

DÉFINITION 1.1: A continuons function ƒ': IRm x n —> IS is quasiconvex if

ff
Q

for every Ç e !Rm x n, for every bounded open subset Q of Un and every <p e W Q ' ~ ( O ; Mm) (Le, q> : Q -> Um is
continuous, has uniformly bounded gradient, and <p - 0 on dQ. )

However, except in a few cases, this is analytically an almost intractable notion. One is therefore led to
introducé some weaker and stronger notions, namely rank one convexity and polyconvexity.

DÉFINITION 1.2: A function f ': Rm x n -> U is rank one convex if

whenever X e [0, 1], & n e Um x n with rank (£ - rj) ^ 1.
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154 B. DACOROGNA

DEFINITION 1.3: A function f\ (Rm x n —» F8 is polyconvex if there exists a convex function g such that

ƒ ( £ ) = g(t m i n o r s of f ) .

More precisely, if m = n = 2, then 0 : [R 2 x 2 x[R-*[R is convex and

Remark LI. The gênerai relationship between these notions is as follows:

ƒ convex => ƒ polyconvex ^/quasiconvex =$ f rank one convex .

For more details see Bail [4] and Dacorogna [12]. The converse to each of the above implications is false,
however. For example, when m = n = 2, ƒ( ci; ) ~ det £ is polyconvex but not convex. The existence of a rank
one convex function that is not quasiconvex when n ^ 2, m 5= 3 was proved by Sverak [30]. In the case
m — 2, however, it is still an open question to détermine whether

ƒ rank one convex => f quasiconvex . (2)

In view of the difrïculties involved in checking analytically these notions, we present in this paper some
numerical schemes to verify if a given function has the desired convexity property. In particular we are interested
in comparing, in the case m = n = 2, rank one convexity and quasiconvexity, checking numerically for their
équivalence. We have studied a great many examples in the case n — 2 and m = 2 or 3. The conclusions of
our extensive computations are the following.

1. The numerical results are in complete agreement with all the known analytical results. In particular, when
m = 3 and n = 2, we had no difficulty checking numerically that Sverak's function is rank one convex
but not quasiconvex.

2. In all examples we tested, when m = n = 2, quasiconvexity and rank one convexity turned out to be
equivalent, thereby suggesting that (2) is true in this case. This is in agreement with earlier numerical
experiments [13, 18].

Finally, it should be noted that numerical computations on these questions and related ones have been treated
by many authors. See, for example, Dacorogna-Douchet-Gangbo-Rappaz [13], Dacorogna-Haeberly [14], Brighi-
Chipot [6], Chipot [7], Chipot-Collins [8], Chipot-Lécuyer [9], Collins-Kinderlehrer-Luskin [10], Collins-Luskin
[11] and Gremaud [18]. Unfortunately, besides [14], oiüy [13] and [18] actually contain numerical data with which
to compare our results.

This paper is organized as follows: In Section 2 we discuss several families of functions. These families have
been studied extensively and many analytical results concerning their convexity, polyconvexity, and rank one
convexity properties have been proved. In contrast, we have almost no information about their quasiconvexity.
In Section 3 we show how the problem of deterrrüning whether a given function is convex, polyconvex,
quasiconvex, or rank one convex reduces to solving a, possibly constrained, optimization problem. In Section 4
we introducé two genera! schemes for checking the convexity properties of a function such as those described
in Section 2. In Section 5, we discuss the algorithms we used to solve the optimization problem. In Section 6 we
present our numerical results for the families of functions introduced in Section 2. Finally, in Section 7 we discuss
further numerical investigations in the case n = 2, m = 2 or 3.

Notation. For f, n e Rm x " we write (£\rj) for the standard inner product on Rm x ", namely

2S
i = l ]=1

and we write
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SOME NUMERICAL METHODS FOR THE STUDY 155

For a e ERm, b G IRn we let a <g> b G Um x n dénote the rank one matrix

faxbx ... ^ f e .

Note that all m x n matrices of rank one are of the form a® b for suitable a and 6, although this représentation
is not unique.

When m = n, we let R"x " and Un_x " dénote those n x n matrices £ with det £ > 0, respectively
det £ < 0.

q „ n

For £ G IR we write

adj £ = ( £21 ^ 2 - £22 ^31, - ^ n £32 + ĉ 12 f 31, f u £22 - ^12 <̂ 21 ) G U3

for the vector of minors of £.
Finally, we will often abuse the notation and think of a matrix ^ G (Rm x " as a vector in [Rmn, and conversely.

By convention, the vector corresponding to the matrix

is given by

2. FAMILIES OF EXAMPLES

We present several families of functions that have been studied extensively in the literature, and we recall all
the known results about their convexity properties.

Example 1. Let m = n = 2, y e IR, a ^ 1, and

The case a = 1 has been studied by Dacorogna-Marcellini [16] and Alibert-Dacorogna [1] (see also Hartwig [19],
Iwaniec-Lutoborski [20]). They proved that

fy is convex =̂> | y | ^ ^ V2
fy is polyconvex «=> | y | ^ 2
ƒ is quasiconvex <=̂  | y | ^ 2 + e, where e > 0, but not explicitly known

fy is rank one convex <=» | y | ^ —=

When a > 1, it has been established by Dacorogna-Douchet-Gangbo-Rappaz [13] that

ƒ is rank one convex <=* |y| ^ yr = j

vol. 32, n° 2, 1998



156 B. DACOROGNA

where

/ l \ . j Y + 2 ( a + l ) * 2 + 2 a + l ]
= ( 1 + — ) min < ^ >

\ CL) r>o [ 3? + (2a+l)t J

and

Observe that fy is smooth and homogeneous of degree 2(a + 1).

Example 2. Let m = n = 2, y ^ 0, a > j»

Bail and Murat [5] have shown that if -r < a < 1 then

/ 7 is convex <^ /y is polyconvex

<̂=> fy is quasiconvex

^^ ƒ is rank one convex

^> y = 0 .

If a = 1, it is easy to see that

ƒ is convex <=̂  /y is polyconvex

<=̂  ƒ is quasiconvex

<=5 fy is rank one convex

<=> y =S 1 .

If a > 1, it has been established by Dacorogna-Douchet-Gangbo-Rappaz [13] that

ƒ is rank one convex <^ y ^ yr= <

where

2 ( 2 a + ( 2 a -

2(2a-l)

y 2 = / , a V ( ° ~
(2a - l
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with

z = -
(4 g2 - 1 ) + V ( 4 a2 - 1 f - 8(2 a - 1 ) (g - 1 )(4 a - 1 )

4 ( 2 a - l ) ( a - 1)

Observe that for y ^ 0, fy is obviously polyconvex, and hence quasiconvex and rank one convex. Furthermore
ƒ is smooth and homogeneous of degree 4 a.

Example 3. Let m = n = 2, and let M e R 4 x 4 be a symmetrie matrix whose eigenvalues are
V-i ^ ^2 ^ i"3 ^ £V Let y ^ 0, and, identifying R2x2 with R4, let

Dacorogna and Haeberly [15] proved that

fy is convex ^> ƒ, is polyconvex <=> y ^ yc =

Under some restrictions on the eigenvectors of M (see [15]), we have

, is rank one convex ^ y ^ yr = i

min

JL
1

, — | if yj > 0 and y2 > 0

if yx ^ 0 and y2 > 0

if yj > 0 and y2 < 0

if yt ^ 0 and y2 < 0

where

a n d

Observe that fy is smooth on IR2 x 2 - {0} and homogeneous of degree 1.
Example 4, Let m = 3, n - 2 and let P : R3 * 2 -^ IR3 x 2 be defined as

2 2

Let g be the function defined on the image of P and given by

vol. 32, n° 2, 1998



158 B. DACOROGNA

Let y > 0 and a > 0, and consider the function

This is essentially the counterexample of Sverak [30]. He showed that there exists an a > 0 sufficiently small
so that fy is not quasiconvex for all y > 0, while for every choice of a > 0 fy is rank one convex for y small
enough. Again fy is smooth.

All of these examples share a similar pattern with respect to their convexity properties. More precisely,
1. for each example the function fy is convex when y = 0,
2. for each example there exist convexity, polyconvexity, quasiconvexity, and rank one convexity thresholds

7C> y > y j yr respectively, with the property that for y e [0,°°) the function fy is

convex <=» y ^ yc, (3)

polyconvex ^> y =£ yp , (4)

quasiconvex ^ y ^ ŷ  , (5)

rank one convex =̂> y ^ yr. (6)

3. SOME NUMERICALLY USEFUL CHARACTERIZATIONS OF THE DIFFERENT NOTIONS OF CONVEXITY

We show how the problem of determining whether a function is convex, polyconvex, quasiconvex, or rank one
convex reduces to solving an optimization problem. This can be done in several ways depending on the
smoothness properties of the function.

Let ƒ : lRm x n -> R, and suppose that ƒ e c \ Rm x "). Let

h : Um x " x ERW x n -> U

be defined as

;n), ^ G r Â " , (7)

and let the function g : Rm x n x Um x RB -> R be given by

We have the following well-known result (see [12]).

PROPOSITION 3.1: The function f is convex if and only if

It is rank one convex if and only if

(10)min
Ç , CL, O

If we make no smoothness assumptions on ƒ then checking the convexity of/reduces to solving a constrained
optimization problem. More precisely, ƒ is convex if and only if

A similar result holds for rank one convexity provided we take rj to be of the form £ + a (8> b.
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There is no practical advantage in using these characterizations, however, since solving a constrained
optimization problem, even with only simple bound constraints as is the case here, is harder than solving an
unconstrained one.

If we assume that ƒ e C2(Um x "), then it is well known that ƒ is convex if and only if its Hessian V2 /(O is
positive semidefinite for all f. If we dénote the smallest eigenvalue of the Hessian off at £ by ^mm(i ), then we
have

/ i s convex « inf Xmm{O ^ 0 . (11)

While there exist efficient algorithms to minimize the smallest eigenvalue of a symmetrie matrix depending on
a vector of parameters f (see Overton [25, 26]), there is again no practical advantage in using the charaetenzation
(11) of convexity as eigenvalue minimization is a substantially more difficult problem to solve than (9).

The rank one convexity of ƒ is equivalent to the so called Legendre-Hadamard condition, namely

a <g> b ; a <g> b) = j ?

for all £ e nm*n,a<= Rm and b e R". Thus

ƒ is rank one convex <=> inf ( V2 ƒ( £) a<& b ; a® b) = 0 . (12)
Ç,a7b

Again, this charaetenzation of rank one convexity présents no advantage over (10) from the computational point
of view.

When m = n = 2, we have the following charaetenzation of the polyconvexity of ƒ (see [12]). For
£ e U2 x 2, Az e R, 1 ^ i ^ 6 define the function

f,) - ƒ ( 2 ^ ^ ) (13)

and consider the constrained optimization problem

^ , . . . , ^ ^ . . . , ^ ) (14)

s.t. A, ^ 0 ,

PROPOSITION 3.2: ƒ is polyconvex if and only if the optimal value of problem (14) is 0.
Let us now assume that ƒ G Cl( U2 x 2 ) and for ^ 77, p e [R2 x 2 with det rj ^ 0, det p ^ o, define

vol 32, n° 2, 1998



160 B DACOROGNA

Consider the following constrained optimization problem.

inf Z(É,7,/>) (16)
£np

s.t. r] e !R̂  x 2, i.e. det r\ > 0 ,

p <= R* x 2, i.e. det p > O .

We then have the following characterization of polyconvexity (see Aubert [3]).

PROPOSITION, 3.3: ƒ is polyconvex if and only if the optimal value of problem (16) is 0.
We now turn to the quasiconvexity case. It is clear from the définition that/: Rm x n —> R is quasiconvex if and

only if

| f =0 (17)

for every bounded open subset Q of Un. Recall that the infimum in (17) is independent of the choice of Q (see
[12]). Thus, from now on, we take Q to be a fixed and particularly simple domain, e.g., when n = 2, the interior
of the unit square [0, l ] x [ 0 , 1]. Let Wh dénote a regular triangulation of Q of mesh size h > 0, and, for a
triangle K e STft, let SP^K) dénote the space of polynomial functions of degree one on K. Consider the finite
dimensional subspace Uh of WQ°°(Q, [Rm) defined by

m

where

Vh = {u : Q -> U continuous : i*^ G &X{K) for every KG 2Tft and u\dQ = 0} .

Let nh dénote the dimension of Vh. The function

becomes a function

k = kh:R
mxnxMmnft-^n. (18)

Consider

^ C / ) S inf * ( ^ ^ ) . (19)

One can show that (see [6])

CZ). (20)

Since it is obvious from the définition (19) that $h(f) ^ 0 for every h > 0, the following resuit follows from
(20).

PROPOSITION 3.4: 77i£ function ƒ w quasiconvex if and only if $h(f) = 0 /or ev^ry /z > 0.

M2 AN Modélisation mathématique et Analyse numérique
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It is possible to replace the space Vh by the space Vh of continuous functions u : Q —> IR that satisfy
u t a r e periodic on the boundary dQ (see [30] for example), and to use the space

in place of Uh. Proposition (3.4) still holds.
In our numerical investigations we have used the characterizations of convexity, rank one convexity, poly-

convexity, and quasiconvexity provided by propositions (3.1), (3.2), (3.3) and (3.4).

4. ALGORITHMS

We describe two numerical schemes for checking the convexity, polyconvexity, quasiconvexity, and rank one
convexity of a function such as those introduced in Section 2. More precisely, we wish to détermine numerically
the values of the thresholds yc, yp,yq, yr defined in (3), (4), (5), (6) respectively.

The first scheme, which we shall call the direct method, has the advantage of simplicity and reliability, but is
somehow inefficient. The second one, which we shall call the p^-method, is several order of magnitudes faster
than the direct method, but will occasionally fail to compute the correct value of the threshold.

We consider a function fy : Rm x n —> U that is affine in y, namely

with fv f2 G Cl( Um x ") and fx convex. Observe that all of the functions described in Section 2 are of this form
for suitable values of m and n. Recall the function hy : U

m x n x Rm x n -> IR defined in (7), namely

It can be written as

where

Since fx is convex by assumption, p(^,rj) 5= 0 for all ^ , ^ e IRm x ". Similarly, the functions gy, ly9 ly and ky

defined in (8), (13), (15) and (18) respectively, are all of the form

p + yq

for suitable functions p and q with p ^ 0. Thus, from an algorithmic point of view, determining the convexity,
polyconvexity, quasiconvexity, and rank one convexity thresholds are all particular instances of the very same
problem, namely, given a function

with p(x) ^ O for all x G Uk, détermine the value y+ of the parameter y with the property that for y ^ 0

(j>y(x) ^ 0 for all x G Uk & y e [0, y+] .

vol. 32, n° 2, 1998
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Observe that y+ is well defined provided <py takes on négative values for y large enough Thus we make the
following assumptions on <py

1 p(x) ^ 0 for all jee Uk,

2 q(x) < 0 for some x e Rk

Now we descnbe the direct method to compute y+

ALGORITHM 4 1 The direct method

1 Choose an initial value of y large enough that <t>y(x) < 0 for some x e Uk

2 Use a minimization algorithm to compute a point x for which <p (x) < 0
p(x)

3 Set y equal to - ( '
4 Go to step 2

The algonthm terminâtes when the optimization process in step 2 fails to détermine an x with (py(x) < 0 The
current value of y is then the computed approximation of y+ Step 3 is justified as follows Given a value of
y and a point xy with <py(xy) < 0, let

- _ P(xy)

4\Xy)

Then (py(xy) < 0 for every y > y Hence, y+ ^ y

Of course, the performance of this scheme is completely dependent on the choice of the optimization algonthm
m step 2 We will address this issue in the next section It is clear, ho wever, that this method is inherently
inefficient, since we can expect to have to solve a great many optimization problems bef ore a good approximation
to y+ is obtained

Remark 4 1 Suppose that the functions p and q are homogeneous of degree v > 0 Then so is <py and we have

fO i f O ^ y ^ y +

mîk<j>(x)=\

Note that this is the case when studymg the convexity, quasiconvexity, or rank one convexity of the functions

fy in examples 1, 2 and 3 Indeed, the functions h , g and ky are homogeneous of the same degree as fy

Now we descnbe the second scheme for Computing y+ In gênerai, for a function <py as in (21), there exist values

y~ ^ 0 ^ y* such that

<py(x) ^ OforallxG Uk <=> y e [y , y+]

Again we assume that <py takes on négative values for sufficiently large négative y Now, since p(x) 5= 0 for

ail x e IR , we have

<py(x) ^ 0 for ailx <=>/?(x) 3= - yq(x) for all x

- —?—r 5= y for all x with q( x ) < 0
q(x)

- —7—r ^ y for all x with q(x) > 0

p(x) + „ p(x)
= sup T—T- =S y ^ y = inf ^ ~

«W^o q(x) qM<o q{x)
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Hence

so that if y+ ^ - y , then

y+ = irif f^li • (22)

Thus we have the following pair of algorithms.

ALGORITHM 4.2: The pq-method: unconstrained case. Suppose that y+ ^ |y~|- Then y+ is computed as the
optimal value of the following optimization problem:

ALGORITHM 4.3: The pq-method: constrained case. Suppose that y+> \y |. Then y+ is computed as the
optimal value of the following constrained optimization problem:

inf | - withq(x)<o\

5. THE OPTIMIZATION ALGORITHMS

We now turn to a discussion of the methods that are used to solve the optimization problems in algorithms (4.1),
(4.2) and (4.3). An extensive discussion of optimization techniques can be found in e.g. [17, 24], while [22]
pro vides a guide to available software, both commercial and public domain.

Two of the most widely used unconstrained optimization techniques are the conjugate gradient methods and
the variable me trie methods, Conjugate gradient methods, of which the Polak-Ribière method, or modifications
of it, is usually thought to be the most effective, are particularly well suited for large scale problems due to their
low storage requirements. Variable metric methods, of which the BFGS method is usually thought to be the most
efficient, have much higher storage requirements and so are better suited to small and medium scale problems.
(Limited memory BFGS methods [21] alleviate this problem, but we did not use these techniques.) We used the
routine CONMIN of Shanno and Phua [29]. CONMIN implements both the BFGS method and a modification of
the Polak-Ribière conjugate gradient method due to Shanno [28], with the choice of the method left to the user.
Both algorithms use a cubic interpolation for the line search. This routine, written in FORTRAN, is algorithm 500
of TOMS and is available on Netlib.

Of course, none of these methods is guaranteed to converge to a global minimum of the function. Since the
optimization problems to be solved are global optimization problems, we have also considered some stochastic
algorithms designed to avoid being trapped at a local minimum. First we considered a simulated annealing version
of the classical Nelder-Meade simplex method given in [27]. This method only requires function évaluations and
makes no use of gradient information. However, it is only suitable for small scale problems due to high storage
requirements. We also considered a method based on stochastic differential équations [2, 18]. This is essentially
the gradient method perturbed by a stochastic term that vanishes asymptotically, thus compounding the ineffi-
ciency of the gradient method with the inefficiency inherent to a stochastic method. It has been proved, however,
that, under suitable assumptions on the function to minimize, the method converges towards the global minimum
in some probabilistic sense. Furthermore, the method has very low storage requirements, and is therefore suited
for large scale problems. Gremaud [18] used also a modified version of the algorithm, replacing the gradient
method by the Polak-Ribière conjugate gradient method, thereby improving on the efficiency. No proof of
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convergence to a global minimum exists for the modified version, however. Another possible approach which we
have not explored is to make use of evolutionary algorithms, especially evolutionary stratégies (see Tomassini [31]
for a survey of the methods and a guide to further literature). These methods appear to be better suited to small
scale problems, however.

To solve the constrained optimization problems, we used the routine FSQP of Zhou and Tits [32]. FSQP is based
on sequential quadratic programming. It is very versatile, and can handle simple bounds as well as linear and
nonlinear equality and inequality constraints. The routine is written in FORTRAN and is available from the
authors.

6. NUMERICAL RESULTS

In this section we present the results of our numerical investigations on the families of functions introduced
in Section 2. We compare our results with the small number of known theoretical values and with the few values
computed in [13, 18].

We compute the values of yc, y and yr for hundreds of values of a in examples 1 and 2. We invest considerably
less effort in the computation of the polyconvexity threshold y . Indeed, we only estimate yp for the family of
functions of example 1 and for about 20 different values of a. This is only due to the f act that computing yp is
of considerably less theoretical interest than estimating y and yr, and not a reflection of the relative merits of the
algorithms.

In the examples of Section 2 we have n = 2 and, for the computations of y , Q is taken to be the interior of the
unit square [0, 1] x [0, 1]. The triangulations ?fh are constructed as follows. We choose an integer s and we
partition the interval [0, 1] into s subintervals of equal length, and then divide each resulting square into two
triangles, for a total of 2 s2 triangles. So the mesh size h is equal to lis, and the dimension of the space Uh,
corresponding to zero boundary conditions, is equal to m( s - 1 )2, while that of Üh, corresponding to periodic
boundary conditions, is m[(s — 1 )2 -h 2(s — 1) + 1] = ms2. We consider values of s ranging from 20 to 100.
In the case of zero boundary conditions, the number of variables of the optimization problems then ranges from 726
to 19606 for m = 2, and from 1089 to 29409 for m = 3. With periodic boundary conditions, these ranges become
804 to 20004 for m = 2, and 1206 to 30006 for m = 3.

Figure 1. — Graphs of y vs a for convexity, quasiconvexity, and rank one convexity for example 1. The bottom curve is yc, the next high est
is yr, and the top one is yq (note that the curves for rank one convexity and quasiconvexity are, here, indistinguishable).
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All the coding was done in FORTRAN and C++ and made use of the BLAS level one. All computations were
run on Silicon Graphics workstations equipped with R4000, R4400 and R8000 processors.

6.1. Example 1

We compute yc, yr, yq, for a between 1 and 8 in steps of 0.01. The results are displayed in figure 1, where the
values of yc, yr and y are plotted as functions of a. The yc and y curves are computed using the function h of
(7) and k of (18) respectively, and the pg-method together with the minimization algorithm of Shanno and Phua.
The mesh size h is 1/20 and we used periodic boundary conditions. The minimization algorithm is initialized with
a random starting point for a = 1. Henceforth, the starting point is taken to be the computed solution at the
previous value of a. The yr curve is computed using the function g of (8) and the simulated annealing version
of the Nelder-Meade algorithm. The minimization routine is initialized with a random starting point for every
value of a.

1 85

Figure 2. — Graphs of y vs a for convexity, quasiconvexity, and randk one convexity for example 1 with random starting point. The bottom
curve is yc, the next highest yr, and the top one y

We see that the yr and yq curves are nearly indistinguishable. Indeed, the largest gap between the computed
lues of yr and yq was about 9.2 x 10" 4.
When a = 1, so that the correct values of yc and yr are known, the results were as follows:

computed value correct value error

yc 1.88561822236594
yr 2.30941239674591

1.88561808316413
2.3094010767585

1.4 x 10"
1.2 x 10i - 5

More generally, the worst error between the computed values of yr and the exact values, when known, was about
1.4 x 10" 3.

A few values of yq have been estiniated bef ore. Dacorogna-Douchet-Gangbo-Rappaz [13] best estimation of
yq was 2.33 when a = 1 and with h = 1/10. Gremaud [18] estimated y for a = 1, 2, 6. The following table
holds his results, obtained with h = 1/40, and ours, obtained with h = 1/20.
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a Gremaud's results our results

1
2
6

2.31
1.9788
1.9506

2.3094
1.9779
1.9510

Thus the results are comparable, with ours slightly better. Recall that Gremaud's computations used a stochastic
algorithm designed to locate the global minimum of the function, while ours used a deterministic algorithm unable
to distinguish between local and global minima. Nonetheless, the stochastic algorithm was unable to find better
values than the deterministic one. This is very interesting, since the p^-method may indeed encounter difficultés
with local minima. This is illustrated in figure 2. Again the yc, yr and yq curves are plotted as functions of a. But
now, the minimization routine for the computation of yq is initialized with a random starting point for every value
of a. We see that for larger values of a, the algorithm grossly overestimated the value of y .

Finally, in figures 3 and 4, we illustrate the effect of the choice of boundary conditions on the solutions. Figure 3
shows the graph of one component of the solution for the computed y with a = 1 that satisfies zero boundary
conditions. The graph is displayed from two different points of view to emphasize the oscillatory structure of the
function. Figure 3 shows the same component of the solution to the same problem but satisfying periodic boundary
conditions. In both cases the mesh size is h = 1/100.

We now discuss our estimâtes of the polyconvexity threshold yp. We computed yp only for a few values of
a. The results are presented in the following table, where we compare our estimated y and yr. The values of
yp are obtained by applying the pq-method to the function given in Proposition (3.3). The resulting constrained
optimization problem is solved by calling the FSQP routine of Zhou and Tits [32].

The most interesting characteristics of our results are as follows. For a e [1, 1.83], so that yr ^ 2.0, our
estimated yp is precisely equal to 2.0. For a 5= 1.84, so that yr < 2.0, our estimated y and yr are nearly equal.
When the correct value of yr is known, it agrées with our computed yp for the first seven or eight digits. Observe
that y = 2 is the positivity constant of the family of functions ƒ, namely

ƒ (£) ^ 0 for every Ç e T)2 x 2

independently of a.

a

1.0
1.3
1.5
1.7
1.83
1.84
1.85
2.0
2.4
2.5
3.0
3.4
4.0
4.3
5.0
5.5
6.0
6.5
7.0
7.5
8.0

yP

2.00000000000
2.00000000000
2.00000000000
2.00000000000
2.00000000000
1.99964675082
1.9981030331
1.97785385481
1.94366150361
1.93831887377
1.92351225803
1.92083353227
1.92450104807
1.92811055074
1.93808947291
1.94475510544
1.95014629012
1.95459027804
1.95831495997
1.96148033948
1.96420320692

Vr

2.30941239675
2.13978159870
2.07165338144
2.02426844298
2.00123065553
1.99965701190
1.99811528459
1.97786450188
1.94369216373
1.93832149662
1.92354680800
1.92083418964
1.92452092029
1.92812897070
1.93813153935
1.94496424134
1.95025051423
1.95467088467
1.95845384478
1.96282698317
1.96474159128

correct value of yr

2.30940107675

1.94475498595
1.95014618758
1.95459028046
1.95831484750
1.96148034012
1.96420303878
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x10

01 02 03 04 05 06 07 08 09

Figure 3. — Graph of one component of the solution with 0 boundary conditions for quasiconvexity in example 1 with o = 1, viewed from
two different angles. The bottom figure illustrâtes clearly the oscillatory structure of the function.

6.2. Example 2

We compute the values of yc, yr and yq for a between 1 and 3 in steps of 0.01. The results are displayed in
figure 5. The yc and yr curves are computed with the simulated annealing version of the Nelder-Meade algorithm.
The minimization routine is initialized with a random starting point for every value of a. The yq curve is computed
via the pq-nxoXhoé and the minimization algorithm of Shanno and Phua. The minimization algorithm is initialized
with a random starting point for a = 1. Henceforth, the starting point is taken to be the computed solution at
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Figure 4. — Graph of one component of the solution with periodic boundary conditions for quasiconvexity in example 1 with a = 1, viewed
from two different angles. The bottom figure illustrâtes clearly the oscillatory structure of the function.

the previous value of a. In figure 5 the mesh size h is 1/20 for the first graph, and we observe convergence
problems m the computation of y for larger values of a. In the second graph of figure 5, the mesh size is increased
to 1/50, and the yr and y curves then become mdistinguishable.

The worst error between the computed value of yr and the correct values was about 1.8 x 10" 3, while the
i- 3largest gap between the computed values of yr and y, with h = 1/50, was about 1.4x10 . When

a = 1, the computed value of yq was 1.00000808500197, yielding an error of order 10'
computed yr and yq increases as a approaches 3.

i- 6 . The gap between the
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1 12 14 16 18 2 22 24 26 28 3

1 12 14 16 18 2 22 24 26 28 3

Figure 5. — Graphs of y vs a for convexity, quasiconvexity, and rank one convexity for example 2 with a 20 x 20 grid (top graph) and a
50 x 50 grid (bottom graph). The bottom curve is yc, the next highest is yr, and the top one is yq,

Gremaud [18] estimated y for a = 1.5 and a = 2, His computations were done with h — 1/20. We compare
his results and ours in the following table.

Gremaud's results our results (h - 1/20) our results {h = 1/50)

1.5
2

1.2946
1.4237

1.2927
1.4306

1.2927
1.4179
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Again the results are comparable, with ours slightly better demonstrating again that the stochastic method
unable to produce better results than the deterministic ones. Overall, example 2 appears slightly less amenable
to numerical investigation than example 1. Local minima cause difficulties for the computation of yq for all values
of a in the chosen interval [1,3].

6.3. Example 3

We compute the values of yr and yq for several choices of eigenvalues of the matrix M. We use the simulated
annealing version of the Nelder-Meade algorithm to compute yr and the direct method together with the
minimization algorithm of Shanno and Phua for y . The mesh size is 1/20. (Observe that here, \y~ | ^ y+

q in
gênerai). The results are summarized in the table below.

Again, we see that the computed value of yq is larger than yr in all flfteen examples we considered, while the
différence between these quantities is at most 6 x 10~ 4, often much less.

Eigenvalues

(2, 1, 1, 0)
(2, 1, 1, 1/2
(3, 2, 2, 1)
(4, 2, 2, 1)
(6, 2, 2, 1)
(8, 2, 2, 1)
(5, 4, 4, 2)

( - 1 , - 2 , - 2 , - 3 )
( - 1 , - 3 , - 3 , - 4 )
( - 2 , - 3 , - 3 , - 4 )
(_1, -4 , -4 , -5 )
(-1, -2 , -2 , -4 )

(-1, -7/2, -7/2, -5)
(3, 2, 1, 0)
(8, 2, 1, 0)

yr

2/3
2
2
1

1/3
1/5
2

2/9
1/6

2/11
1/8

2/13
4/31
2/5
1/7

computed value of yr

0.66666846
2.0000070
2.0000092
1.0000063
0.33486164
0.20084300
2.0000268
0.22222251
0.16666681
0.18181862
0.12508059
0.15384647
0.12903249
0.40007437
0.14340791

computed value of yq

0.66678419
2.0001304
2.0004091
1.0001142
0.33334408
0.20000793
2.0005941
0.22223656
0.16667002
0.18182958
0.12500245
0.15387374
0.12905427
0.40021655
0.14286232

6.4. Example 4

This is the celebrated example of Sverak, providing an example of a function that is rank one convex but not
quasiconvex. Here m = 3. We chose a = 1/100. For this value of a, we know that yq = 0, while yr > 0. We
computed yr and yq with the direct method together with the Shanno-Phua minimization algorithm, and with
periodic boundary conditions. We found

and

; 0.12978763

1.33 x 10 with mesh size 1/20
ïq [ 1.08 x 10" n with mesh size 1/100

Thus our algorithms had no difficulties computing the correct value of y in this case. The reader may be interested
to compare the graphs of the three components of the computed solution for the estimation of y with the spécifie
example of a quasiconvex function that is not rank one convex given by Sverak [30], namely

<p(x>y) = (sinje, siny, sin(x-f-y) ) .
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Figure 6. — Graph of the first component of the solution function for the estimation of yq in Sverak's example. The mesh size = 1/100.
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Figure 7. — Graph of the second component of the solution function for the estimation of yq in Sverak's example. The mesh size = 1/100.

7. MORE NUMERICAL RESULTS

We considered several other families of functions in addition to those introduced in Section 2, both in the case
m = 2 and m = 3. All of these functions are of the form

with fx convex. No analytical results are known concerning the values of yc, yp, yq or yr. In all of these examples,
we found our estimations of y and yr to be essentially equal.

In dimension 2, we have considered the following families of functions.
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Figure 8. — Graph of the third component of the solution function for the estimation of yq in Sverak's example, viewed from two different
angles. The bottom figure illustrâtes clearly the oscillatory structure of the function. The mesh size = 1/100.

1.

0 i f £ = 0

that is fy is the function of example 3 except that now M is an arbitrary 4 x 4 symmetrie matnx. We tned many
different choices for M.
2.
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where a( Ç ) is a polynomial of degree 3 in the four entries of £. There are 20 mononüals of this type, and the
function a(f ) is completely determined by the corresponding coefficients. We tried many different possible
choices of coefficients.

In dimension 3 we considered the following functions.
1.

with the following choices of functions p( Ç ),

«11 ^22 "" «12 ^21

«11 ^22 ~ «12 ^21 "*~ «11 <=32 "" «12 «31

«11 «22 "" «12 S21 + Cn S32 ~" Ci2 ^31

2.

3.

4.

« 3 2 - ^ 22

8. SUMMARY AND CONCLUSIONS

We summarize the most important features of our numerical results.
• Our computations are in excellent agreement with all the known analytical results. In particular, we had no

trouble recovering Sverak's example of a function that is rank one convex but not quasiconvex.
• The stochastic methods failed to produce better results than the deterministic methods.
• The use of periodic boundary conditions pro vides slightly better estimâtes of yq than those obtained with zero

boundary conditions.
• Refining the mesh does not yield significantly better results for the estimation of yq.
• In every example considered in dimension 2, the estimated values of yq and yr are nearly equal.

It is currently not known whether a function

ƒ:
D2 x 2

—»

is quasiconvex if and only if it is rank one convex. Our numerical experiments pro vide some évidence that, for
the examples considered, this is indeed the case.
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