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MATHEMATICA!. MODELUNG AND NUMERICAL ANALYSIS
MODELISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 32, n° 2, 1998, p. 177 à 209)

WELLPOSEDNESS OF KINEMATIC HARDENING MODELS IN ELASTOPLASTICITY (*)

Martin BROKATE (*), Pavel KREJCÏ t i

Abstract — We consider a certain type of rate independent eîastoplastic constitutive lawsfor nonlinear kinematic hardemng which include
the models of Fredenck-Armstrong, Bower and Mróz We prove results concerning existence, uniqueness and continuons dependence for the
stress-strain évolution considered as a functwn of time (but not of space) As an auxiliary resuit, we also prove a iheorem concerning the
Lipschitz continuity of the vector play operator © Elsevier, Pans

Résumé — On considère une famille de lois de comportement élastoplastiques indépendantes de la vitesse pour le renforcement
cinématique non linéaire qui comprend les modèles d'Armstrong-Fredenck, Bower et Mróz On démontre Vexistence, l'unicité et un résultat
sur la régularité de Vévolution du système tension-déformation considérées comme fonctions du temps (la loi de comportement étant supposée
indépendante de la variable spatiale) Comme un résultat auxiliaire, on démontre un théorème sur la continuité hpschitzienne locale de
l'opérateur vectoriel du jeu mécanique. © Elsevier, Pans

1. INTRODUCTION

Depending on the material a solid body is made of, the relation between load and déformation may vary greatly
in character. Any deeper understanding requires an analysis of the governing physical and molecular processes
which take place on a microscopic scale. On the other hand, a study of the macroscopic behaviour, in particular
numerical simulation, eventually has to rely upon some continuüm model. One may analyze microscopic and
macroscopic models separately, or concentrate on their interaction. Within this paper, we restrict ourselves to
macroscopic models which are rate independent and assume small strains. Such a type of behaviour is typical
e.g. for the eîastoplastic déformation of commonly used ductile steels at room température. To model the
eîastoplastic stress-strain law, we use an operator formulation, namely

£ = ^ ( c r ) , a = » ( £ ) , (1.1)

which automatically distinguishes between the stress controlled and the strain controlled situation. Hère, the
operators SF and 'S map certain spaces of functions, defined on some time interval [t0, tx] with values in some
tensor space, into each other. In the rate independent case considered here, such operators are often called
hystérésis operators. We consider the stress-strain law in isolation, that is, we concentrate on the évolution in time
according to (1.1) at a single point; thus, the balance laws which specify the space interaction do not play any
role here. We study the question whether the stress-strain law is wellposed in the space Whl(tQ9 tx\ Td), that is,
whether the operators SF respectively *§ are well defined and continuons with respect to the norm
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178 Martin BROKATE, Pavel KREJCÎ

Hère, we discuss models which are of pure kinematic hardening type. The basic model, usually termed linear
kinematic hardening, is due to Melan [27] and Prager [33]; during the last 40 years, many modifications and
refinements have been developed in order to cope, for one thing, with the experimentally observed phenomenon
of ratchetting. We refer to [7], [8], [9], [16], [17], [36] and [20] for discussions and comparisons. We show in
this paper that some of these, in particular the models of Armstrong and Frederick [1], Bower [2] and Mróz [29]
can be reduced to a differential équation of the type

w = Ö + ^ ( Ö , u) \t\ . (1.3)

Hère, 8 stands for a or e, depending on whether we consider the stress controlled or the strain controlled case;
u represents an artificial function and JM dénotes a certain operator, for each of the models considered. We will
not require .M to possess any monotonicity or convexity properties. The function £ is related to u through the
variational inequality which expresses the principle of maximum dissipation or, equivalently, the normality rule.
The réduction to (1.3) as well as the wellposedness of the initial value problem for (1.3) constitutes the main
content of this paper and is discussed in Sections 2 and 3. Some additional material related to the Mróz model
is presented in Section 4. The appendix includes a resuit concerning the Lipschitz dependence of £ upon u.

From the standpoint of mechanics, a proposai of a stress-strain law will be meaningful only if it is compatible
with the second law of thermodynamics. For the isothermal case considered here, this means that the energy
dissipation rate has to be nonnegative, that is

sa- Ü ^ 0 (1.4)

has to hold along any possible trajectory of the System; here, U dénotes the internai energy. For Systems with
memory, however, the construction of a suitable nonnegative U can be a tricky and nontrivial business. To tackle
this problem in a somewhat gênerai manner, the notion of a dissipation potential has been introduced. Within that
framework, it is shown in [14] that for a certain class of standard generalized materials the second law is satisfied.
We refer to [26] and [24] for an exposition and for remarks concerning the relation to the models treated here;
we will be satisfied with a different explicit construction of U for those models, in form of a hystérésis operator.

We do not study multisurface models, except for some remarks. The Chaboche model will be treated in a
subséquent paper.

2. KINEMATIC HARDENING MODELS

In order to fix our notation, we start with a brief review of the ingrédients of kinematic hardening models. We
dénote by T the space of symmetrie N x N tensors endowed with the usual scalar product and the associated
norm

N

<T,»7>= 2 r,j%' M = V R T > . (2.1)

For T G T, we define its trace Tr T and its deviator rd by

TTT=2JT B = <T,<ï>, T r f = T - ^ , (2.2)

where ô = (J y ) stands for the Kronecker symbol. We dénote by

Td = {r : T e T, Tr T = 0}, T ^ = {T : x = A3, X e U}, (2.3)
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KINEMATIC HARDENING MODELS IN ELASTOPLASTICITY 179

the space of all deviators respectively its orthogonal complement. Since we study the stress-strain law in isolation
and do not discuss the spatial coupling described by the balance équations, we consider stress and strain as
functions defined on some fixed time interval [tQ, tx]. Most of our results concerning wellposedness will refer to
the space of absolutely continuous functions, so we will usually consider

M e W 1 ' \ t 0 , t ï ; T ) : = l r \ z : [ t 0 . t 1 ] -> T, | |T | | L , = \ z ( t o ) \ + j ' \ i ( t ) \ dt < - l .

In operator form, the stress-strain law becomes

(2.4)

/* ^ — v. ) * \"^/

depending on whether we study the stress controUed or the strain controUed case. The operators SF and ^ will
usually be defined on some subset DF respectively DG of W1' l( tQ, tx\ T ) , generically denoted by D (note that we
already used T indiscriminately for stress and strain tensors). To ensure compatibility with the second law of
thermodynamics, we require the existence of operators °UF defined on DF respectively
internai energy operators, such that °llF(o) ^ 0 respectively %G{8) ^ 0 in W1' l(t0, tx; R) and

defined on DG, called

respectively

0, a.e. in ( Ï 0 > h) ,

(2.6)

(2.7)

hold for all admissible arguments. Note that the left hand side of (2.6) respectively (2.7) represents the rate of
dissipation of the energy.

In terms of rheological models, all the models studied below have the structure

JP ( //h I i£/* \ /O Q\

that is, a linear elastic element ê is connected in series with the parallel combination of a rigid plastic element
M and a "kinematic" element J f ; essentially, M defines the form of the yield surface,while JT describes its
movement. The rheological structure (2.8) is reflected in the décomposition

= 8e a = ae ap , (2.9)

of the stress and strain tensor into an "elastic" and a "plastic" part, sec figure 1. (In order to conform with gênerai
usage, we write ae for the stress along JT, instead of the more proper notation ok, although J*T is not really an
elastic element in the case of the Bower and the Mróz model below.)

rAAAMAM/VVi

K: e?,

1Z : sp. aP

Figure 1. — The rheological model for kinematic hardening.

vol. 32, n° 2, 1998



180 Martin BROKATE, Pavel KREJCÏ

The linear elastic element ê relates the total stress a and the elastic strain ee by

a=Ase, (2.10)

where A = (Aljkl) is assumed to be constant in time and symmetrie as well as positive definite with respect to
the scalar product ( . , . ) • The rigid plastic element M is charactenzed by a closed convex set Z c: T which
spécifies the admissible values of the plastic stress, i.e. it is required that

ap(t) e Z, for all t e [f0, tx] . (2.11)

Its boundary dZ is called the yield surface. Plastic flow occurs according to the pnnciple of maximum plastic work
rate, that is, the plastic strain rate (F has to satisfy the évolution variational inequality

(^(t),ap(t)-â) ^ 0, V(TG Z, a . e . i n C ^ ) , (2.12)

which implies that ^ = 0 as long as ap e Int Z, while é? points in the direction of the (or, in case of
nonuniqueness, an) outward normal if ap e 3Z, see figure 2.

Figure 2. — The normality rule.

For ail models considered below, the plastic strain is volume invariant, that is,

Trep(t) = (ep(t),ô) = 0, ep
d(t) = 8p(t\ for ail t e [r0, fj . (2.13)

In view of the normality rule (2.12), condition (2.13) requires Z to have the form

Z = Zd © Td
x , Zd c: Td closed, convex . (2.14)

We will restrict ourselves to the von Mises yield condition

Td = {r:re T d , | r | ^ r}. (2.15)

since 0 e Int Zd, the plastic work rate is always nonnegative, and there can be no plastic déformation if the plastic
stress vanishes.

The movement of the yield surface is related to the elastic stress ae(t), commonly also called backstress, as
follows. Since ap(t) e Z if and only if a(t) G ae(t) + Z = : Z*(t), the set

dZ\t) = ae(t) + dZ (2.16)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelhng and Numencal Analysis



KINEMATIC HARDENING MODELS IN ELASTOPLASTICITY 181

represents the position of the yield surface within stress space at any given time t Since dZ - dZd © Td
x , only

the movement in the deviatoric part plays any role, so one requires that

ae(t) = ae
d(t)eTd, forallfe [^f j . (2.17)

In fact, for all models treated below, the requirement ae(t0) e Td implies that (2.17) holds. We may write the
time évolution of ae in operator form as

ae = J^F(a), icsp,ae = jfG(e); (2.18)

the operators J^F respectively 34? G are called the hardening rule.
The décomposition (2.9) introduces memory into the constitutive law; thus, the initial state of the memory has

to be specified if one wants any stress or strain controlled évolution to be uniquely determined. Throughout this
paper, we choose to prescribe the initial values

e"(t0) = epe Td> ap(t0) = ap
Od e Td, \ap

od\ ^ r. (2.19)

The second condition fixes the initial position of the yield surface with respect to the initial stress <Jd(t0). Once
either a(t0) or s(tQ) are given, the initial values for all variables in (2,9) are determined by (2.9), (2.10), (2.17)
and (2.19). (In the case of linear kinematic hardening, équation (2.20) below replaces one of the two initial
conditions.)

We now discuss spécifie choices for the kinematic element Jf\

2.1. The model of Melan and Prager

In this model, also referred to as linear kinematic hardening, one simply sets

ae = Cep, (2.20)

where C > 0 is a constant. By (2.13), there holds ae - ad a.e., and the évolution variational inequality (2.12)
becomes

(&d -0*°*- dd) * 0, V<rd G Zd, a.e. in ( tQ9 tx ) , (2.21)

ap
d(t)eZd, f o r a l l t e [to,tx] . (2.22)

It is well known that (2.21), (2.22) has a unique solution ap
d for a given function ad and initial condition

°% h ) = ao d G ^d '•> m o u r terminology, there holds

<Tp
d=y(ad\<JP

öd), (2.23)

where

«̂  : Wh \t0, ^ Td)xZd^ Wh \tQ, tv Td) (2.24)

dénotes the stop operator with the characteristic Zd as described in Définition A.2 of the appendix, with the choice
X = Td. Since ae — ae

d, the hardening rule can be written as

o\t) = od{t) - a%t) = 0>(crd; ap
0d) (t) , (2.25)
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182 Martin BROKATE, Pavel KREJCI

where 3P dénotes the play operator with the charactenstic Zd (agam, we refer to the appendix) The stress-strain
law in stress controlled form becomes

e(t) = ( * • ( * ) ) ( 0 = A " ' G{t)+±&{od, o»0d) (t) (226)

Thus, the wellposedness of fF — with respect to a given pan: of norms m stress and stram space — is equivalent
to the wellposedness of the évolution vanational înequahty (2 21), (2 22) In particular, the estimate

W/z) - âd(z)\ dz , (2 27)

which lies at the root of the theory ïnitiated by Lions and Brézis (see [3] and [25] and the hterature cited there),
yields the Lipschitz continuity of

f W 1 1 ( f 0 . ' i . T ) ^ C ( [ f 0 > / 1 ] > T ) (2 28)

If one couples linear kinematic hardemng with the balance équations of lineanzed elasticity, the resultmg
boundary value problem fits well into the framework of convex analysis, and the estimate (2 27) usually leads
to uiuqueness in a natural manner We refer to [12], [14] and [32] for the gênerai approach and to [13], [15], [19]
and [31] for results concerning linear kinematic hardemng

In contrast to that, our proof of wellposedness of the models below requires stronger continuity properties of
the operator ^ , to be discussed in the appendix By (2 26), those results also furmsh stronger results on continuous
dependence for the Melan-Prager constitutive law

Its compatibihty with the second law follows from the ïnequahty

<e, a) = (A- 1a, a) + ^ {a\ ae) + <e", ap) > \ ff ( <A" ' <7, a) + ± \ae\2 ) (2 29)

Thus, if we define an internai energy operator by

<%F(o)=\(A-l^G)+^ç\ae\\ (2 30)

w e see that (2 6) holds a long arbitrary stress pa ths a G Wl 1(t0,t1,T)

2.2. The Armstrong-Frederick model

Armstrong and Frederick [1] proposed a modification, usually termed nonlinear kinematic hardening, of the
model of Melan and Prager, namely

) , (2 31)

where y, R > 0 are constants Obviously, (2 13) implies that (2 17) holds if ae(t0) e Td

Since

\<Te\£t\v
e\ = £ t ± \ a e \ 2 = y(R(tf,ae) - \ o e \ 2 t?) *i y ^ l ( R - \ a e \ ) \ae\ , (2 32)

there holds | a e ( 0 | ^ ̂  for ail t if ît holds for t = f0, and the yield surface will always lie inside the sphère
of radius R + r The restriction

\ve(t0)\ ^R (233)
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KINEMATIC HARDENXNG MODELS IN ELASTOPLASTICITY 183

thus appears to be natural, because otherwise the initial condition would not be reachable from the zero state.
Since the normality rule in the von Mises case implies that

we can rewrite (2.31) in the form

(2.34)

(2.35)

In particular, the vector àe(t) points in the direction of the vector (R/r) crp
d(t) — ae(t) during plastic flow, see

figure 3.

Figure 3. — The model of Armstrong and Frederick.

To dérive the wellposedness of the Armstrong-Frederick model, we employ a suitably chosen auxiliary variable.
For the stress controlled case, we consider

u = yRap + ap
d .

Multiplying (2.12) by yR, we see that

has to be satisfied. In operator notation,

(2.36)

(2.37)

yR ) . (2.38)

vol. 32, n° 2, 1998



184 Martin BROKATE, Pavel KREJCI

The hardemng rule becomes

and the stress-stram law takes on the form

£=A~ l (J + ̂ âP(u,ap
Qd) (2 40)

We replace ap
d in (2 36) by ad — ae, form the time denvative and evaluate ae according to (2 31) Usmg (2 38)

and (2 39) we obtain the stress controlled differential équation for the unknown function w,

u = a + — (er -<Sf(u,Gp )) —^(uta
p ) , (2 41)

which we have to solve subject to the initial condition

+ <* (2 42)

We will prove the wellposedness of this problem in Section 3
A sirrular procedure works in the stram controlled case We assume Hooke's law for the linear elastic part

(2 10), that is,

'.e)ô, (243)

holds with the Lamé constants À, n > 0 Consequently, we have

<je = od=2^e
d-G

p
d=2ii£d-(2nep + <Tp

d) (244)

We now choose the auxihary function

v = (2fi + yR)ep + ap
d (2 45)

For the same reason as above, (2 37) contmues to hold if we replace u by v, so

1 /-52/ *i P \
^^^yi^(v'<d) (2 46)

We form the time denvative in (2 45) and obtam

v =y^ + (2^-<7e) = 2^+yay| (2 47)

On the other hand, combimng (2 44), (2 45) and (2 46) we get

,o%d\ P=Y^R (248)

Putting together (2 47) and (2 48) we finally arrive at the stram controlled differential équation

v =

with the initial condition

p
o + ap

0d (2 50)
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The thermodynamical consistency of the Armstrong-Frederick model follows from the inequality

185

(2.51)

2.3. Bower's model

In order to improve the description of ratchetting effects which occur during the elastoplastic déformation of
railway rails, Bower [2] refined the Armstrong-Frederick model as

(7 = y{ KÖ ~ y(T — (7 ) | E | ) , yZ.jZ)

a — c \ o — o ) |c i , \£.DJ)

where o 0 is an additional constant and

is given.
We have

de - d" = yRf - (y + c) ( a e - <Tfi) |£"| ,

(2.54)

(2.55)

Figure 4. — The model of Bower.

vol. 32, n° 2, 1998
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and the same argument as in (2 32) yields the natural restriction

|°"e(fo) ~°"ol ^ ^ + 7 (2 56)

Combimng (2 52) and (2 53) we obtain

y

This enables us to elimmate a m (2 52), and we obtain

o e = yRe? — ((y + c) o e — ycR(ep — £ Q ) — cae(tQ) — y<TQ) |£^ | (2 58)

We now proceed similarly as we did for the Armstrong-Fredenck model In the stress controlled case, we put

(2 59)

so

l ¥\u , ap
0 d) = o"d

Differentiatmg in time and inserting (2 58) we get the ïdentity

and thus obtain

with the initial condition

cro

In the stram controlled case, we consider the auxiliary funcüon

where

We differentiate (2 64) and obtain, assuming again that (2 43) holds,

v =2jLted +

with the initial condition

(2 60)

(2 61)

(2 62)

(2 63)

(2 64)

(2 65)

(2 66)

(2 67)
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The thermodynamical consistency is implied by the inequality

(2-68)

Without further information, and in particular for the zero initial state, the natural initial value for a^ will be
a g = 0. It turns out, ho wever, that with the spécifie choice

afi
0 = cREp

0-^a\t0), (2.69)

the kinematic element J f becomes identical with a parallel combination of an Armstrong-Frederick element and
a Melan-Prager element; in this manner, a special case of the two surface Chaboche model is obtained. To this
end, we décompose the backstress ae as

ae = aa + am , (2.70)

where

^ = -^^e-^)- (2.71)

(2.72)c + y

From (2.52)-(2.56) and (2.69) one easily computes that

( 2 '7 3 )

2.4. The model of Mróz

In contrast to the models above, the hardening rule ae = Jf?F( od ) of the Mróz model [29] is not based upon
a formula involving the plastic strain rate i? ; instead, it employs a certain geometrie construction involving an
auxiliary surface, namely the sphère dBR( 0 ) with the radius R > r around 0. (We will not treat the case of several
auxiliary surfaces as in the original paper [29], nor the vesion with a one parameter family of surfaces discussed
in [10], [11] and [4].) Assume that there holds

\aJit)\<R, f e ( r ^ ) . (2.75)

The Mróz hardening rule is defined by

( f a"d{t) -<7d(0) . (2.76)f
vol. 32, n° 2, 1998



188 Martin BROKATE, Pavel KREJCI

where jj(t) ^ 0, if |er£(O| -r and (àd(t), op
d(t)) > 0, and ju(t) = O and hence ae(t) = O otherwise. The

actual value of JJ(t) during plastic flow can be detennined from the condition |ap
d{t)\ = r. Moreover, in the case

of the sphère, up
d points into the direction of the outward normal if \ap

d\ - r ; consequently, the vector àe(t)
defined by (2.76) points into the direction of the line which connects &d(t) to the point ha ving the same normal
as od(t) on the auxiliary surface dBR(0), see figure 5.

Figure 5. — The Mróz hardening rule.

We now show how this construction is related to the stress controlled differential équation

Oj
(2.77)

To this end, let us first assume that the function ju is determined as described above. Let the auxiliary function
u solve the équation

From (2.76) we obtain

so that

(2.78)

(2.79)

(2.80)
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By définition of the stop operator we get, setting £ = S?(u ; op
Qd),
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p
Qd

d d = u(t) - ^(t) = ̂ ap
d(t) , (2.81)

so that Rju(t) = \Z(t)\9 and (2.77) holds. Conversely, if u solves (2.77) and if we define

l£ (2.82)

we see that (2.76) is satisfied. Thus, (2.77) characterizes the Mróz hardening rule. The initial condition for u can
be chosen arbitrarily, for example as u(t0) = ap

od. The normality rule (2.12) requires that the plastic strain rate
satisfies

<5"(0 = A(0 ff5(0, (2-83)

where X(t) ^ 0 and X(t) = 0 if |o^(O| < *"- The choice of X is discussed in [24]; we only add the following
remark concerning the thermodynamical consistency. If we solve (2.77) for &d, we obtain

^ = ^ - ^ = ^ - ^ 1 ^ 1 • (2-84>

Let t be such that |ap
d{t)\ = r and that the derivatives exist at t. Then there holds

(óJLt), ap
d{t)) = (à\t), ap

d(t)) + (d%t), ap
d(t)) « (à\t), o%t)) , (2.85)

hence (&d(t), crp
d(t)) > 0 and |o^(r)| = r imply that t,(t) ^ 0. Consequently, if we assume that there is no

plastic déformation for unloading or neutral loading, that is, if

0 => {àd{î\ ap
d{t)) > 0 , (2.86)

we must have t,{t) ^ 0 if X(t) ^ 0 , so we can find a nonnegative function a such that

(2.87)

We may combine (2.84) and (2.87) to obtain

ad* = ^ - ^ 1 ^ 1 , a.e.in(fo ,f1). (2.88)

This enables us to estimate the rate of mechanical work from below as

<ë, a) = (A~ lû, <r)+^jf- Kl + (<*&% ad)

>\ft{A-lo,G) + a{ó\oe). (2.89)

Thus, the choice

a ( 0 = G ( | a ' ( 0 | 2 ) , (2.90)

where G is a positive integrable function (in particular, it may be chosen as a constant) ensures the thermody-
namical consistency of the model.

vol. 32, n° 2, 1998



190 Martin BROKATE, Pavel KREJCI

It is known that the Armstrong-Frederick model can be considered as a special case of the Mróz model. In the
framework above, we see this if we select the function a in (2.87) to be a constant; in that case, (2.88) becomes

^ (2.91)

3. EXISTENCE, UNIQUENESS AND REGULARITY RESULTS

In this section we study the wellposedness of the Cauchy problem

f (3.1)

oj (3.2)

u(to) = u°, (3.3)

The unknown functions are u and £, whereas the initial conditions «°, x° as well as a source (or input) function
9 are given. By & we dénote the play operator with the charactenstic Z = Br(0), r > 0, as defined in the
appendix. The operator JM may have a rather gênerai form, but it is required that all values */#(#, u) (t) are
uniformly smaller than 1 in absolute value. To be more précise, we consider

J?:0xC( [r0, r j ; X) -> C( [f0, *J ; X) , (3.4)

where X is a finite dimensional Hilbert space, and 0 dénotes a set of admissible input functions. In f act, JM may
also depend upon the initial value x ; however, for simplicity we will suppress this dependence in the notation
except in the statement and proof of Theorem 3.3. The operator M has to be causal, that is, it holds
J({9V u1 ) = Ji{92, u2) on [r0, t] whenever ( 9V u1 ) = (92, u2) on [r0, f], if t e [r0, r j . Thus, M générâtes
a family of operators

^ r , : Ö f x C ( [ r 0 , f ] ;X) ->C( [ f o , f ] \X\ ö, = {ö|[fo,f] : f l e f l } , r e [ r o , r j , (3.5)

but we will usually drop the index t in the sequel. Since we will use the method of the retarded argument for the

proof of the basic existence theorem, we also require 0 to be shift invariant, that is, xè 9 G 0 for every

9 e 0 and 3 > 0, where the shift T ƒ of a function ƒ defined on [£0, tx~\ is given by

ASSUMPTION 3.1: Let 0 a Wh l( tQ9 tx ; X) be shift invariant, let M : 0 x C( [tQ9 f j ; X) ^ C( [ï0, ?J ; X) be
causal and continuons with respect to the maximum norm. Moreover, assume that u° G X, x° e Br( 0 ) and
K > 0 are given such that

sup | . 4 r ( 0 , H ) ( * ) | S £ 1 - K (3.7)

holds for every t e [t0, tx], 9 e 0t and every u e W1' l(tö, t ; X) with u(t0) = u° and

| M ( T ) | = S ^ | Ô ( T ) | , a .e .m(r 0 ,O- (3.8)

We present the basic existence theorem.
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THEOREM 3.2: Let Assumption 3.1 hold, let 8 e © be given. Then there exists a solution (u, £) of the Cauchy
problem (3.1)-(3.3) such that u, Ç e Wh \t0, tl ; X) and

as well as

KOI ^ J

(3.9)

(3.10)

Moreover, every solution which satisfies (3.9) also satisfies (3.10).

Proof: We first consider the Cauchy problem

ù(t) = ê(t)+f(t)\Ç(t)\, a.e. in (a, a+ rj), (3.11)

on some interval [a, a + tj] c [t0, f,], where u" e X, xa e Br(0), ƒ e L°°(a, a + rj) are given. We claim that
(3.11), (3.12) has a unique solution u, £, e Wu\a,a + r/;X) satisfying (3.10), if

\9(O\ dt ** ̂  .

This follows from the fact that the operator T defined by

(.Tu) (t) = ua + d(t) - 0(a)

is a contraction on the subset

± \9(t)\ a.e.,u(a) - ua

of Wh\a, a + r\ ;X). Indeed, T maps B into itself since (Tu) (a) = ua and, since
a.e. by (A.12),

ft(Tu)(t) ~

(3.13)

(3.14)

(3.15)

\ù\ holds pointwise

(3.16)

Moreover, if we apply Theorem A.5 and the estimate (A.4) on [a, a + 77], we obtain for any M, V e B

- j - (Tu) - - j - (Tu)\ (s) ds ^

) Ö?5" H I | w ( s ) | \£f[u \ x ] — ̂  [ v ; x a ] | (s) ds
r Ja J

\Ü-V

\ü-v \ü-v

(1 -K2)\ \ü-v
Ja

(s)ds (3.17)
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In the second step, we consider the Cauchy problem

û(t) = 6(t) + Jt(x6 Ö, T*U) ( 0 |£(*)|, a.e. in (*0, ^ ) , (3.18)

^(M;JC°)(f), M(ro) = M°. (3.19)

Since the constant n in (3.13) can be chosen independently from a, for every ö e (0, rj) we can use the result
of the first step as well as Assumption 3.1 to construct an absolutely continuous solution ( us, < )̂ of (3.18), (3.19)
successively on the intervals [t0, *0 + <5], [tQ + <5, t0 + 2<5],..., such that

K(O| ^ - |ö(f)| (3.20)

holds almost everywhere. By (3.20), the family {uö \Q <ö <rj] is equiintegrable in Ll(t0, tx ;X) and {us} is
equicontinuous and uniformly bounded in C( [t0, tx~\ ; X). By the Dunford-Pettis and the Arzelà-Ascoli theorems,
there exists a u G W1' ^^Q, ït ; X) and a séquence {wa } with ök —> 0, denoted by {M^}, such that uk^> u uniformly
in C( [r0, r j ; X) as well as

Çh
lim {ük- ù, w)dt=0, for all w e LT(tQ,tx ;X) . (3.21)

^ ° ° Jt0

Setting

we can rewrite (3.18), (3.19) in terms of a Stieltjes intégral as

Mifc(O = KO + 0 ( O - 0 ( r o ) + J?(rk0,Tkuk)(s)dVk(s), T * : = A (3.23)

Since the séquence {Vft} by Proposition A.9 converges pointwise (and, hence, uniformly) to

ds, (3.24)

hand since obviously xh uk^> u uniformly, the continuity of M enables us to pass to the limit in (3.23), so
(M, O with £ = 0>(u ; JC°) yields a solution of (3.1)-(3.3). D

If the operator JM is Lipschitz continuous, the solutions of the Cauchy problem (3.1)-(3.3) depend Lipschitz
continuously upon the data (and, in particular, are unique), as the following theorem shows.

THEOREM 3.3: Let two sets of data ( 6V x°v u\ ), ( 02, x°, u\ ) with 6l e 6>, u°t G X and x° e Br( 0 ) ?̂e gzven, let
(uv cfj) «no? (M2, £2) ^ corresponding solutions in Wl'l(t0, tx ;X) of the Cauchy problem (3,1)~(3.3) which
satisfy (3.9) and (3.10) for some K > 0. Assume that

max \J?(ei,ul;x°l)($)-J?(O2,u2;x°2)(s)\ ^

| | ü i -« i 2 | ^+ |Ö 1 ( fo ) -Ö 2 ( fo ) | + | (3.25)
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holds for all t e [f0, f j . Then there holds

\\u1-u2\\hl^L(\xo
1~xo

2\ + \uo
l-u

o
2\ + l l 0 i - 0 2 H i f l ) , (3.26)

where L dépends only upon A, K, r and

c : = m a x { l l ö , » ! ^ , \\02\\lA). (3.27)

Proof: From the differential équation (3.1) and from (3.9) we obtain, a.e. in (t0, ti),

K(o-*2(oi « \ö1(t)-ë2(.o\ + (i-K)\è1(t)-ï2o)\+ (3.28)

+ \Ut)\\^Wv «i ;*?) (O - -*(02. U2'4) (01 •

Theorem A.5 states that there holds, for every te [t0, r j ,

f' |£, - k2\ ds *k \x\-xl\ + f' |«, - Ü2\ ds + ̂ l ' |iix| |*t - x2\ ds , (3.29)

where ^ = 5^(M( ; jcf), i = 1, 2. By (A.12) and (3.10) we have

1^(01 ^ 1^(01 ^ ^ | Ô i ( 0 | . (3.30)

Since (A.4) implies that

k ( j ) - * 2 ( * ) | < | * ? - ^ | + f l ^ - ^ I r f T , j e [ r o , f ] , (3.31)

we obtain that

, -t2\ ds ̂  ( i + ^ £ |0il * ) 1^-41 + ƒ' K - « 2

+ ̂ f 1̂ (̂ )1 ['lu,-«al dr ds.^ f [ ' ( 3 . 3 2 )

For a given « e [t0, r j , we integrate (3.28) over [ï0, f], estimate the derivatives of d; with the aid of (3.30), (3.32)
and (3.27), rearrange and divide by K to obtain

f' |üx - Û2\ ds $ B + \ (A + ( l " ^ ^ ) f |d1C«>1 f l i i j - i ^ l d T d s , (3.33)

where B is the number given by

{^)le2\uA +
 cA\A-ul\+^[{i-K){i +

 c^) +
 c-}\x\-x\\. (3.34)
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We define the functions /? and w by

(335)

= P(s)\ \ux-u2\dxds
Jt0 Jt0

w ( 0 = P(s)\ \ux-u2\dxds (3 36)
J J

In terms of those functions, (3 33) becomes

* + w(O). for all f e [r0, t j (3 37)

Since w(ro) = O, Gronwall's înequahty implies that

w(t) exp fi(s)ds)-l (3 38)

Inserting (3 38) into (3 37) we finally conclude that

(-^(A + (1 - K)^)} (3 39)f ' \ux-u2\ dt
JtQ

The proof is complete D
We apply the results of Theorem 3 2 and of Theorem 3 3 to the models of Armstrong-Fredenck, Bower and

Mróz We begin with the Mróz model which is particularly easy to treat, because in this case the operator Ji does
not depend upon u Let d e W ( tQ911 , T ) be given According to Subsection 2 4, we have to solve the initial
value problem

(3 40)

lts solution (u, O détermines ae and ap by (2 78) The stress controlled constitutive law

s = ̂ M(a)=A-la + Ep, (3 41)

turns out to be well posed for rather gênerai flow rules, for example (see the discussion in subsection 2 4)

(3 42)

PROPOSITION 3 4 (Mróz model) Ler G Td x Td —» U be locally Lipschitz continuons Then the Mróz
constitutive operator 3P'M given by (3 41) and (3 42) is well defined on the domain

DM = {a a s WX1( *„,*,, T), K I L <*} (343)

and Lipschitz continuons with respect to the norm || . || x x on every subset

DK
M

c = {a a G DM, K I L « * ( 1 - J C ) , K I I . ^ C } , 0 < K < 1, C> 0 (3 44)
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Proof: We choose X = Td and set

(3.45)

We fix K e ( O, 1 ) and define G by

Then Assumption 3.1 as well as (3.25) hold, the latter with A = RT \ The assertion follows from Theorems 3.2
and 3.3, since the assumption of G implies that the mapping ( u, od ) >—» sp is Lipschitz continuous w.r.t. the norm
of W1'l on the set of pairs (u,ad) with solutions u for od e D^C. D

Proposition 3.4 does not cover the case when \ad\ = R, i.e. when the value of the stress reaches the boundary
of the auxiliary surface. We will discuss that situation in Section 4.

For the Armstrong-Frederick and the Bower models, the operator M dépends on u. To find out whether and
how the input function 9 must be restricted in order to ensure that \\<J£(9, « ) I L < 1, one needs a priori
estimâtes. We first consider the stress controlled Armstrong-Frederick model. Here, problem (3.1)-(3.3) with
9 = ad and x°' = ap

Od takes on the form

ù = 9 + jï(d — JC) |^ | , u(tQ) = u = yRe^ + x° , (3.47)

where

£ _ 0>(u • x°\ x— cf( u ' x°) (3.48)

so in particular

Jjf ( Û u\ — — ( G — (f ( u - TP W (^ d-Q^

If we assume that R > r and restrict ourselves to stress inputs 9 - ad satisfying || crJL </? - r, then
\\JÏ(od, M) IL < 1 holds since we have ||«S^(« ;^° ) IL ^ r regardless of the values of M, and we obtain the
wellposedness of (3.47), (3.48) in the same straightforward mariner as for the Mróz model above in 3.4. (The
continuity of M with respect to u follows from (A. 14).) However, from the model équations one would hope the
les s stringent restriction

|kJL<J? + r (3.50)

to suffice, since the Armstrong-Frederick équation (2.31) implies that |<re| ^ R if we have |<7e(*0)| ^ R \ on
the other hand, the bound \op

d\ ^ r is already part of the définition of the plastic element. In f act, the following
example (see [24], p. 222) shows that, in proportional loading, the plastic s train tends to infinity as we enforce
|crrf| to approach the value R + r.

Example 3.5: Let e e Td be any tensor of unit norm, set

9(î) = od(t) = (r + t)e, x° = re, f0 = 0 . (3.51)

Then one easily checks that the ansatz

x(t) = re, K ( O = £ ( O > (3.52)
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reduces (3.47) to

| \û\ )e, w(O) = n?. (3.53)

From (3.53) we can compute the solution of (3.47) — uniqueness follows from Proposition 3.8 below — as

. (3.54)

As ap
d is bounded, (2.36) shows that ep tends to infinity as t approaches R.

The following development up to Proposition 3.8 shows that the restriction (3.50) gives the correct bound also
for arbitrary multiaxial loading.

LEMMA 3.6: Assume that 9, u, x, £ G Wh l(t0, b ; Td) solve (3.47), (3.48) in [tQ9 b] and that
\9(a) — x(a)\ ^ R(l — K) for some a G [tQ, b] and some K > 0. Assume moreover that

| | Ô | L ^ r + R(l-K)2. (3.55)

Then

\6{t)-x{t)\ ^ R ( I - K ) (3.56)

holds for ail t e [a, b].

Proof: It suffices to prove that (3.56) holds for ail t for which

^ | | (3-57)

Assuming the latter, we get

O<(0(O-x(t),d(t)-x(t)) = (Ç(t\O(t)-x(t))-±\Ç(t)\ |0(O-*(O|2, (3.58)

hence Ç(t) ^ 0 and (£(t),x(t)) = r\Ç(t)\ by (A.16). We therefore conclude that

r + R(l-K)\ (3.59)

whence (3.56) follows.

LEMMA 3.7: Let 8 G Wh \t0, tx ; Td) , M0 G X and x°e Br(Q) be given. Assume that (3.55) as well as
0(t0) — x°\ ^ R( 1 — K) hold for some KG (0, 1 ). Then there exists a solution (u, <J) of the Cauchy problem

(3A7), (3.48) such that u, £ G W1' \t0, tx ; Td) , and every solution satisfies

- |0(O|» a.e. in (f0, ft ) . (3.60)

Proof: We choose Y\ > 0 such that there holds, for all a G [*O, tl - rj],

* + 1 „ 2
(3.61)

It suffices to prove that, given any a G [tQ,tl-rf] and any solution (u, ^) on [f0, a] which satisfies

*(O| <^(1-K) (3.62)
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for t = a, that solution can be extended to a solution on [tQi a + rj~\, and any such continuation satisfies (3.62)
for all t e [a, a + n~\. To this end, we apply Theorem 3.2 on the interval [a, a + tj]. We first show that (3.7),
(3.8) hold with K replaced by K/2. Assume that we Wl*1(a, a + n ; Td) satisfies ü(a) - u(a) and

| | J |Ô(r ) | , a.e.in(a,a + * ) . (3.63)

Setting Je = 5^( w ; ;c(a) ) on [a, a + r/], we have |jc| ^ \ü\ a.e. and

(3.64)

for all ; e [a, fl + 7]. Hence, Theorem 3.2 implies that there exists a solution on [a, a + 17]. From Lemma 3.6
we conclude that (3.62) must hold on [a, a + 77] for any such continuation w. •

PROPOSITION 3.8 (Stress controlled Armstrong-Frederick model): The operator SF'AF of the stress controlled
Armstrong-Frederick model is well defined on the domain

DFAF={G:O* Wl>\tQ,tx;T), \\od\\„ < R + r, \ad{tQ) - ap
Od\ <R), (3.65)

and Lipschitz continuons with respect to the norm \\ . \\x l on every subset

D«Aï = {a:ae DFAF, K L < R + r- a, \ad(t0) - ap
Od\ ^ R - a, \\ajhl ^ C} . (3.66)

Proof: This is a conséquence of Lemma 3.7 and of Theorem 3.3 with S = D^AF and M given by (3.49); from
the inequality (A.4) we see that M satisfies (3.25) with a constant A which does not depend on 6 and u. D

The three remaining cases — the strain controlled Armstrong-Frederick model as well as both versions of the
Bower model — can be treated similarly. Moreover, the initial value problem for the auxiliary variable arising
from (2.49) respectively (2.62) or (2.66) takes on a common form, namely

( 0 - u + z É ) | | | , É = ^ ( u ; x ° ) , u(to) = u\ (3.67)

for certain constants z e ( 0, 1 ) and K > 0, where x° = op
Q d as before. In fact, the value of the constants are

(3.68)

for the strain controlled Armstrong-Frederick model,

K = - ^ - z = -^— u° = dit ) +y~ap (3 69)

for the stress controlled Bower model, and

7 m

u°= 2Ky + c) + y c i ? ( ( 2 / J + yR) (c6(t^ + 2jdy£o+ ya^ + 2 w x ° } ' (3*71)
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For (3.67), we have the following a priori estimate.

LEMMA 3.9: Let 0 < z < 1 and K>0 be given. Let u, 9, Ç e Wh\t0, & ; Td) be a solution of (3.67), let

K ( O + Z £ ( O | ^KZ (3.72)

holds for t - a, then (3.72) holds for ail te [a,b],

Proof: It suffices to prove that, given any t G (a, b),

£t\6(t)-u(t)+zt(t)\2>0 (3.73)

implies that

1 0 ( 0 - « ( ' ) + * £ ( 0 | *Kz- (3.74)

Assume that (3.73) holds for some t. We then have

0 < <0(O - û(t) + z « 0 , Oit) - u(t) +z«0>

= - ^ l « 0 | | 0 ( O - " ( O + 2 « O | 2 + z<i(O,ö(O-M(O + z«O>, (3.75)

hence <j(r) ̂  0 and

|0(O - u(t) + z^OI2 < ̂ ( ï f ^ J ' 0(f) " M(?) + ̂ ( 0 ) , (3-76)

so (3.74) holds.

LEMMA 3.10: Let 0 < z < 1, ^ > 0 , 0 e W 1 ' 1 ^ , fj ;T d ) , u° e X and x° e 5 r(0) &e g/ven. Assume that
\9(t0) — (1 — z) u° - zx°\ ^ Kz, Then there exists a solution (M, £) o/ r/ze Cauchy problem (3.67) such
that M, Ç G Wh l(t0, tx ; Td), and every solution satisfies

(3.77)

Proof: As £(î0) = w° - ;t0, condition (3.72) holds at t = r0. The proof is now completely analogous to the
proof of Lemma 3.7; we only sketch the pointwise estimate for

ur(ô,M)(0 = i«?(0-«(0+z«0). (3-78)

Assume that M e Wl'l{ta, a + r\ ; Td) solves (3.67) on [t0, a] for some a and satisfies

| « i | « i | Ô | , where K = L ^ , (3.79)

a.e. in ( a, a + r\ ). On the latter interval, we obtain the estimate

+ 2 (
1

1 J f
z

z ) ) J a + ' ? | g (O |^ - (3.80)
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If we choose rj such that the second summand on the right hand side is bounded by K uniformly in a, Theorem 3.2
allows us to continue the solution up to t = a + n, and we can use Lemma 3.9 to obtain

9, u) (t)\ ^ z o n [a, a + r/]. We now continue as in the proof of Lemma 3.7 to obtain the resuit. G

PROPOSITION 3.11 (Strain controlled Armstrong-Frederick and Bower's model): The constitutive operators
êFB, <SB and <êAF for the stress controlled Bower, the strain controlled Bower and the strain controlled
Armstrong-Frederick model are well defined and locally Lipschitz continuons with respect to the norm
|| . || j 1 on the respective domains

DCAF = {e:ee Wh\t0, h ; T), \2 p(ed(t0) - ep) - a%d\ « R], (3.81)

(3.82)

(3.83)

Proof: This follows from Lemma 3.10 and Theorem 3.3 in the same manner as above. •

Remark 3.12: We note in particular that both versions of Bower's model as well as the strain controlled
Armstrong-Frederick model are wellposed without any restriction concenüng the input, except for the natural
conditions resulting from (2.33) and (2.56).

4. BOUNDARY BEHAVIOUR OF THE MRÓZ MODEL

The Mróz hardening rule oe—^fFiKod) détermines the movement of the yield surface
dZ*(t) = ae(t) + Br(0). We have shown in Subsection 2.4 that oe is related to the auxiliary function u which
solves the problem

ù = àd + °jl\t\, Ç = 0>(u;aP,d), M(/O) = a^,, (4.1)

by

(4.2)

Moreover, we have proved the wellposedness of (4.1) in Theorem 3.4 under the assumption that || ad\\ ̂  < R, that
is, the stress input lies always within the auxiliary sphère dBR(0). Mathematical difficulties arise when
| er ( t ) | = R for some t ; however, that situation naturally occurs in the multisurface version of the model of
Mróz. Indeed, an understanding of the case

W ' o ) | = W ' i ) | = * . WdO)\<R for all* e (tQ,tx). (4.3)

appears to be crucial for the study of the multisurface model, compare Remark 4.5 below. The inclusion property,
often tacitly assumed to hold, states that the yield surface dZ*(t) always lies within BR(0). We present a formai
proof.

LEMMA 4.1: Let a G W1' l(tQ, tx ; T) and o\d^ Br(0) be given, assume that \ad(t)\ <R for all t > t0 and
that

K('o)l = K ( ' o ) - < J *R-r. (4.4)
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Then for every solution ( M, £, ap
d, o

e ) of (4 1) and (4 2) there holds the inclusion condition

\<r\t)\ ^ R-r, for ail te [r0, f j

Proof Assume that d/dt(\ae(t)\2) > 0 holds for some t > t0 From (2 83) we obtain

so in particular > 0 Since <T^= and hence ^ = r~ 1 op
d\t\, (46) implies that

so |erÊ(O| < R- r Thus, |ere(O| > R- r cannot occur if |cre(£0)| ^ R- r

LEMMA 4 2 Under the hypotheses of Lemma 4 1 we have

for all t e [t0, t,]

Proof The algebraic identity

and Lemma 4 1 yield

which is nothing but (4 8)
From Lemma 4 2 we see that the boundary values of oe and op

d have to satisfy the équations

and that we might obtain solutions

°d> °e e <J('o. ' , .T d )nC( [t0, t{\ , Td)

In fact, we can prove this only under the additional assumption of transversality,

WdO0+ ),ad(t0))<0,

(4 5)

(4 6)

(4 7)

D

(4 8)

(4 9)

(4 10)

D

(4 11)

(4 12)

(4 13)

where <rd(t0+ ) = limod(t) is assumed to exist We first prove that (4 13) implies pure unloading near

'o = °
LEMMA 4 3 Let ad e Wl l(t0, tx , Td) be given such that (4 3) as well as (4 13) hold, set
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Then there exists S > 0 such that

constitute the unique solution (M, £) of problem (4.1) within the space

W£(to, t0 + 5 ; Td) n C( [f0> *0 +<5] ; Td) .

201

(4.15)

(4.16)

Proof: By virtue of (4.13), we can choose ö > 0 such that the function u defined by (4.15) satisfies
(ü(t),u(t))<0 for every t e I := (tQit0 +S). One then easily checks that (4.14), (4.15) together with
óp

d = ü = ad, t - 0, defines a solution of (4.1). Conversely, let («, Ç) be any solution of (4.1) with regularity
(4.16). From Lemma 4.2 we see, making S smaller if necessary, that (&d, a

p
d) < 0 holds within /, hence (2.83)

yields

<£ O = (à,

so (d^, op
d) < 0 and therefore

The continuity of u and (4.14) then imply the assertion.

(4.17)

(4.18)

D

Figure 6. — The multisurface Mróz model for m = 3.
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THEOREM 4 4 (Unique Solvability up to the Boundary) Let ad e Wl l(tQ, tY , Td) be given such that (4 3) as

well as (4 13) hold, let a^d be given by (4 14) Then the initial value problem (4 1) has a unique solution

we Wloc ( t0, tx , Td ) which satisfies (4 15) near t0 , moreover, the functwns GP
d — &*(u , <7P

Qd) and

ae = ad ~ op
d satisfy (4 12) as well as the boundary conditions (4 11)

Proof This is a direct conséquence of Lemma 4 3 and of Proposition 3 4 The vahdity of the boundary
conditions at t = t1 again follows from Lemma 4 2 D

Remark 4 5 (Multisurface Mróz Model) Mróz [29] onginally proposed a multisurface model which employs
sphères St(t), 0 ^ i ^ m, moving around in Td, with radn ro< < rm The smallest surface S0(t) represents
the yield surface dZ (t) The inclusion property <Jd(t) e BQ(t) cz a Bm(t) is assumed to hold for the
corresponding closed balls At any given time r, the active surface is defined by the largest index k such that
ad( t ) G Sk{ t ) but ad( t ) e int Bk + x ( t ) , the movement of the active surface Sk with respect to Sk + 1 is determmed
by the geometrie construction outlined m Subsection 2 4 above If loadmg occurs, the smaller surfaces 5y with
j <k follow the movement of Sk, see figure 6 for k = 2 In the case of unloading, none of the surfaces move
Thus, a gênerai évolution décomposes into a séquence of problems of the type (4 1), (4 3), where r and R are
replaced by rk and rk + r respectively The question of existence, uniqueness and regulanty of the plastic stress as
well as of the plastic strain appears to be completely open For the case of a contmuous family Sr( t ) parametnzed
by r ^ 0, some results are available m [4]
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A. APPENDIX: PROPERTIES OF THE PLAY OPERATOR

The vector play operator with an arbitrary convex closed charactenstic has already been the object of serious
study, see e g the monographs [21], [38] and [23] For the purposes of this paper, however, we need a resuit which
is not adequately covered m the literature, namely the Lipschitz type estimate provided by Theorem A 5 below
lts statement and proof constitute the mam purpose of this appendix In addition, we cite some known results
which we have used above m order to facilitate the reader's task

The play operator as well as the stop operator are constructed by means of an évolution variational mequality
with values in some space X, throughout this section we assume that X is a real separable Hilbert space endowed
with a scalar product ( . , . ) and the corresponding norm |x| = (x, x)m In the mam body of this paper, X always
represents some finite dimensional space of tensors, hence, the reader may very well be satisfied to assume that

We begin with a variant of the classical result on the wellposedness of the évolution variational mequality

PROPOSITION A 1 Let Z ŒX be a convex closed set such that 0 e Int Z, let x° e Z be given Then for any

function we W1 l(t0,tl,X) there exists a unique function x e Wl 1(t0, tx , X) such that

(u(t)-x(t)9x(t)-x)~*0, foratlxeZ, aeinit^t^, (Al)

x( t) e Z, for all t e [tQ9 *J , (A 2)

x(to)=x° (A3)
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Moreover, if y e W1'1(to,tl,X) dénotes the solution belonging to y° e Z and v e Wh l( tQ, tx ; X) , then

\ü(s)-v ( 5 ) | ds (AA)

holds.

Proof: See e.g. [23], Theorem 1.3.1 and Proposition 1.3.9. The estimate (A.4) follows from (A.1)-(A.3), since
(arguments t omitted) the inequalities

(ù-x,x-y) ^ 0, (v -y9y-x)&0 (A.5)

imply

x - y \ - r \ x - y \ = -r-= \ x - y \ 2 ^ | û — i> | | x - v | . (A.6)

D
Thus, the évolution variational inequality (A.l), (A.2) together with the initial value (A.3) gives rise to an operator

\x°) . (A.7)

DÉFINITION A.2: Let Z a X be a convex closed set such that 0 G Int Z. The solution operator

^ : Wu\t0, tl;X)xZ-+ Wu l(r0 , tx ;X) (A.8)

defined by (A.1)-(A.7) is called the stop, the operator

& : Wl'\tQ, tl;X)xZ^Whl(t0, tx\X) (A.9)

defined by

0>(u\x) = u-£f(u\x) (A.10)

is called the play. The set Z is called the characteristic of Sf respectively 0.

PROPOSITION A. 3: Let ZaX be a convex closed set such that 0 G IntZ. The play operator SP with the
characteristic Z has the following properties:

(i) The function £ = ̂ ( w ; x ° ) satisfies

<£(O, M(O " Ê(O> = 0, a.e. in (f0, ̂  ) , (A.11)

consequently,

/or a// M G W1' ̂  t09 t19X) and all x° e Z.
(ii) ^ mapj WltjP(r0, ?x ; X) x Z continuously into Whp(t0, tx',X) for all p with 1 ̂  p < °o.
(iii) ^* and £f can be uniquely extended to operators
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9 : C( [t0, r , ] ;X)xZ-> C( {t0, r j ; X) n

^ : C( [f0> t,] ; X) x Z -» C( [t0, tj ; X) , (A. 14)

which are continuons w.r.t. the supremum norm

II«IL= sup \u(t)\, « e C ( [ « 0 , f , ] ; X ) . (A.15)
f e L'o' hl

Proof: See [23], section 1.3. For a bounded set Z, part (iii) is due to [21]; the gênerai case as well as (ii) have
been proved in [22]. D

In the case where Z represents the bail Br( 0 ) in X with radius r > 0 centered around 0, the play and the stop
operator have additional regularity properties. Let us note first that, since the radius vector and the normal coincide
for a bail, there holds

where a 5= 0 is a scalar function with a(t) = 0 if |JC(*)| < r- Moreover, the following estimate of Hölder
type holds.

PROPOSITION A.4: Assume that Z = Br{ 0 ). Thenfor any u, v e C( [t0, f j ; X) and any JC°, y0 e Z, thefunctions
i; = £P( u ; x° ) öw<i ?/ = é?( v ; y0 ) satisfy the estimate

~ V IL ^ m a x j | « 0 ) - J / ( 0 ) | , V ( II" - «I

/- See Sections 17.1 and 17.2 in [21], c/ also Theorem 1.4.2 in [23]. D
We now present an estimate of Lipschitz type.

THEOREM A.5: Assume that Z = Br(0 ), let u, v G WU 1(t0,tl;X) and x°, y° e Z be given. Then the fonctions

Ç=<?(u;x°), rj = 0>(v;yo), (A. 18)

x = u-Ç = #?(u;x°), y = v~fj^^(v;y°), (A. 19)

satisfy the estimate

f1 | i - ^ | dt ̂  \x°~y°\ + fl \ û - v | ̂  + — fl | û |
Jr0 Jt0

 r Jt0

(A.20)

Proof: This will be given below. D

COROLLARY A.6: The play operator SP with the characteristic Z - Br(0) is Lipschitz continuons on bounded
subsets of Wlt (?0, tx ;X). Hence, the same is true for the stop operator £f.

Proof: If we insert (A.4) into (A.20), we obtain

H *)(\*°-y°\ f )
D
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Theorem A.5 appears to be new. Corollary A.6 is a special case of Theorem 20.1 in [21]; however, in [21] there
is no comment conceming its proof, nor is the value of the Lipschitz constant indicated. Note that in Section 3
we use the fact that the constant in front of the first intégral on the right hand side of (A.20) equals 1. On the
other hand, we do not know whether the Lipschitz constant given in (A.21) is optimal, cf, also Example A.8 below.

For the scalar case dim (X) ~ 1, (A.20) can be improved to

f'1 f'1
\£-fl\dt*k \x°-y°\ + \û-v

J10 i 10

dt. (A.22)

The proof of (A.22), given in [6], p. 46f., can be generalized to the vector case, if one takes into account the
geometry of the sphère which is responsible for the rightmost intégral in (A.20). This is done as follows. The
normality rule

£ = | £ | -, a.e. in (tQ9 tx) , (A.23)

with <̂  = 0 a.e. on {t : \x(t)\ < r}, follows from the variational inequality. Together with (A.ll) it implies

\'^\2 = (ù/O=\h\^~, a,e,in{t^tx), (A.24)

so

^ — — lu Y\ Y (A 9S^
r

holds a.e. on {f: | jc(f ) | = r} .

LEMMA A.7: There holds

l ^ - j / l ^ \ü-v | + ^ r |M| \x-y\ , (A.26)

Ar = {f:fG [f0, fx], |x(*) | = |;y(f)| = r } . (A.27)

Proof: From (A.25) and the corresponding formula

7̂ = ^{i) ,y>3>, (A.28)
r

we infer that

l^ - t f l ^ ^ ( K " - 6 '3 ;>7| + K w , x ) x ~ { M 5 j ) y | ) (A.29)

holds a.e. on Ar. Using the identity

we easily dérive the assertion. D
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Proof of Theorem A 5 The îdentity

\jt - \y(t)\2) =- r(\£(t)\ - \«(t)\) + ((u(t),x(t)) - (v (t),y(t))) , (A 31)

which holds a e on [tQ9 r j , follows directly from (A 23) The crucial observation is that actually

\\t(O\ ~ \V(O\\ +^rjt\\x0)\2 - \y(O\2\ ^l\(u(t),x(t))-(v(t),y(t))\ (A32)

holds a e on [r0, r j On the set A = {r | JC (O | = |)>(O|}> (A 32) follows directly from (A 31) smce in that
case the left hand side of (A 31) is zero almost everywhere To prove (A 32) on the complement of A, by virtue
of

( |£ (*) | -\n(O\)(\x(t)\2-\y(t)\2)*Q, a e i n ^ ) , (A 33)

which trivially follows from the f act that | £ ( O | ^ 0 o n ly *f \X(O\ = r> xt sufïïces to multiply both sides of
(A 31) with the sign of \x(t)\2 - \y(t)\2 We now claim that

^ | \u-v | + ^ | M | \x-y\, ae m(to,h) (A 34)

Indeed, (A 34) holds on Ar because of (A 26) On the complement of Ar, we have | £ - ?71 = ||<?| - | *711, thus
(A 34) follows from (A 32) and the mequality

\\{u,x)-{v,y)\ ^ \u-v | + i | i i | | x - y | (A 35)

We now mtegrate (A 34) over [r0, f j to obtain the assertion (A 20) of Theorem A 5 D
One may ask whether the value of the Lipschitz constant given by (A 21) is best possible It turns out that we

can use Example I 4 3 of [23] to exhibit, for any e > 0, a pair of mput functions u, v such that the mequahties

[ \ v ( t ) \ d t > ± f \u(t) - v (t)\ dt < e , (A36)
Jo s Jo

\u(t)-v(t)\dt, (A37)

hold Thus, the gap between the constant in (A 21) and the optimal one is charactenzed by a factor of at most
2 V2 In particular, the play operator 0> is not globally Lipschitz continuous on W1 1(t0J tr ,Z ) , if
dim (X) > 1

Example A 8 Let X = IR2, Z = Br( 0 ) For h < 0 and a > 0 we consider the mputs

(cos at \ /cos at \

smat)' ü«> = ̂ s i n a , j , (A38)
with the intention to let h tend to 0 and a tend to ïnfinity If w e choose x(0) = y(0) = (1, 0) as initial values,
w e obtain

cos (at+ p(t))
sm (at + p ( t ) ) }
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where p is the solution of the initial value problem

^ ^ 0, (A.40)

that is,

p( t ) = 2 arctan ^ Y ö T T I t a n n

We then obtain

= a2(r + /i)2[(cos/? sin {at + /?) - sin af)2 + (cos af - cos p cos (af+ /?))2]

hence

_ KO

where

/ ( O - t a n h ( V / i ( 2
2 ; + / i ) « 0 - (A-44)

This yields the inequality

aVh(2r + h)f(t)^ |^0-?/(0| ^ ^ i r ^ h ^K2r + h)f(t). (A.45)

Note that we have

a\/h(2r + h) f(t)dt = 2r\ Tr a tanh s ds = 2 r log ( cosh — ^ -a), (A.46)

and

\ v ( t ) \ d t = a r , \ ü ( t ) ~ v ( t ) \ dt = h a . (A.47)
Jo Jo

From (A.45) it therefore follows that for every fixed a > 0 we have

7?
Jo

m 7? = t = £ J 0 1 1 3 (r>idf- (A-48)| |
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With the pair (w, V) we thus achieve (A.36), (A.37) for a given 8 > 0 if we choose a > 0 sufficiently large
and h > 0 sufficiently small.

Finally, we recall the following resuit, which goes back to Visintin ([38]) for the scalar (i.e.,
dim (X) = 1 ) case.

PROPOSITION A.9: Let {un} and {x°n} be séquences in C([r0, r J ; X ) respectively Br(0) such that
I K - M l l ~ - > 0 and \x°n-x\ ^0 for some u e C( [f0, t{\ ; X) and x° e Br(0), set Çn = 0>(un;x°n) and
Ç = 0>(u\x°). Then there holds

lim Varr, , , f = Varr, , n £ . (A.49)

Proo/- See Proposition 1.4.11 in [23].
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