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MATHEMATICAL MODELLING AND NUHERICAL ANALYSIS
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 32, n° 3, 1998, p 283 à 305)

A STABLE MIXED FINITE ELEMENT METHOD ON TRUNCATED EXTERIOR DOMAINS (*)

Paul DEURING 0)

Abstract — Let Q cz IR be a polyhedron Dénote by QR the intersection of the exterior domain M \£2 with a bail c ente red in the ongin
and of radius R Then we show that a mixed finite element method on QR, based on the Mini element, satisfies the Babushka-Brezzi condition
with a constant independent of R This result is exploited in [3] in order to approximate exterior Stokes flows © Elsevier, Paris

Résumé — On se donne un polyèdre Q en [R Dénotant par QR Vintersection du domaine extérieur [R VQ avec une balle centrée à
l'origine et de diamètre R, on considère une méthode d'éléments finis mixtes sur QR Nous montrons que cette méthode vérifie la condition
inf-sup avec une constante qui ne dépend pas du paramètre R Ce résultat est utilisé en [3] pour discrétiser des écoulements extérieurs de
Stokes © Elsevier, Paris

1. INTRODUCTION

Let Q be a bounded domain m M3 with a connectée Lipschitz boundary. Consider the Stokes System in the
exterior domain M3 \Û, under Dirichlet boundary conditions:

-Au + Vn=f, div u = 0 in M3 \Ô, Miaû = 0, lim u(x) = 0 . (1.1)
I \X\ —> oo

In order to apply finite element methods to this problem, we proposed the following approach (see [3]): Let
BR dénote the bail with radius R and centre in the origm, and set QR := BR \Q ("truncated exterior domain").
Consider the boundary value problem

-AuR + VnR=f\Qg9 divuR = 0 inQR, (1.2)

UR\BQ = °> &R( UV nR ) = 0 on BBR ,

where the symbol £PR dénotes the operator defined by

for x e dBR. The équation JS?'R(uR, nR) = 0 in (1.2) is called an "artificial boundary condition". As we pointed.
out in [3], problem (1.2) may be written in a variational form with respect to which the artificial boundary
condition ££R( uR, nR ) = 0 is natural. This variational problem has a uniquely determined solution ( uR, nR ) in
a suitable function space. In [3], we estimated the différence between (uR, nR) and the solution (u,n) of (1.1)
("truncation error"). In addition, following Goldstein's study [6], [7] of the Laplace équation in exterior domains,
we showed problem (1.2) may be discretized by means of finite element methods satisfying certain gênerai

(*) Manuscript received Décembre 22, 1995 Revised September 16, 1996 and January 27, 1997.
C1) Martin-Luther-Umversitat Halle, Fachbereich Mathematik und Informatik, Institut fur Analysis, D-06099 Halle (Saale), Germany
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284 Paul DEURING

assumptions; see [3, (6.7)-(6.17]). Under these assumptions, we estimated the corresponding discretization error,
which turned out to be of the same order as in the case of the Laplace équation. However, we did not mention
any concrete finite element spaces which would satisfy the assumptions required in [3]. It is the purpose of this
paper to present such spaces. They should be of interest not only in the context of the Stokes problem (1.1). More
generally, they may be used for discretizing other mixed variational problems in truncated exterior domains
QR, provided these problems involve a natural boundary condition on dBR and their solutions are to be
approximated by C° piecewise polynomials of degree 1.

Figure 1. — Examples for domains Q and QR and for a triangulation 2TJ (2D représentation). The large dots correspond to nodes located
on BBR

Let us explain what type of space we are looking for. Assume Q is a polyhedral domain. Take 5 G ( 0, °° ) with
Û ŒBS, hoe (0 , S) , Ro G [8 • S, «>). Suppose that for / Î G (0 , h0] and R G [RQ9 °O), a triangulation

). forsome N ,

is given such that the ensuing conditions are satisfied: For le {l,..., k(h, R)}, the set Kx- Kx(h,R) is a
tetrahedron with Kx CL M3 \Û and Ktr\BR^ 0 . The intersection of two different éléments Kx and Km is empty.
Moreover,

ÙRcv{Km:l ^m^k(h,R)}, (1.3)

and there is some number a0 G ( 0, 1 ) with

sup {r e ( 0 , oo) : Br(x) cz Kt for s o m e i G U3} ^ aQ • diam Kx

for h e ( 0 , / z 0 ] , R G [/?0, ° ° ) , / G { l , ..., k(h, R)}, where Br(x) dénotes a bail with radius r > 0 and center
XG U\

Since ail éléments Kx of 2T̂  are tetrahedrons, and because the sphère dBR is part of the boundary of QR, the
mesh 2T̂  cannot be a partitioning of QR. In fact, it décomposes a région somewhat larger than QR9 as is implied
by (1.3); see figure 1 for a two-dimensional représentation of such a situation.
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For any such triangulation 2Th, we look for a finite element space Wh x MR with

285

(1.4)

Furthermore, we require the dimension of WR x MR is bounded by the number k(h,R) of éléments of the mesh
or* .
u h •

dimWR + dimMf ^ M • k(h, R) for h € (0, ho]9 R e [tfo,«>),

with a constant M > 0 independent of h and R. In addition, the Babuska-Brezzi condition should be valid, with
a constant fi e ( 0, 1 ) independent of h and R:

inf
Jofl

/? div v dx

0 M i 2 \\Ph

for h e (0, /i0], /? e [/?0, oo), The norm | | ^ appearing in (1.5) is defined by

(1.5)

11,2 + J R - 0 5 - l k ,

with the seminorm | 11 2 corresponding to the case k = 1 in the following définition:

for ifce N0 , i)e Wkt\QR)

Finally the spaces WR, MR
h should fulfil some standard interpolation properties which we shall detail in

Section 3.
For the construction of such spaces, some additional assumptions on the triangulations STft will be necessary,

but these conditions will be minor. It should be remarked that graded meshes as proposed by Goldstein [6], [7]
and used in [3] are covered by our theory. We shall return to this point at the end of Section 3.

We call the functions from WR "velocity functions" and those from MR "pressure functions" because those
spaces are constructed with an eye toward solving the Stokes problem by mixed finite element methods. In such
a context, the velocity part of the solution is looked for in WR, and the pressure part in Mh.

Our finite element spaces are related to the décompositions (Kl n BR)X ^ l ^ k(-h Ry of QR. Any element
Kt n BR of these partitionings is tetrahedral if and only if Ktc: BR\ otherwise some part of its boundary is curved.
It is for technical reasons that we do not start out with the décompositions (Kt n BR)X ^ x ^ j^k Ry but introducé
them via the triangulations 2T*.

Essentially our spaces consist of functions made up of PI-PI éléments, with the velocity fields enriched by
bubble functions. Although this is a standard choice of shape functions, some effort will be necessary in order
to prove the Babuska-Brezzi condition (1.5). In fact, our pressure functions n e MR do not have mean value zero
(see (1.4)), and the constant fi in (1.5) must be independent of R. In this situation, the usual arguments for proving
stability of pièce wise polynomial mixed finite element spaces (see [5] and [2]) do not carry through. In fact, these
arguments are based on estimating the H1 -seminorm of solutions to the divergence équation in bounded domains,
under homogeneous Dirichlet boundary conditions. But the constant appearing in such an estimate dépends on
the respective domain. Thus, starting out with an estimate of this kind would lead to a constant fi in (1.5) which
dépends on R. Moreover, existence of solutions to the problem just mentioned can be established only if the
right-hand side in the divergence équation has mean value zero, a condition which translates into the requirement
that the pressure has mean value zero. As mentioned above, our pressure functions do not satisfy this condition.
Thus the standard theory on the divergence équation cannot be applied in our situation.

vol. 32, n° 3, 1998



286 Paul DEURING

Figure 2 —Polyhedrons P'(h R) and P(h R) related to the triangulation 2T* from fig 1 The large dots represent outer vertices of
P(h R) anûPXh R)

In order to overcome this difficulty, we shall point out that for a certain class of bounded domains, the
divergence équation under homogeneous Dinchlet boundary conditions may be solved by functions which do not
depend on the diameter of these domains These indications are made précise m Theorem 2 1 below

The domains m question are bounded by surfaces which, mtuitively speakmg, do not have folds We do not
want to restrict our choice of Q to such domains, so we cannot expect the domains QR to belong to tins class of
sets This is the reason why for any fte (0, 5 ) , 7? G [8 S, oo)5 we shall introducé two polyhedrons, P(h, R) and
P\h,R) The first one — P(h,R) — is to consist of those tetrahedrons of 3~£ which are contamed m BR As for
the second one, namely P\h,R), ît is defined as the union of the tetrahedrons m ?fh which are a subset of
B2 s Thus P(h,R) may be considered as large and P'(h, R) as small, see figure 2 The décompositions 2T* should
be chosen m such a way that the surfaces of P(h,R) and P'(h, R) do not fold up Then the nng-shaped
polyhedron P(h, R)\P'(h, R) belongs to the class of sets considered m Theorem 2 1

It will turn out that our proof of (1 5) carnes through if we solve the divergence équation twice, first on
QR and then on the ring shaped domain P(h, R)\P'(h,R) , see the proof of Theorem 4 1 In the first case, the
solution has to vanish on dQ, but need not satisfy any boundary condition on dBR This situation is covered by
a theorem from [3] which we shall restate hère as Theorem 2 2 As for the second case, we shall impose
homogeneous Dirichlet conditions everywhere on the boundary and then refer to Theorem 2 1 In both cases we
are able to estimate our solutions in such a way that the constants appeanng in these estimâtes do not depend on
the parameters h and R

We further remark that m the proof of (1 5), we shall use a perturbation argument m order to deal with the
curved éléments of the meshes (Kt n BR)1 ^ t ^ k^h R^ This argument only carnes through if these curved
éléments are small To this end, we shall require the outer vertices of P(h, R) are located on the sphère dBR , see
condition (A6) in Section 3 By "outer" vertices of P(h, R), we mean those vertices which do not belong to
3Q (large dots m fi g 2) Of course, this assumption on P(h, R) implies the décompositions
(Kt n BR)l ^ t ^ £(A R) degenerate near dQ However, our reasomng only dépends on the f act that the tnangu-
lations 2T̂  are non degenerate

2 THE DIVERGENCE EQUATION

As mdicated m the preceding section, we shall need some results on the divergence équation

div v = ƒ m a domam se , (2 1)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelhng and Numencal Analysis



A Stable Mixed Finite Element Method on Truncated Extenor Domains 287

under homogeneous Dirichlet boundary conditions

«W = 0 , (2-2)

with a given function/G L2(si) satisfying the relation

L O. (2.3)

We are looking for solutions v of (2.1), (2.2) fulfilling the estimate

M i , 2 ^ C - | | / | |2 , (2.4)

with the constant C independent of u,/and the diameter of si. We begin our discussion by introducing some
notations: If <p e (0, n/2), z e U3 \{0}, we write

K(<p,z) :={XG U3\{0} : cos

for the infinité circular cone with vertex in the origin, semiaperture (p and axis in the direction of the vector z.
Let x G [R3, r > 0 . Following [1, p. 94], we call a domain U a IR3 "star-shaped with respect to the bail
5 r(x)", if for ail y G U, the closed convex huil of {y} u Br(x) is a subset of U.

Our main resuit on problem (2.1), (2.2) reads as follows:

THEOREM 2.1: Let ÇOG (0, n/2). Then there exists a constant *$ x((p^) > 0 with the ensuing properties:
Let T G (0, oo), R G [4 • T, oo), and let si v se\ a U3 be domains with

0 G si^Bjd BR_T ci sé2tzBR. (2.5)

Assume

x+ K(<po,x) c U3\WX for XG ÔJ^1 , (2.6)

- x)) n BR _ T(x) c: se'2 forx G d ^ 2 . (2.7)

function f G L {si) satisfying (2.3), there is a function
v :— v(si,f) G WQ (si) such that équations (2.1), (2.2) are valid and inequality (2.4) holds with

Figure 3 gives an example — in 2D représentation — for domains siv se2 satisfying (2.6), (2.7), respectively,
and verifying the relations in (2.5). Note that assumptions (2.6) and (2.7) are stronger than the usual cone
condition. To see this, consider the two-dimensional domain si x shown in figure 4. This set fulfils the standard
cone condition but not the two-dimensional analogue of (2.6). In fact, choosing the point x as indicated in figure 4,
we cannot attach an infinité cone to x which has an empty intersection with si v This example suggests an
informai way — already indicated in Section 1 — for specifying the domains si admitted in Theorem 2.1: the
surface of such domains should not be folded.

Proof of Theorem 2.1: Our aim is to apply [4, p. 124, Theorem III.3.1]. Let us verify the assumptions of that
theorem.

A simple geometrical argument shows there is some y G (0, 1/4), only depending on <p0, such that

By R((R/2)- \x\~ l x) <=*+ K(<po,x) för XG bséX , (2.8)

By R((R/2) • \x\~ ! x) ŒX+ IK(^0, - x ) for x G bsé2 ;

see figure 5. Since y < 1/4, R ^ 4 • T and BR_T\BTŒ si, it further holds By R(z) cz si

vol 32, n° 3, 1998
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Figure 3. — Example for domains se j (left) and se'2 (center) satisfying (2.6) and (2.7) respectively (2D représentation). Sample cônes of the
type appearîng in (2.6) and (2.7) are also shown. The picture on the right represents the situation described in (2.5).

CL a: J

A,

X

Figure 4. — 2D example for a domain <s/, which does not fulfll (2.6).

(R/2).\x\-i-z^
BlR{{R/2)-\x\-l-x)

9BRj2

Figure 5. — 2D illustration of the relation in (2.8).

dBR
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for z G dBR/2.

Next we choose m e N and points yv ..., ym on the unit sphère 3BX such that it holds for any t e (0, °°) :

m

ö ^ c l J 5 f v/4(t-y) , (2.9)

for (2.10)

The relations in (2.9) and (2.10) amount to choosing m rays, each starting at the origin, with the following
properties: if the intersection of each ray with the sphère dBt is taken as the center of a bail with radius
y - t/4, then the union of these balls contains the sphère dBt. Moreover, their centers may be labeled in such a way
that (2.10) holds. The important point is that the number m of balls does not depend on t. An easy way for proving
(2.9), (2.10) consists in splitting the intervals [0, 2 • n] and [0, TT] into small enough parts, ordering them in a
suitable way, and then making use of polar coordinates.

DBT

dBR

Figure 6. — The cone K( ^7,y} ) envelops the bail BR yl2{ (R/2 ) j?7 ).

By doubling the radius of the balls in (2.9), (2.10), we deduce from (2.10)

Vol (S, ï/2(t-yj)nBt y/2(t-yJ+1))> (4 - n/3) • (t • y/4)3 (2.11)

for ? G ( 0 , oo), l ^ j ^ m — 1 . Take <p1 G ( 0 , n/2) with sin (px ~ y. Then for any j e { l , ..., m}, the cone
K(<pvyj) envelops the bail BR y/2((R/2) • y}) (fig. 6). Put

QJ := K((pvyj) n se for l ^ j ^ m .

m

It follows from (2.9) that se a \J Qy Moreover, we have by (2.11), with t = R/2 :

(4-n/3)-(R-y/S)3 for (2.12)

Let j e {1,..., m}. The set QJ is star-shaped with respect to the bail âS := BR y/4((R/2) • y3). This may be shown
by geometrical arguments involving assumptions (2.6) and (2.7). As an example, take xQ e 0& and
xl G bséx n IK(<pv y}). Let L dénote the line between JC0 andxr (fig. 7). We have to show that LX^} a Qy In fact,
it holds on one hand x0 G St^a K(tpv yy ) and xx G K(<pv yy)s hence L a K(<pv y7). On the other hand, due to
the relations XXG IK(ç?15 y ), y = sin (pv we obtain by a simple calculation or by a geometrical argument

\p-(R/2)-yj\ < ( V2/2 ) . « . ( ! - cos (V2/2)-yR, (2.13)

vol 32, n° 3, 1998
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where we used the abbreviation p := (R/2) - |JCJ l • xx ; see figure 8. Now we may conclude ^ cz 5^ y(/?),
hence by (2.8): 3$ czxx + M,(<p0, xx). It follows xQ& xx + IK(^0,Xj), hence LVJxJ cz JC1 + [K(^?o,xx). At this
point we may refer to assumption (2.6) to obtain L\(xx ) c s/. But we have akeady shown L ŒK( <pv y] ), so we
finally obtain L\{xx} cz Q .

ÔBT

\ \

(R/2)'V/' 'dBR/2 dBR

Figure 7. — This setting is considered in the proof that Q} is star-shaped. The shaded area represents the set

(R/2) . y; dBR/2

Figure 8. — The distance between p and (R/2) ,y} (see (2.13)) may be estimated by a simple calculation or a geometrical argument.

Due to the properties of Qv ..., Qm, we are in a position to apply [4, p. 124, Theorem II.3.1]. By this référence,
problem (2.1), (2.2) may be solved by a function v e Wj' 2( se )3, provided the function ƒ is given in L2( se ) and
satisfies (2.3). According to [4, loc. cit.], this solution v fulfils the estimate \v\1 2 ^ ax(s^) • | | /[ |2 , with

1 + Vol

Vol ( st\Qx

Vol (0,0,
>,) Y / 2 1

/ diam ^ \ 3 / .
\ R - y/4 / "V

diam sé \
R • y/4 / '

where we used the notation Qm + { := Qm. The letter c dénotes a numerical constant. Since

diam se *k 2 - R, Vol (Qk) =£ Vol (4 • TT/3)

and due to the relation in (2.12), the constant ax{sé) is bounded by a constant a2(y, m) which only dépends
on y and m. But these parameters may be expressed in ternis of <p0, as follows by some tedious computations,
which we omit hère. Therefore the constant ct2(y, m) dépends only on (p0, so Theorem 2.1 is valid with
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As indicated in Section 1, we shall need a second resuit on the divergence équation (2.1). This resuit was proved
in [3]; see [3, Theorem4.1]. We repeat it hère in a form which is convenient for our purposes:

THEOREM 2.2: Let si <^U3 be a bounded Lipschitz domain. Then there exists a constant <ë2{ si ) with the
ensuing property:

For any R G (0, °°) with si e BR, and for any n G L2(BR\s# ), there is a function
v:=v(s?,R,n)e Wh2(BR\s? )3 such that

v ^ = 09 d i v t > = * , \ [ * l

3. FINITE ELEMENT SPACES ON TRUNCATED EXTERIOR DOMAINS

Assume that Q cz ÎR3 is a bounded polyhedral domain with Lipschitz boundary. Suppose 0 e ^ , and fix
Se (0, oo) with Q a Bs. For any R G [8 - S, °o), h G (0, S), let 3~£ be a partitioning with k(h,R) éléments
(k(h,R) G M). These éléments are denoted by Kx(h9R)9 ...,Kk{hR){h,R), so that

The properties of the décompositions 2f£ will be specified by assumptions (A1)-(A9) below. For brevity, we shall
only write Kt instead of Kt{ h, R ), except at some rare occasions when the choice of the parameters h and R may
not be clear from context.

Our first assumptions state that the meshes 9~£ are tetrahedral and décompose a région around Q which is larger
than QR (see fig. 1):

(Al) For h G (0, S), R G [8 • S, oo), / e {l, ..., k(h9R)}, the set Kt is an open tetrahedron with
Kt ci U3 \Q.

(A2) ÙRcz^j{Kl:l ^ l ^ k(h,R)} for h, R as in (Al).
We do not admit hanging nodes:
(A3) If h e (0, 5), R ^ 8 • S, l, m e {l,..., k(h,R)} with / * m and F := Kt n Km ^ Ö, then F is either a

common face or side or vertex of Kt and Km.
Moreover, the décompositions £T̂  are supposed to be non-degenerate:
(A4) There is a constant er0 G ( 0, 1 ) with

sup {r G (0, ©o) ; Br(x) a Kt for some x G Kt} ^ a0 • diam Kt

for fe, /?, Z as in (Al).
The mesh size of éléments is allowed to become larger with increasing distance from Q, but this growth should

not be too strong:
(A5) If A E (0, S), R G [8 • S, oo), it holds

^ 2 /"2 • S f or / G {l, ..., k(h, R)}, 1 ^ 7 ^ 3 w i t h ^ n ^ s^ 0

i a m ^ ^ R-ht(4-S) for / E {l,.... Jk(ft,/Î)} .

Thus the element mesh size of 2T̂  may be as large as R • h/(4 * S). As we shall see at the end of this section,
the graded meshes used in [3] satisfy assumption (A5).

For h G (0, 5), R ^ 8 • S, we define the polyhedron P(h, R) as the interior of

u {£,:Ze {1,..

and the polyhedron P'(h,R) as the interior of

vol. 32, n° 3, 1998
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Figure 9. — Domain Q(h,R) (2D représentation) related to the mesh 2T* from figure 1.

see figure 2. Moreover, we dénote the interior of the set u {Kt : 1 =£ l =S k(h, R)} by Q(h,R). This means
Q(h,R) is the région decomposed by 2T*. Thus, if 2T* is given as in figure 1, the corresponding set Q(h, R) has
the form shown in figure 9. We further point out that P(h,R) cz BR and P'(h, R) c B2 s.

For reasons already indicated in Section 1, we require the outer vertices of P(h,R) belong to dBR :
(A6) If h e (0, S), R & S • S, and if x G dP(h,R) is a vertex of P(h, R), then it holds x G dBR u dQ.
This condition may be stated equivalently by requiring that for h, R, l as in (Al), the tetrahedron Kl is either

a subset of QR7 or ail its vertices belong to R3 \BR. Thus a tetrahedron with a face as shown in figure 10 is not
admitted because such a tetrahedron has vertices inside QR as well as outside BR. On the other hand, a setting
as in figure 11 does not imply a contradiction to (A6) since the three vertices of the tetrahedral face shown there
are located in U3 \BR.

Without loss of generality, we may assume that for any h e (0, 5), R 2= 8 • 5, the sets Kl are labeled in such
a way that there are indices K(h,R), r(h,R)G { l , ..., k(h, R)} with 1 < K(h, R) < r(h, R) < k(h, R) and

dBR

K 3(0.

dBR

Figure 10. — Tetrahedrons
such faces are not admitted.

with Figure 11. — Example for the face of a tetra-
hedron which conforms to assumption (A6).

Figure 12. — Any tetrahedron Kt not contai-
ned in QR should touch at least one element

W i t h Kss(l)
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Q2S for 1 s= Z ^ K(h,R)9 Ki^&R for 1 ^ l ^ z(h, R), Kl\BR =* 0 for
) + l =£ K k(h,R).

This means the polyhedrons P(h,R), P\h9R) and P(h, R)\P'(K R) coincide with the interior of the sets

u { ^ : 1 ^ / ^ x(h9R)}9 Kj{Kt:l ^ l^ r(h9R)}

and u {Kt : z(h, R) + 1 ^ / ^ z(h, R)}9 respectively. Next we want to exclude the case that our triangulations
2T* extend too far beyond BR. Therefore we require

(A7) For h e (0, S), R ^ 8 • S, l e {T<>, /?) + 1, ..., k(h9R)}9 there is an index
s(l) = s(U h9R) G {1,..., z(h, R)} such that KsU) n ^ ^ 0.
Thus any tetrahedron ^ not contained in ̂  should touch at least one element Ks^ with Ks^ e QR (fig. 12). This
implies Kt touches several such éléments, but we pick just one, namely Ks^.

As explained in Section 1, we have to require the outer surfaces of P\K R) P(h,R) do not fold up:
(A8) There is an angle (p0 G (0, n/2) such that for h G (0, S), R ^ 8 • 5, it holds

forxG dP'(h,R)\dQ ,

R)iuQ forxe dP(h,R)\dQ.

This assumption is not much of a restriction in practice. In fact, it suffices to take care that the outer faces of
P\h,R) and P(h,R) have a normal roughly pointing in radial direction.

For h R, l as in (Al), we introducé the usual macroelement (Kl)A made of the éléments in 3~f neighbouring
Kr More precisely, the set {Kt)A is defined as the interior of

These macroéléments should have a shape which will allow us to apply the interpolation resuit in [1, p. 100/101,
Lemma 4.3.8]. Therefore we require

(A9) There is a constant a1 e (0, 1 ) such that for h, R, l as in (Al), the set {Kl)A is star-shaped with respect
to the bail Bai àiamKl(x)9 for some x G (Kt)A.

As in the case of assumption (A8), it should not be too difficult to satisfy assumption (A9) in practice. For
example, one may think of starting with a non-degenerate décomposition into 3-rectangles and then split up each
rectangle into tetrahedrons.

Let us note two conséquences of assumptions (A3) and (A4): Firstly, there is some integer Z e N with

cardjme {l,..., k(h, R)} : Km n Kt * 0} ^ Z for h9 R, l as in (Al ) . (3.1)

Secondly, there is a constant ^l > 0 such that

diam {Kl)é^Bx- diam Kt for h, R, l as in ( Al ) . (3.2)

Observe that inequality (3.1) implies for ƒ G Ll(Q(h, R)), h, R as in (Al):

k(h,R) * k(h,R)

2 fdx^z* 2 \ fdx-
/ = 1 HKÔé 1=1 *Kt
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Next we introducé our finite element spaces. To this end, we use the following notations: If se a U3, we write
Polx( se ) for the set of ail polynomials on se with degree less than or equal to 1. If T cz R3 is a tetrahedron with
vertices av ..., a4, and if j G {l, ..., 4}, then let k} = k(aj9 T) dénote the polynomial from Polx(U

3) satisfying the
équation k(at) = ÔtJ for 1 ^ i ^ 4. Define the bubble function bT by bT := kx * ... • k4.

Take h G (0,S), RG [8-5 , «>). Then let the space W* contain all the functions v G C°(ÛR)3 with

v ljr G span (PoL(Kj) u { ^ } ) for 1 ^ l ^ T(/Î,/?), 1 ^ / '^ 3 ,

Moreover, let Mh dénote the space of ail functions p : P(h, R) u QR>-> U with

C°(P(h9R))9

P\(Kl n Û,) u ^ 7 i ( ( ^ n ^ ) u tf,(/) ) for T(A,/?) + 1 ^ Z

Note that ^ f cz W1'2(Q)3 and Mf c: L2(QR). We further remark that on tetrahedrons Kx contained in QR, our
spaces reduce to the shape functions of the Mini element ([2, p. 213]). On curved domains Kt n QR, however, any
function from the velocity space Wh equals a polynomial of order 1, whereas any function from the pressure space
M f coincides with one and the same polynomial of first order both on the curved element Kt n QR and on its
related tetrahedron Ks^ a QR. This means our pressure functions may be estimated against their restrictions to
P(h7 R). For a proof, we fîrst point out a conséquence of (3.2):

LEMMA 3.1: There is a constant 2$2>Q such that

l2 M K R, las in (Al), p G Pol^U3) .

In particular, since Kl a (Ks{l))d for z(h, R) + 1 ^ l ^ k(h, R), it holds

Now it follows by (3.3):
LEMMA 3.2: For h G (0, S), R 5= 8 • S, p e M*, it holds

For technical reasons, we shall need certain spaces of C° piecewise polynomials of degree 1 over the sets
with a constant S/3 independent of h} R and p.

For technical reasons, we shall nee
Q(h,R). These spaces are defmed by

Vf := {u G C\Q(KR))3 : u{K( G Pol^K,)3 for 1 < Z *£ k(h, R) ; u{dQ = 0},

for h G (0,S),R *t &-S.
Due to (A9), we may use the resuit in [1, p. 100/101, Lemma 4.3.8] in order to approximate functions on

(Kt)A by polynomials. It follows by a reasoning as in [1, p. 118/119]:
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THEOREM 3.1: There is a constant 2A > 0 and for any / I G (0 , S) , /? G [ 8 - 5 , °°), a bounded linear operator

$R
h : {w G Wh\Q{KR)f : w]dQ = 0} ̂  WR

h

such that

/or fc, /?, / as in (Al), m e {0, 1,2}, t> e {0,..., m}, w e W1>2(ÔO, # ) ) 3 wi'/i w|âi2 = 0 and
m 2 ( ( ^ ) 3

THEOREM 3.2: There is a constant @5>0 and for any h e (0 , S) , R G [8 • 5, °°), a projection

such that it holds

| ( H > - 7 7 £ ( W ) ) | ^ | W 2 - (diamKiY 1 + v ^ ^ 5 • |W|(JC/)j|1>2

/or A, /?, / ^ in (Al), v e {0, l } , w e W1>2( Q( A, R) )3 w ë w |a i2 = 0.

THEOREM 3.3: There is a constant 2#6>0 and for any h e (0, S), R G [8 • S, °<>), a projection

{ue C0(P(h,R)\P\h,R))3:

such that it holds

\(w - ffh(w)),K\v , . (diam KX 1 + v s= ®6 • \w,(K, 1. ,

i, R)\P\K R) ) \ le {K(A, JR) + 1, ..., T(/Ï, /?)}, ü G {0, l}.
By slightly modifying the arguments in [1, p. 108-110] and using Lemma 3.1, one may show
THEOREM 3.4: There is a constant 21 > 0 and for any h G (0, S), R G [8 • 5, °°), a bounded linear operator

3>«h:L
2(Q(h,R))~MR

h

such that

for h, R, las in (Al), n <E L2(Q(h,R)) with n^K{)) G Wh2((Kp(l))^), where p{l) := / if l ^ r(h, R)9 and
/>(/):=*(/) if l>r(h,R).

In Theorem 3.1 and 3.4, we did not use the notion of "projection" because the range of the operators $£ and
J* may not be considered a subset of their respective domain.

We note a conséquence of Theorem 3.2 and (A5):

COROLLARY 3.1: There is a constant !3% > 0 with
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for h G (0 ,5 ) , RG [8- S,°o), w e Wh2(Q(h,R)f with w{dQ = 0. _
Proo/v Let v be the trivial extension of w - nR

h{w) to A := Q(h, R) u £2. Since
(w - II^(w))tdQ = 0, it follows f e W l î 2(A). A scaling argument together with a standard trace theorem
yields

with a constant J f independent of h and I?. Now the coroUary follows by (3.3), Theorem 3.2 and the second
inequality in (A5).

Let us compare our assumptions on the triangulations 9~f and spaces Wf, M* with the corresponding
assumptions in [3]. To this end, we set

U2 := £4 5 VÖ, Uj-B? 5 Xfîy - i 5 for y G N, 7 ^ 3 .

As in [3], we only consider meshes 3~£ with R = 2J • S, for / G M, ƒ ^ 3. We replace (A4), (A5) with the
following stronger assumptions:
(A41) There is some constant o2 e (0, 1 ) with

sup {r G (0, 00) ; Br{x) c JBTj for some x G Kt} ïz a2-2? ~2 • h

for A e ( 0 , S ) , 7 G M, / ^ 3, 7 G {2,..., ƒ}, 1 ^ / ^ k(h, 2J • S) with ^ n f / ^ 0 , where

(A5f) diam ^ ^ 2/ " 2 • /i for h, J, j , l as in (A4').
These conditions mean that any element Kt = Kt{h,2J • S) intersecting the annular région U] has a diameter

of order 2/ ~ • h • S. In particular, the element mesh size doubles from one annular région to the next in outward
direction.

With these stronger assumptions, which will not be needed for the proof of (1.5) in Section 4, the meshes
2J S

?fh belong to the type of décompositions considered in [3], Moreover, the results stated in Theorem 3.1 and 3.4

imply the spaces W2
h
 s, M\ S fulfil the interpolation properties listed in [3, (6.10)-(6.17)]. Obviously, it holds

AT := N( h, J) := dim wf s + dim wf s *S 20 • Jk(h, 2J - S) (3.6)

(h G (0,S),JG N,J>2). Thus, if they satisfies the Babuska-Brezzi condition (1.5), the spaces
2J S 2J S

Wh , Mh exhibit all the features required in [3, Section 6]. But of course, the proof of (1.5) represents the main
difficulty of our theory.

Let us draw some conclusions from (3.6). To this end, we remark that the left-hand side AT in (3.6) corresponds
to the number of unknowns which arise when a mixed finite element problem is solved in the space
W2

h
 sxM2

h
 s. To give an example, consider a situation as in [3], where an exterior Stokes flow (u,n) in

\R\Ù is approximated in Q2J s by the solution

(o(A,/),/»(A,/)) e Wi 5xM* s

of a certain mixed finite element problem. According to [3, Corollary 6.1], applied with k = 2, a > 4,

ö=l9 A < min {1,5}, J= [ - g ^n 2 • ln/z] + 1, it holds

) l | 2 + \\n]Q2Js-p(KJ)\\2^Jf-h. (3.7)
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Hère and in the rest of this section, the letter $C dénotes constants which are independent of h and N. As may
be seen by [3, Theorem6.2], the assumption J= — «—;—= • \nh\ + 1 amounts to balancing the truncation
and discretization errors mentioned in Section 1.

The order of the System of équations arising in a computation of v( h, J) and p(h,J) equals the number AT on
the left-hand side of (3.6). This number N may be estimated by combining (3.6) with the upper bound for
k(K 2J • S) given by [3, Lemma 6.1]. It follows

N ^ J T - h ~ 3 - \ l n h \ . (3.8)

Thus we see that in spite of our graded mesh, the number N of unJknowns may grow with the radius
R = 2J • S of the truncating sphère dBR. However, this growth is much slower than in the case of uniform mesh
size of éléments. As a conséquence, the mesh grading process which is described by (A41)» (A51) and which goes
back to Goldstein [6], [7] leads to a considérable saving of computational effort. To be more précise, we transform
(3.7) into an effective error estimate. For any e e (0, 1 ), inequality (3.8) yields N ^ 3C • €~ • h~ ~ e, hence
by (3.7):

II Vw |<v.5 ~ V1>( A, J ) || 2 + II 7ilÜ2Js - p( h, J) || 2 ^ Jt • e" x -AT 1/(3 + e ) . (3.9)

Now consider a triangulation with a uniform mesh size of éléments, that is, replace (A41), (A5') by the ensuing
assumption:

(A4") There exists some number er3 e (0, 1 ) with h ^ diam Kt ^ a3 • h, for h, R, l as in (Al).
This conditions implies k(h, 2J S) ^ J>T • h' 3 • (2 7 • 51)3, so it follows from (3.6): Â  ̂  3C • h" 6, and we may
deduce from (3.7)

^ Jf • AT 1/6 ,

which is a resuit much worse than the estimate in (3.9).

R

R

dBR

Figure 13. — Geometrical interprétation of inequality (4.1).

4. PROOF OF THE STABILITY CONDITION (1.5)

We begin by some technical lemmas. First we note a conséquence of the f act that the shape functions related
to the standard Lagrangian PI finite element are linearly independent:

L E M M A 4.1: There is some number 5 ? 9 e ( 0 , «>) such that for he(Q,S), R e [8 • S, ° ° ) ,
/ e { l , ...,k( h, R)}, p,qe Pol^Kt) with q(x) - p(x) or q(x) = 0 for any vertex x of Kp the following
inequality is valid:

I k l l 2 < ^ 9 - \ \ P \ \ 2 .
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The next lemma indicates m what sensé the set QRXP(h,R) is small

LEMMA 4 2 Let h e (0, S), R & & S Then

BR

Proof The polyhedron P(h, R) has two kmd of faces "mner" faces, which are part of dQ, and "outer" faces,
which are triangles with vertices on dBR , see (A6) Let F be an outer face of P(h,R) By the définition of
P(h, R), there is some Z e {1, t k(h,R)} such that F is a face of Kt Let a, b be two of the vertices of F Then
we have |a| = |&| =/?, \a-b\ ^ diamÀ^ It follows by a simple geometncal argument (fig 13)

|JC|2 5= R2- \a~b\2/2 ^ R2 - (diam K^2 12 (4 1)

for any point x on that side of F which has endpomts a and b
Now take a point y e F We may choose points c, d, each located on a side of î  such that

v = r c + ( l - r ) <i for some r e [0,1] A simple calculation yields

\c - d\2

But | c - J | ^ diam^, so we obtain by (4 1) and (A5)

\y\2 ^ R2- ( d i am^) 2 ^ R2 - h2 R2 /( 16 S2) (4 2)

Smce F was an arbitranly chosen outer face of P( h, R ), înequahty (4 2) holds for any y e dP( h, R )\dQ On the
other hand, we have Q cz Bs, so the lemma is proved D

When a fixed bounded domain is considered, a standard method for validating the Babuska-Brezzi condition
is based on the next two results (see [2, pp 220/221])

LEMMA 4 3 There is a constant <3l0 > 0 such that it holds for h <E (0,5), R e [8 S, «>),
Ze{ l , ,k(h,R)}

where bK is the bubble function associated to Kt (see Section 3)
The proof of this lemma is easy and may be omitted

LEMMA 4 4 There exists a constant @u > 0 with properties as follows
Let he (0 ,5) , R e [8 S,~>), we Wl 2(Q(h7R))3 with wldQ = 0 Furthermore, take

?)}, me {K(KR) + h

*-(ƒ«***) L(w-
ƒ («-fl> ))rfx
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Then it holds

\ci ' ̂ rj 1,2 ^ -̂ 11 ' v l

This lemma is an immédiate conséquence of Lemma 4.3, Theorem 3.2 and 3.3.
Now we are in a position to prove our main resuit,

THEOREM 4.1: There are constants £ > 0, £&17 5= 8 S such that it holds for R G [®17, °°), h G (0, S) with
h

p div v dx

i n f s u p QR
 r p , ^ B .

eM*veW*rv*0 \v\\R} \\p\\

We remark that the constant <SX1 will be defined explicitly via équations (4.19), (4.28) and (4.29) below.
We shall prove (1.5) in the following way: for any pressure function n G MR, we shall distinguish three cases.

In the first one, it will be assumed that the L2 -norm of n is concentrated on P\h,R). Then we shall start out
with Theorem 2.2 which deals with the divergence équation in truncated exterior domains. The second case arises
if the L -norm of n is concentrated on QR \P'(h, R) and the mean value of n is small in a certain sensé. Under
these assumptions, our arguments will be based on the solution theory for the divergence équation given by
Theorem 2.1. Finally, if the L2 -norm of the pressure function n is again concentrated on QR \P'( h, R ), but if the
mean value of n is large, we shall consider this function n as a perturbation of its mean value. It is for this last
step that we assumed the parameter h is not too large, the radius R is not too small, and the element mesh size
does not grow too strongly with increasing distance from Q. The latter restriction is formalized by the second
équation in assumption (A5).

Proof of Theorem 4.1: In the following, the symbol 3C will dénote constants which may depend on Q, a0, S
and Z. We shall use this symbol whenever there is no need to explicitly define the respective constant.

Take h e (0, S) with h ^ Sl®v Re [8 • S, «>), /?€ MR
h.

Set € := min {1/2, (4 • ̂ 1 4 ) ~ 2}, where the constant 2lA will be defined in (4.6) below. As indicated above,
we shall distinguish three cases. First, we assume

Then we define the function p1 e MR in the following way: For

x G {y G ÙR : y is a vertex of Kt for some / G {l, ..., r(h, R)}} ,

we set

px(x) :=p(x) if XG P'(h,R), px(x) :=0ifxG QR\P'(h,R) .

We further put

w.= v{Q,2-R,'px)mhR),

vol 32, n° 3, 1998



300 Paul DEURING

where px dénotes the zero extension of px to Q2 R The function v(Q,2 R,Pl) is to be chosen accordmg to
Theorem 2 2, with se, R, n replaced by Q, 2 R, px For l e {l, , r(h, R)}9 set

Cl =1 ]K
bKl

dx J

Define u QR^U3 by u(x) = O for JC e QR\P(h,R),

u(x) = cl bK(x) for x ^ Kt with / e {l, ,T(&, ,

Then we have M e w£ Combming (3 3), Theorem 2 2 and Lemma 4 4, we obtam

| M | 1 2 ^ 2n Zm | w | 1 2 ^ ®12 l lpj^ (4 4)

with S 1 2 = ̂ n Z1/2 ^2(Q) Moreover, observing that

pmhR)eW12(P(h,R))

Vpl]Ki c o n s t a n t for l ^ l ^ r ( h , R ) , u{aQ = 0, (w - nR
h{w)){aQ = 0 ,

we conclude as m [2, pp 220/221]

/?j d i v M d x = —
J QR J 1

- i
P(hR)

R)

hence

f Pl dxv(u + IIR
h(w))dx= \\Pl\

JQR

On the other hand, ït holds by (3 3), (4 4), Theorem 3 2 and 2 2

22 (45)

with

Setting /?2 = p - px and

z 1 / 2

2m 2ën 39 © 3 , (4 6)
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we now find by recurnng to (4 3), (3 5) and Lemma 4 1

p2 àiv(u + nR
h( II ^2 II 2 ® 1 3 H/ ' l lU ( 4 7 )

^ 9 \\P\QRVihR)h WPlh

2 ^ 1 4 \\P\p(h R)\p(h R)"2 \\P1W2

e1 / 2

e1/2

where the last inequality follows by the choice of e Combimng (4 5) and (4 7) yields

f p div(u + I7R
h(w))dx^ (3/4) \\Pl\ l (48)

Finally, observe that

where we used Corollary 3 1, Theorem 2 2 and 3 2 We deduce from (4 4), (4 8), (4 9) and (4 3)

( IH + ^ W ) ! ^ ) - 1 f p div (u + IIR(w))dx^ X \\Pl\\2

Next consider the case

For brevity we set

=P(h,R)\PXh,R), p=Vo\(0>yl f pdx
l f

J0

Assume V o l ( ^ ) /T *£ (9/16)
Then we get

vol 32, n° 3, 1998

(71/2/4) | | ^ | | 2 (411)



302 Paul DEURING

The function (p~p)^ satisfies (2.3) with se = 3P. Thus, recalling (A8), we see Theorem2.1 may be applied
with r = 2 • 5, se x = PXKR)u Q, se\ = P{h,R)^j Q. Therefore the corresponding function
v := v(&, (p-p )i&) from Theorem2.1 is well defined. For m e {*e(/z, R) + 1, ..., r(K R)}9 put

Define u\QR^ R3 by

u(x) := dm- bK (x), if x G Km for some m e {/c(Zz, R) + 1, ..., r(h, R)} ,

u(x) := 0 for x e ^ \ ^ . Then u ^ WR
h and

where we used (3.3), Lemma 4.4 and Theorem 2.1. Dénote by g the zero extension of fl^(v) to QR. Then
g e w£, and we find by referring to (3.3), Theorem 3.3 and 2.1:

We further compute

pâiv (u + g)dx=\ p • div (M + fl^(v)) dx (4.14)

= f -V/>-(o-^(ü) + ^(»))<fc

Here we exploited the fact that w, v9 îfh{v) G Wl
o'

2(0>)3. Combining (4.12), (4.13) and (4.14) yields

Now inequalities (4.10) and (4.11) imply

This leaves us to consider the case (4.10) under the additional assumption

p 2 ^ (9/16)- \\p\p\\l. (4.15)
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Define ^ : i ^ ^ R by <P(r) := 1 for r e [ 7 - 5 / 2 , - ) , < p ( r ) := ( r - 5 • S/2)/S for r e ( 5 • S/2, 7 • S/2) ,
^ ( r ) : = 0 else. Furthermore, set

v^x) :=&(\x\)-xrp, v2(x) :=u3(x) :=0 forjce

Observe that

divv(x)=p for xe Q(h,R)\B7 s/2, V\BzsSO = 09

\Vv(x)\ ^ 12- |/71 for jce Q(h9R)v/ith \x\ £ {5 - S/2,1 - S/2} .

We may conclude by (A5)

Vnl(v)\K[=(p,090) for 1 ̂  / ̂  ik(A,/?)with^n (QR\B7 S) =* 0 , (4.17)

l77*^ VJi,2 ^ O +^ 5 ) * 1 2 ' |P| * VVolCC^)^) (4.18)

for any index / e {l, ..., k(h, R)}. The last inequality follows by Theorem 3.2. Setting

®15 := ( 1 + 0 5 ) • 12 • ( (4 • Tc/3) • (9 • S • ®! /ao)3)1 / 2 , (4.19)

we get by (4.18), (A4), (A5) and (3.2):

\nR(v) —, 1 ^ Q - \p\ (4.20)

Furthermore, recurring to (4.16) and (4.17), we obtain

p • div77^(ü) dx = A +B + C, (4.22)

with

L: = /? • /? d&c, 5 := /?• (àxvnl(v)-p)dx
JüR\P(h,R) J

where we used the fact that

L (p-p) pdx = 0.
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By Lemma 4.2 and the assumption R ^ 8 • S, we may conclude

BR Vi-/*2/(i6 s2) ̂ RIA <^P{KR)XB2 s c ^ , (4.23)

QR\P(h,R)c: BR\BR Vi-**/(i6 s2) • (4-24)

The relation in (4.23) yields a lower bound for Vol ( ^ ) . In f act, applying Bernoulli's inequality, we get

Vol ( & ) ^ ( 4 • TT/3 ) • R3 - ( ( 1 - h2 /( 16 - S2) )3/2 - 1/64) (4.25)

^ (4-7T/3)-7?3- (1 - 3 -h21(32-S2)- 1/64) ^ ( 19 • TT/16) • R3.

We make use of (4.24) in order to find an upper bound for Vol (&R \P(K R) )•
We further find

Vol (QR\P(h,R)) ^ Yol(BR\BR Vi- f t ' / ( i6 52)) (4-26)

- ( 1 - /* 2 / (16-S 2)) 3 / 2) ^ 7T

As a conséquence, we get

Vol (QR\P(h,R))- V o l ( ^ ) " 1 ^ 2 - / z 2 / ( 1 9 - ^ 2 ) . (4.27)

Now we obtain by referring to (4.20) and (4.25):

\B\ « ( ^ 1 5 + (4 • n/3)m • ( 7 • 5) 3 / 2) • \p\

with

®1 6 := ( ® 1 5 + ( 4 • ?r/3)1/2 • (7 • S)3 /2) • 4/V19 • TT . (4.28)

We further obtain by referring to (4.27):

|A| ^ Vol (QR\P(KR))m- \p\ • H/>f^(/l)/oll2

It follows by (3.5) and our assumption h ^ 5 /^ 3 :

j/x | ^ V ̂  * / l / \ V I 7 • j y • ^/)\ • VOl ( tX ) * /? * Oi/ffl «

""'• l/7! • H / v Us-
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Now returning to (4.22) and using (4.15), we deduce

[ PdivnR
h(v)dx

3= (3 /4 ) - \\p^\\2-Vo\(0>)y2-\p\-\A\-\B\

> ( 3 / 4 - 1 /2- 3l6- R~m) V o l ( ^ ) 1 / 2 • \p\ • \\p^\\2.

Thus, setting

@X1 := max{8 - S, (8 • @l6f
3}, (4.29)

we get for RIE [ S 1 7 , O O ) :

f pâivIIR(v)dx* (l/8)-Vol(^)1/2- \p\ • H/Vll2. (4.30)

Inequalities (4.21), (4.25), (4.30) and (4.10) yield

Thus we hâve shown for any case there is a function w e WR with

Our proof is completed by referring to inequality (3.4).
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