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i m MATHEMATICA!. HODEUING AND NUMERICAL ANALYSIS
B H MODELISATION MATHEMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 32, n° 3, 1998, p 359 à 389)

RESOLUTION OF THE MAXWELL EQUATIONS IN A DOMAIN WITH REENTRANT CORNERS (*)

F. Assous O , R CIARLET, Jr. (2) and E. SONNENDRUCKER (3)

Abstract — In the case when the computational domain is a polygon with reentrant corners, we give a décomposition of the solution of
Maxwell's équations into the sum of a regular part and a singular part It is proved that the space to which the singular part belongs is
spanned by the solutions of a steady state problem The précise regulanty of the solution is given depending on the angle of the reentrant
corners The mathematical décomposition is then used to introducé an algonthm for the numerical resolution of Maxwell's équations in
présence of reentrant corners This paper is a continuation ofthe work exposed in [3] The same methodology can be applied to the Helmholtz
équation or to the Lamé System as well © Elsevier, Paris

Résumé —Lorsque le domaine de calcul est un polygone non convexe, c'est-à-dire avec un ou plusieurs coins rentrants, nous donnons
une décomposition de la solution des équations de Maxwell en une partie régulière et une partie singulière Nous prouvons que l'espace
des parties singulières est engendré par les solutions d'un problème statwnnaire simple La régularité exacte de la solution est déterminée
en fonction de l'angle aux coins rentrants Cette décomposition mathématique permet alors de construire un algorithme de résolution
numérique des équations de Maxwell dans un polygone non convexe Cet article est la suite de la note [3] Cette méthodologie peut également
s'appliquer à Véquation de Helmholtz ou au système de Lamé © Elsevier, Paris

1. INTRODUCTION

The resolution of the steady-state or time-dependent Maxwell équations in a bounded domain has become
classical thanks to finite différence methods in rectangular domains or finite element methods conforming in
//(curl) [33] or mixed, conforming in //(curl, div) ([5], [14]) in more complicated geometries. However, when
the boundary is not regular and when the domain is not convex, that is in présence of reentrant corners, the mesh
needs to be refined drastically in the neighborhood of the reentrant corners in order to get an acceptable numerical
solution (see [7], [18] among others for a study of this approach). Another method consists in using special
singular shape fonctions (see for instance [21], [27]). It is however generally accepted that grid refinement is a
better approach, except in some special cases ([20], [25]). Let us finally mention the more recent approach called
the method of auxiliary mapping which deals with elliptic boundary value problems with singularities ([8], [10]
or [34]).

In this work, we are going to study this problem in a bounded domain of [R2. Physically, this can describe a
3D problem in which the electromagnetic field is independent of one of the three space variables (x, y, z), which
we assume to be z: in this case, we are working in a plane perpendicular to the Oz axis. This happens for example
in an infinité cylinder of axis Oz, when the electromagnetic field is independent of z.

In this paper we shall introducé several methods to solve numerically the Maxwell équations in domains with
reentrant corners as well in their steady-state as in their time-dependent form, with a perfectly conducting
boundary condition. More precisely, following the work of Grisvard for the Laplace problem and the wave
équation [26], we shall introducé a décomposition of the L2(Q) space, from which we shall obtain a
décomposition of the solution of the Maxwell équations in a "regular" part and a "singular" part. Then we shall
show how to calculate the singular part in order to reduce the problem to the numerical computation of the regular
part of the electromagnetic field which can be done with a usual method.

(*) Manuscript received January 27, 1997 Revised March 19, 1997
C1) CEA/BIII, BP 12, 91680 Bruyères-le-Châtel, France
(2) ENSTA, 32 boulevard Victor, 75739 Pans Cedex 15, France
(3) Institut Elie Cartan, Université Nancy I, France
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Concerning the study of the singularities of the wave équation as well as the Maxwell équations in a unbounded
domain, we refer the reader to the work of Gérard and Lebeau [22] and Lafitte ([29], [30]), who deal with the
problem of the diffraction of a wave incident to a curved corner with perfectly conducting as well as mixed (of
impédance type) boundary conditions. In the case of a conical geometry which allows to use polar coordinates,
we refer the reader to the work of Cessenat ([11, 12]) who solves problems linked to the Helmholtz équation in
polar coordinates with the Sommerfeld radiation condition. These studies obviously yield a useful basis for the
treatment of the steady-state problem, at a given non vanishing frequency, comparable to the one we propose
hereafter for the time-dependent problem. Ho wever, the methodology we apply hère on the time-dependent
Maxwell équations can be straightforwardly extended to the Lamé System, or to the Helmholtz équation by
substituting C for R.

This paper is organized as follows. In Section 2, we introducé the notations and useful properties of some
functional spaces. In Section 3, the model problems (steady-state and time-dependent) are presented. Then, the
orthogonal space décompositions are introduced in Section 4, from which the décomposition of the solution into
a regular and a singular part is obtained. Section 5 is devoted to the computation of the solution: we first present
a détermination of a basis of the singular part by using several formulations, and then the resolution of the
time-dependent regular part. Finally, concluding remarks and perspectives are given in Section 6. For the sake of
simplicity, we restrict ourselves in these Sections to the case of a single reentrant corner, and to the boundary
condition u . r — 0. The case when u . v = 0 on the boundary is postponed to appendix A, and the gênerai case
of several reentrant corners is addressed in appendix B.

2. NOTATIONS AND PROPERTIES OF SOME FUNCTIONAL SPACES

Let Q be a connected and simply connected polygon of R2 with a boundary F for which all the angles at the
vertices have a value not greater than n, except for one reentrant corner whose angle is — with 1/2 < a < 1 (see
fig. 1). We dénote by Qc an open angular sector in the neighborhood of the reentrant corner and by /^ its boundary.
We call Qe the open subdomain such that Qc n Qe = 0 and Qc u Ôe = Q, and Fe its boundary. Finally,
we call SS the boundary F° n Fe and we décompose Fc (respectively F6) in F°' - 3$ u F° (resp.

Figure 1. — Shape of the domain Q.

As we are working hère in a domain of R2, there exists a scalar curl operator which maps R2 -valued functions
into [R-valued functions and a vector curl operator curl which maps [R-valued functions into [R2 -valued functions.
In order to avoid confusions, we shall write in bold face the functions and operators having vector values. The
extension to C-valued functions yields similar results on the Helmholtz équation. We shall dénote by

H( curl, Q ) = {v e L2( Q )2> curl v = dvy - dyvx e L2( Q ) } ,

M2 AN Modélisation mathématique et Analyse numérique
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RESOLUTION OF THE MAXWELL EQUATIONS 361

and

L2
0(Q)= J / G L2(Q)A /dk = oktfo(curl,fl) = {ve //(curl, ü), y . r - 0 on F} .

For a function ƒ, we have

c u r l / = ( _ \ , ) (1)

and so curl/e L2(Q)2 if and only if V/e L2(Q)2. Hence the space that we could dénote by //(curl, ü) as
above is identical to Hl(Q). On the other hand, if v = (vx, v ) is the outgoing normal vector at any point of
the domain (except the corners) we dénote by T = (v , - v^) the associated tangent vector.

We shall need the following functional spaces:

//(div 0 ; Q) = {v G L2{Q)2, div v = O}, as well as V = { v e //0(curl, fl), div v = 0}

the Hilbert space endowed with the canonical scalar product of //(curl, Q). And also 0 the space of stream
functions:

It can be easily checked that

= 0 on

LEMMA 2.1: W^ /zave the following vector space isomorphisms:
1. The curl operator defines an isomorphism from V onto Q
2. The curl operator defines an isomorphism from (P/IR onto VT
3. 77ie Zf operator defines an isomorphism from 0/U onto L2

0(Q).
In the case when the boundary F is of class C2, or in the case when the domain Q is convex with a Lipschitz

continuous boundary F, the space Vis included in Hl(Q)2 (see for example Girault-Raviart [23]) and the space
0 is included in H (Q) (see for example Grisvard [26]). This is not true anymore in présence of reentrant corners.
Hence we need to introducé the regularized subspaces of V and 0 :

VR = V n H\ Q f = {v G H\ Q )2, div v = 0, v . z = 0 on F}

and

2 { 2 ^ = 0 on

3. THE MODEL PROBLEMS

3.1. The steady-state problem

Given a function ƒ G L2( £2
Find u G //( curl, & ) such that:
Given a function ƒ G L2(Q), we consider the following problem:

cu r lu= / in Q (2)

div u = 0 in Q (3)

u • T = 0 on F (4)

voL 32, n° 3, 1998
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PROPOSITION 3.1: Take fe L\(Q). Then problem (2)-(4) admits a unique solution u G #(curl, Q).

Proof: Let us use the associated stream function. Due to lemma 2.1, every function u G V is associated to one
and only one function 0 G &/R such that curl <p = u, and we have curl u = curl curl (p = - A<p. Problem
(2)-(4) is therefore equivalent to the following problem:

- A<fi —f in Q

d(f> n ^
—5e- = (j o n 1 .

This is a Laplace problem with a Neumann boundary condition, which, as the compatibility condition

ƒ dx = 0 is fulfilled, admits a unique solution <f> in Hl{Q)M. •

Remark 3.7; In this section, u stands for the electric field, thus (3) corresponds to the Coulomb équation with
a zero right-band side. Nevertheless, the more gênerai problem, whith g G L2(Q), in which (3) is replaced by

div u = g in Q ,

can be brought back to the previous problem by letting w = u - Vy, y/ being the unique element of
Hl

0(Q) verifying Ay/ = g. The function w then satisfies indeed problem (2)-(4) and y/ vérifies a Laplace problem
which has been studied exhaustively by Grisvard [26]. •

3.2. The time-dependent problem

Given a function ï(t) e L2([0,T] ; L2(Q)2) such that d ivf=0 and two functions uo G V and
Uj G H( div 0 ; Q ) which do not depend on time, we consider now the following problem:

Find u( 0 G L2( [0, T] ; HQ( curl, Q ) ), du/dt(t) G L2( [0, 7] ; H( div 0 ; Q ) ) such that

2

—~ + curl curl u = f in Q (5)

dr

div u = 0 in Q (6)

u . T = 0 o n r (7)
with the initial conditions

u(0)-u0 (8)

au
dt

These équations can be written in variational form:
Find u( 0 G L2( [0, T] ; Ho( curl, & ) ) such that

^5 u . v J x + curl u curl v dx =\ î.\dx, Vv e Ho( curl, X2 ) (10)

dt ia JQ ia

divu = 0in£2 (11)

with the initial conditions

u(0) = u0, ^ ( 0 ) = U l . (12)

M2 AN Modélisation mathématique et Analyse numérique
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RESOLUTION OF THE MAXWELL EQUATIONS 363

PROPOSITION 3.2: Let f e L2( [0, T] ; H( div 0 ; Q ) ), u0 G V and ux G H( div 0 ; Q ). TTien problem (10)-(12)
admits a unique solution u such that u e C°( [0, T] ; V) n C*( [0, T] ; //(div 0 ; 42) ).

Proof: Apply the variational theory of Lions-Magenes [31], Tome 1, p. 286. •
Remark 3.2: As in the case of the steady-state problem, the more gênerai problem where (6) is replaced, for

g e C 2 ( [ 0 , r ] ; L 2 ( f 2 ) ) , by

div u = g in Q ,

and the compatibility condition div f = 0 is replaced by

% - div f = 0 in Q
dt2

can be brought back to a problem of type (5)-(9). Indeed, taking w = u - Vy/ where y/ is the unique element
of H\(Q) such that Ay/ ~ g, w belongs to V and vérifies

dt2 dt2

4. DECOMPOSITION OF THE SOLUTION INTO A REGULAR PART AND A SINGULAR PART

4.1. Space décomposition

LEMMA 4.1: The L -norm of the curl defines on V a norm which is equivalent to the canonical norm of
H(curl,fi).

Proof: It is clear that for all v G V we have

|| curl v || L2 ^ || v || L2 + || curl v || L2.

For the other inequality, we associate to any v G V its stream function <p G 0/U such that curl <p = v, and we
have curl v = curl curl q> = - Acp. It results, multiplying by <p and using a Green formula, that

V(p , V<p dx = curl \<p dx ^ || curl v || L2 || ç? || L2,

which yields, using the norm équivalence, cp •-» ||Vç?||£2 and ç? >-̂  | | ^ | | H i in Hl(Q)/U, see theorem 1.9,
chapter 1 of [23]: 3 ^ > 0 such that

Then as

we finally get that

||v||L2+ || curl v || i 2 ^ (1 + ^ ) || curl v | | i 2 .

vol. 32, n° 3, 1998



364 F. ASSOUS, P. CIARLET, Jr, E. SONNENDRÜCKER

Remark 4.1: A similar resuit has been proved by Grisvard [26] for the space 0IH. Here, the norm
i

(p »-> || A<p || L2 is equivalent to the canonical norm on &/R, i.e. (p •-> ( || ç> || Rx + || Aq> || L2 )2. M

COROLLARY 4.1: Endowing 0/M. with the L -norm of the laplacian and V with the L -norm of the curl, the
isomorphisms defined by lemma 2.1 preserve orthogonality.

We shall assume in the sequel that V and 0/M are endowed with those norms.

DÉFINITION 4.1: We shall dénote by curl VR the image of the space VR by the curl operator.

LEMMA 4.2: The space VR and curl V̂  are closed in V and L2
Q{ Q ) respectively.

Proof: Thanks to a result of Costabel [16] (see also Moussaoui [32]), we have for all v e VR,

The claimed closure properties then result of the completeness of Hl( Q ) for its canonical norm. •

DEFINITION 4.2: We shall dénote by A0R the image of &R by the Laplace operator and we let
N = (curl VR)\

LEMMA 4.3: The space curl VR is identical to A0R and the space N is of dimension 1. We have the direct
orthogonal sum

L2
0(Q) = cwl VRè> N.

Proof: Let v e V .̂ An element <p e 0 can be associated to it using isomorphism 2 of lemma 2.1. As
v G Hl(Q)2 and v = curl <p, we have V<p e Hl(Q)2 and so q> e H2{Q), which means that q> e <PR. We then
have by définition curl v = Acp, hence curl V̂  is included in A&R. In the same way, to q> e &R, we can associate
v e V̂  to show the converse inclusion. As A<PR — curl V̂  is closed, we have by denoting 7V= (curl V/?)

± the
following orthogonal décomposition

= curl VR 0 N .

By définition, for p G N we have

A<p p dx = 0 V#? G cẐ  .

It follows that Ap = 0 in the sensé of distributions. On the other hand, we can write a double Green formula

(see theorem 1.5.3 of [26]) and define the trace of -r^ on each segment F of the boundary F in the space

(Hgo( Fj ) y. We write in a "condensed" (and abusive) manner that -r̂  is in H~ â( F), and as ̂  = 0 we also find

that r^ = 0 on the boundary. Finally, N is the vector space of functions p G LQ( £2 ) such that

Ap = 0 in Q ,

^ = OonT.

It has been proved in Grisvard [26], theorem 2.3.7, that AT is a one dimensional vector space. •
Remark 4.2: According to lemma 2.3.2 (i) and to theorem 2.3.3 of [26], p has to satisfy sortie compatibility

conditions at the corners. We shall not describe these conditions here, knowing that they are automatically satisfied
by the local expressions of p (cf. infra, theorem 4.2). •

M2 AN Modélisation mathématique et Analyse numérique
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RESOLUTION OF THE MAXWELL EQUATIONS 365

The lemmas that we have proved so far allow us to state an orthogonal décomposition of vector fields into
singular and regular parts.

DÉFINITION 4.3: We shall dénote by Vs (resp. &s) the reciprocal image of N by the curl (resp. the Laplace)
operator, Le. Vs = curF 1 N and &s = A~ 1 N.

THEOREM 4.1: We have the following décompositions into direct orthogonal sums:

j_
V — y fes y

0 = 0R

S

±

Remark 4.3: The properties we give hère for the spaces V and V̂  in this section have their equivalent for the
spaces 0 and 0R. These properties have been proved by Grisvard [26] in his study of the singularities of the
Laplace problem. •

Given u = u^ + us a solution in V of (2)-(4) or of (5)-(7), we shall call regular part of the solution
nR e VRy and singular part u5 e Vs.

4.2. Regularity of the solution

In Qc, we can use polar coordinates (r, Ö) centered on the reentrant corner, with 0 < r ^ /?,
0 ^ 0 ^ - . We have:

According to a classical result that can be found for example in [26], if a function g regular outside the reentrant
corner is identical to /z(0) in Qc, with z regular and ƒ? G IR\Z, then

g e H\Q) if .y<^+ l,and

g € H\Q) if s ^ P+ 1 .

THEOREM 4.2: A function u of V\VR belongs to Has(Q ) 2 for all e > 0 and does not belong to Ha{ Q ) 2 , where

— is the value of the angle at the rentrant corner ( -~ < et < 1 j .

Remark 4.4: This result précises the gênerai regularity result u G Hy2{Q)2
y obtained by Costabel [15] in any

polyhedra. •
Proof: Such a u can, according to theorem 4.1, be decomposed into two parts, one being in Hl(Q)2, the other

(non zero) part being in the less regular vector space V̂ . According to lemma 2.1, Vs is of dimension 1.
According to lemma 2.3.4 of [26], the functions of iV are regular outside a neighborhood of the corners. If we

call \s an element of Vs, there exists ps e Af such that curl \s - ps. As moreover div \s = 0, we deduce that
Avs = curl/?5. ps being regular outside corners, this is also true for \s. The regularity of u will hence be that
of any element of Vs in the neighborhood of these corners.

vol. 32, n° 3, 1998



366 F ASSOUS, P CIARLET Jr, E SONNENDRUCKER

By définition of Vs, ït is natural to start by studymg the behavior of the functions of TV near the corners For
that, we consider first the neighborhood of the reentrant corner For all the other corners, ït will suffice to substitute

a ' to a, where —r is the value of the angle at the considered vertex (in particular, we always have OL' > 1 )

S o we are looking for the functions S0 solution of
Find S° e L (Qc) non vanishing such that

AS° = 0mÜ\ (13)

^ = Oonr\ (14)

5° not belonging to Hl(Qc) Note that the solutions of (13)-(14) form a vector space Using the method of
séparation of variables (mathematically justified in [26]) we find that all the terms of the séquence

are solution of (13) (14) As rn0L cos (naO) e L2(QC) if and only if n ^ - 1 and as it belongs to Hl{Qc) for
n ^ 0, S0 can be wntten

S°(r,0)= 2 Anr
na cos (naO), withA_ x * 0 (15)

n =* 1

As iV is a one dimensional vector space, the coefficients (An)n ^ _ 1 are ail related when S0 is actually
considered to be the restriction of an element of N (see subsection 5 1) The functions of Vs can be deduced from
those of N by a liftmg with the operator curl Thus, knowing S0, we define S a local singular lifting of S , î e

Find S ^ L (Qc) non vanishing such that

curl S1 = S0 in Qc, (16)

divS1 = 0 in i2 c , (17)

S1.T = 0 a n r c , (18)

S1 not belonging to H (Qc) Note that the solutions of (16)-(18) form an affine space, the associated vector space
being the curl free functions venfying (17) and (18) A particular solution of (16) (18) is

r „« + i /V^T4 s m ( w a é ? )

This particular solution belongs to H1(QC )2 The homogeneous solutions are themselves the terms of the séquence

Hère both components belong to L2(QC) if and only if n ^ 1, and they belong to Hl(Qc) for n 5= 2 Hence

0 9 ,
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Thus, the least regular term, corresponding to n — 1, can be wntten ra ~ l z(0) it belongs to HS(QC) for
s < a and does not belong to Ha{ Qc )

In a neighborhood of the other corners, we notice easily that the functions of N can be expressed locally as

2 A'nr'na cos (n'a'6')
n ^ 0

As a'> 1, we must notice here that the condition according to which the function belongs to L implies that
the sum starts at n' = 0 In particular, the solution belongs to H

Concermng the local behavior of the functions of Vs, ie the lifting (16)-(18), we venfy first that each
component of the particular solution is in H2 As for the homogeneous part, it can be wntten

/smU'a'ö') \

Hence each of lts component is locally in Hl

In short, the regulanty of the functions belongmg to Vs is the one at the neighborhood of the reentrant corner,
this means that they belong to H\Q) for s < a but not to Ha{Q) •

Remark 4 5 S0 belongs to L2(QC) by définition, which means that (S0)2 dx < °o After some algebra,

we obtain

In particular, we deduce that for s > 0, there exists C( s ) such that,

V(r,0)e ] e , K - e [ x [ O , ! ] , | S ° ( r , 0 ) | < C ( 6 )

In the same way, as S1 belongs to L2(QC) , we obtain, for s > 0, the existence of C(e ) such that,

V ( r , 0 ) e ] s , t f - f i [ x [ 0 , g ] , H S 1 ^ ) ! ! < C'(e)

m
COROLLARY 4 2 Let (p e 0 be the antecedent (defined up to a constant) of u by the isomorphism curl,

u e V\VR Then, <p belongs toHl + a~e(Q) for alle>0 and does not belong to H1 + a(Q ), where ̂  is the value

of the angle at the reentrant corner ( ̂  < a < 1 j
Proof We deduce from theorem 4 1 that 0 = 0^ + <ps, with 0^ G ^ and <ps G 3>5 Moreover, (ps is solution

of the followmg problem, for ps E Af

S e Hl(Q) such that

- A<ps = psmQ , (20)

~jf = 0onr (21)

According to remark 2 4 6 of [26], <f>s G H1 + Œ " e( Q ), for ail 2 > 0, and <ps <£ H1 + a ( Q ) M

vol 32 n° 3 1998



368 F ASSOUS, P CIARLET, Jr, h. SONNENDRUCKER

Remark 4.6: This resuit précises corollary 23.5 of Dauge [19], in the case we are interested in; in this corollary,
it is proven that there exists a non négative constant ôN depending only upon Q such that <p G H3/2 + N(Q)7 for
the Laplace problem with a Neumann boundary condition on a polygonal open domain with right-hand-side in
L\Q). m

COROLLARY 4.3: Ail stream fonctions of 0 belong to C°(Q).
Remark 4.7: In the case when the domain is in R2, recall that Hl(Q) <£ C°(Q). •
An explicit expression of <ps can be obtained m a neighborhood of the reentrant corner. Indeed, the solution

S2 of
Find S G H (Qc) non vanishing such that

^ - 0 on Ie , (22)

and, equivalently,

either curl S2 = S1 in Qc, (23)

and S2 not belonging to H2(QC), is of the form

or - AS2 = S0 in Qc, (24)

S2(r9 #) = - ^V — rnoL cos (na0) - V A" r
na + 2 cos (na6) . (25)

na é ! 4na + 4
1 n S — 1

Remark 4.8: S2 belongs to Hl{Qc) by définition. Hence, for e > 0, there exists C"(e) such that,

The f act that its gradient is bounded is a direct conséquence of (23). •

5. COMPILATION OF THE SOLUTION

5.1. Détermination of a basis of AT

The space Af being of dimension 1, we only need to exhibit a non vanishing element of Af. We shall dénote it
by Ps- We recall that & stands for the arc of circle of radius R being in the domain Q. The computation of
ps uses the method called "Dirichlet-to-Neumann (DtN)" by Keiler and Givoli [28]. This method, developed
initially in order to bring a problem posed on an infinité domain back to a bounded domain for numerical purposes,
has then been extended to handle singularîties at reentrant corners (see [24]). We find hère a particular case of
the theory of Steklov-Poincare operators (see Agoshkov [1]). The method can be split up into three steps:

1. Analytical computation of the singular local solution in the neighborhood of the reentrant corner.
2. Détermination of the Dirichlet-to-Neumann operator in order to obtain, with the help of the transmission

conditions, the boundary condition for the outer problem on ^ .
3. Numerical resolution. First, of the outer problem, whose solution is then exactly the restriction of the

solution of the initial problem. Then, numerical reconstruction of the solution in the neighborhood of the reentrant
corner, using again the transmission conditions.

Remark 5.1: This method offers a double avantage. First, it yields an explicit expression of ps (see (31)) in the
neighborhood of the reentrant corner. On the other hand, ps being smooth enough away frora this corner, a
variational formulation can be used to find it there (see (36)-(38)). Fmally, the explicit knowledge of ps will enable
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RESOLUTION OF THE MAXWELL EQUATIONS 369

us to preserve the orthogonality in V and 0 between the regular and singular parts of u and 0, which is not the
case if we regularize "locally", i.e., if we substract from p s the term A x r~ a cos ( aö) rj( r ) , where rj is a regular
cut-off function (cf. [26], theorem 2.4.3). •

More precisely, in order to détermine a basis of N, we are looking for ps a non vanishing solution of:

Find ps e LQ( Q ) such that

Aps = 0 in Q , (26)

Ap„
^ = 0on/\ (27)

The restriction of ps to Qc, denoted by pc
s, vérifies in particular (13)-(14). We have previously computed (see (15))

a family of local solutions S° in L2(QC) : 5°(r, 6) = 2 An r™ cos (naO). This will enable us to complete
point 1 (computation at the neighborhood of the reentrânt corner). Indeed, we shall express each of the An as a
function of the trace of S° on ^ , by using the orthogonality of 6 »-> cos (maö) for the different m ^ 0. Thus,
by integrating 5 (R, 9) cos ( maö ) from 0 to n/a in 9, we obtain:

J
I 2 n

n a ) cos (ma9)d6 = j ^ R m o t A m , (28)
o l J

m = 1 , - 1 f { V AnR
naco$(na9)X cos (a9)d9 = 7^ (R~aA_x+R^A^, (29)

m = 0 { S An/?"acos(naÖ)| d6 = -A0. (30)

/?^ can hence be written as

2 \rna cos (naö), (31)
n £ - 1

with, for n ^ 2 :

711 Jo
cos («aff) dB . (32)

The value of Aö is given by (30). However, the value of either A_ 1 or Ax is undetermined, as we can not solve
(29). To overcome this problem, we simply add the relationship

r dpç -T
-r- ( R, 9 ) cos ( aÖ ) d9 = TT-B ( — R

Jo a v 2K (33)

This, together with (29), removes the indétermination. Therefore, we can choose to express Ax as a function of
A_ v which does not vanish by définition:

A! =—/?"" pc
s(R, ö)cos(aÖ) d9-R~2oLA_l. (34)

71 Jo
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Let us now proceed to point 2. We define the Dirichlet-to-Neumann operator T: pc
slm •-» —f. , from H 1/2( 3$ ) to

1 dv 1̂
)' SO we take the trace on ̂ , that is at r = R, of the normal derivative of pc

s, and by injecting the
expressions (32) and (34) of the An, we obtain:

J
c o s (*«Ö') dQf \ c o s (««*) - 2 a - ^ T T c o s (afl) - (35)

J K

As a function of pc
s\& only, The operator T such as it is defined above is not univalent, because the value of

either A_ x or A1 is undetermined (cf. (29)): hère again, the relationship (33) removes the undetermination.
Conceming point 3, let pe

s be the restriction of ps on Qe. Let us show that the transmission conditions
dps dps 1 2

pe
siâ§=Ps\m

 anc^ —7| ~—7\ giv e n by Agoshkov [1] for the H case are still valid for ps in L (Q) only.
1 ' dv \m dv \m
We have, for all z E

JQ s
Q

Taking either z G ®(f2c), o r z e ^(£2*), we get

Apc
s = 0 in ̂ 2C, Jp* = 0 in fitf .

^ p 5 3/2

On the other hand, the boundary condition -r— = 0 is verified in H~ (F) (more precisely, according to [26],
on a product space, each space being defined on a segment F of the polygonal boundary F, and equal to
{H^iFj))' ). From there on, we find immediately that

Conceming the transmission conditions, applying the intégration by parts formula of theorem 1.5.3 of [26] yields,
for ail <p G 0R :

0 - \ <p Aps dx

= <p Apc
s dx + (p Ape

s dx

m,?) (P%

r . hpes
^tA<ppsdx+(—,9

dv dv
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because ps is orthogonal by définition in the sense of the canonical inner product on L2(Q) to all functions of

As the mappings p ~ ^ and 9»j*T\a me from 0R o n t o H ^ ( a ) a n d ^ ( ^ } respectively (see
theorem 1 4 6 of [26]), we finally get the ciesired transmission conditions

Using them we can find the boundary condition venfied by pe
s on @t In addition, we know from theorem 4 2

that pe
s is H1 regular Thus, the ou ter problem can be wntten

Findpe
s<E Hl(Qe)/R such that

Ap\ = 0 in Qe, (36)

—f = 0 o n r , (37)
dve

dpi
e + T(ps)=0 onJ (38)

P ÇTI/Œ

Noticing that PS(G) da is nothing but Ps(0) RdO, we can wnte these équations in vanational form
J m Jo

Vpe
s.Vqdx + R\ Tl(p

e
s)qd6 = 2a^-\ cos (aO) q dO Vq e Hl(Qe)/U,

Jüe Jo /2 Jo
(39)

where Tj( . ) stands for the first term of the nght-hand-side of (35) We verify that the bihnear form
Pnla.

(p> Q) *"* ̂  I Tx(p) qdO is symmetrie and positive Indeed
Jo

Pnia. 2 f |*7t/ce

/? Tl(p)pd0 = ̂ -gL- y\ n \ \ Pco$(na6)d0
Jo ^ «si [Jo

2

So, A_ j benig fixed, this problem is well posed, as the term V/?. Vq ds. is coercive on H (£2e)/IR pe
s being

known, we use the transmission condition ps,
 =PS\@

 m ord^r to détermine the (An)n ^ 0 with the help of (30),
(32) and (34), and, as a conséquence, pc

s This procedure enables us to build ps

Remark 5 2 According to what we have seen, A_ 1 = 0 corresponds to ps = 0 For, if A_ 1 is equal to zero,
the nght-hand-side of (39) is also vamshing, which implies that pe

s is zero as well On the other hand, when

1 c dPCS

A_ 1 is equal to zero, pc
s belongs to H (Qc) As moreover, on the one hand, ——. = 0 (transmission condition),

dv \m
and on the other hand, p°s vérifies (13)-(14), we deduce that pc

s is also zero Conversely, if ps = 0, A_ l~0
straightforwardly The choice of A_ L induces a umque element ps of the one dimensional vector space of
solutions •
5.2. Détermination of a basis of Vs

In the same way as in the previous section, we can find a basis of the space Vs = curl" l N, for a given
ps e N, by exhibitmg a non vamshing element of Vs, which we shall call v5, solution of

Find vs e /ƒ( curl, Q ) such that

(40)

(41)

(42)
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If we want to use the fact that \ s belongs to //( curl, Q ) in order to solve the above problem, we can for example
transform ît into a problem in "curl curl" An alternative way to find \ s is to use îts stream function The followmg
subsections descnbe these two methods in detail

5 2 1 A curl curl formulation of problem (40) (42)

Our aim is to find a non vanishmg element v5 of V5, solution of (40) (42)

PROPOSITION 5 1 An element \ s of H( curl, Q ) is solution of (40)-(42) if and only if \ s vérifies

curl curl vs = curl ps m Q, (43)

div vs = 0 m *2, (44)

\ s . T = 0 on r (45)

Proof It is obvious that if \ s G H{ curl, Q ) vérifies (40) (42), ît also vérifies (43)-(45) Conversely, let
v^ G H(curl, Q) solution of (43)-(45) Then, ( v ^ - v5) belongs to //(curl, Q) and vérifies

curl curl ( v^ - v5 ) = 0 m Q,

d iv (v5-v 5 ) = 0 mû,

( v^ - \ s ) . T = 0 on F

From the first équation, as Q is simply connected, we deduce that there exists a constant A such that
curl (\'s — v5) = X Moreover, the boundary condition allows us to wnte

k\Q\ = \
J Q

so X = 0 We conclude thanks to proposition 3 1 •
Remark 5 3 Neither curl curl v5 nor curl ps belong to L2( Q )2 (43) is to be taken in the sensé of distributions

or, more precisely, m the dual space of //0( curl, Q ) Also, as noticed earher, (43) can be rewntten equivalently,
as in a Stokes problem,

•
(î) We shall start with the global resolution of (43)-(45)

THEOREM 5 1 Problem (43)-(45) admits a unique solution in //(curl, Q)
Proof Duahze the divergence-free condition and use the theory of Babuska [6] and Brezzi [9] •
Remark 5 4 The global regulanty of the solution in Q is the one given by theorem 4 2, that is2 f

5

(n) Let us now reformulate this problem using the DtN method A few steps of the reasoning shall remain
formai, i e without ngorous proof
In the curl curl formulation, the restriction of v5 to Qc, denoted by yc

s, vérifies

curl curl v^ = curl pc
s in Üc

y

div v^ = 0 in Q\
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We notice that v̂  vérifies curl v̂  = pc
s + 1, with A e M (see the proof of proposition 5.1). So the vector v^ is

identical to S (which satisfies (16)-(18)) up to a particular solution Ŝ  which vérifies curl Ŝ  = A,
divS*=O and Ŝ  . xc = 0 on Ie. Let

j (46)

So that \c
s can be written, according to (19), with Bï ^ 0

The (An)n ^ __ j of the second sum have been computed previously, see (30), (32) and (34). These numbers being
known, using once more the orthogonality of 0 i-> cos (maô), we can express /l and each of the (Bm)
a function of the trace of v̂  . rc on & :

m = 0 A = ^ I vc,(7?, Ö) . xc dB - An , (48)

m = 1 Bx= ^_ x | vc
s(R, 9) . xc cos ( a9) d9

(49)
- 4 a " 1 4 + 4 a x

m^2 B = ' u J vl(/g, g) . TC cos (ma9) d6 - A
ma + 2

A A R2 . (50)

This time 2T stands for the "DtN" operator defined by 2T: v^. zc»m »-> curl v ^ . In order to build 2T, from the
respective expressions in polar coordinates of pc

s and v̂  (for r = R)7 we notice that the trace on & of the curl
of v̂  satisfies

and we use (48) to obtain

j*7l/ct

R,ö)-An . (52)

We now détermine the transmission conditions in order to be able to describe completely the outer problem.
First, we have, integrating by parts, for all z G <3{Q) :

z curl \s dx = i
JÛ JQ

z curl vç dx = I curl z • v5 dx .
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Cutting each intégral in two and integrating those on the right-hand-side by parts yields

z curl v^ dx + z curl \e
sdx- curl z . v^ dx + curl z - \e

sdx ,
JQC Joe

 JQC iae

This is true for any function z of <3(Q), whence v*. rc,^ = \c
s. x

c^m.

Remark 5.5: This is simply the necessary and sufficient condition so that, if the pair (v£, v^) belongs to
H( curl, Qc) x H( curl, Qe ), the function \ s belongs to H( curl, Q ). •

In a second step, we use explicitly (43): for any function z e @(Q)2, we have

(curl curl \s, z)Q = <curlp5, x)Q ,

curl v5 curl z dx = ps curl z dx,
JQ JQ

curl v£ curl z à + curl v^ curl z dx = /?^ curl z <ix + p^ curl z <ix .
J^c Jo e

 JQC ine

But, we know that pe
s e Hl(Qe). On the other hand, as curl v^ = pe

s + A, curl v^ also belongs to Hl(Qe). We
can integrate the intégrais on Qe by parts, and we obtain:

curl v^ curl zdx + (curl \e
s, z . re)re = pc

s curl z dx H- (/?̂ , z . Te) re.

Concerning the intégrais on Qc, we simply know that curl v^ = pc
s + À. Hence,

À curl z dx + (curl v~ z . Te)r, = (pe
s> z . r e ) r e .

Integrating by parts, we find:

(À, z . Tc)rc + (curl \% z . re)re = (pj, z . r % •

As p ^ =pe
s\âl>

 w e have p^e (7/c0(curl, Qc))\ where

Hc0( curl, fî>{weF( curl, Qc ), w . TC = 0 on ƒ*} .

As curl v^ = pc
s H- /l, we also have curl v^ G ( Hc0( curl, Qc ) ) ' which enables us to define the trace of

curl \c
s on M. So we finally obtain

(curl v£ - curl \e
s, z . xc)m = 0, Vz e ®( X2 )2 ,

whence curl v ^ = curl v l^ .
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With the latter transmission conditions, we can now write the outer problem:
Find \e

s G //(curl, Qe) solution of

curl curl v* = cnr\pe
s in Q\ (53)

div v* = 0 in Q\ (54)

v* . xe = 0 on ƒ*, (55)

curl y\ + 2T( v* . xe) = 0 on » . (56)

Remark 5.6: curl curl v* G L2(Qe), becausep* G Hl(Qe). •
Denoting by //,0(curl, Qe) = {w e //(curl, Qe ), w . re = 0 on / * } , we can put the previous problem in

variational form:

Find \e
s e He0(curl, Qe) solution of

curl \e
s curl v dx + R\ 9"^ v ' . rtf) v . re d9 =

Jüe Jo

curlpe. vdx - /? (p* (R,0) -A o ) \ .T e d6 , Vv G //e0(curl, De), (57)
Jf3e Jo

div Ye
s = 0inQe. (58)

In particular, we have decomposed the boundary term in (57), considering the embedding of the test functions
in the set J/e0(curl, Qe). Here ST^ v̂  . T) stands for the first term of the right-hand-side of (52): actually, this is
a number. We verify in a straightforward manner that (53)-(56) and (57)-(58) are equivalent.

Remark 5.7: If a function w of He0(curl, Qe) vérifies curl w = 0, we must have, integrating by parts,
Pn/ct fln/ot

w . xe dB = 0. On the other hand, we notice that the bilinear form (u, v) •-» R ST^u . xe) v . xe d6 is
Jo Jo
symmetrie and positive, because:

THEOREM 5.2: The problem (53)-(56) has a unique solution in //(curl, Qe).

Proof: This amounts to showing that (57)-(58) admits a unique solution in //(curl, Qe). For that, we dualize
the divergence-free condition. We introducé in this case the space Hl

eQ{Qe)- {q G Hl(Qe),q = 0 on F6}.
According to the previous remark, there exists a compatibility condition for any element q of H\0(Q

e), that can

be written Vq . xe dB = 0.
Jo
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We solve:
Find (v%qm) e /7e0(curl, Qe) xHl

eQ(Qe) solution of

P fln/a. /*

curl v* curl v dx + R\ 3"^ ye. xe) v . xe dQ + Vqm.\dx =
jQe Jo ÔQe

/* fin/a.

curlpe
s .\dx~R\ (pe

s(R, 0) - Ao ) v . xe de, Vv e He0(curl, &*),
Ji3e Jo

f V ^ . v ^ x = i ? | qye
s.v

ed9,Vqe Hl
e0(Q

e) .
Jöe Jo

(59)

e0 (60)

The right-hand-side of (60) is formai, as v£. vf̂  might not belong to the dual of H^(Û$) as we only have
v^ e He0(cuil, Qe). In order to prove the existence and uniqueness of the solution (59)-(60), we start by proving

Z1 Çnfet

that the bilinear form a : (u, v) •-> curl u curl v dx + R STjCu . r e) v . ze d6 is We -elliptic on the
Jae Jo

subspace W of //e0( curl, Q ) defined by

We = | w e #e0(curl, Üe), \/q G H^{Qe), | V^ . w rfx = 0 \

= {w e //(curl, 12e), div w = 0, w . ze = 0 on ƒ*, w . ve = 0 on m) .

We have to prove that there exists C > 0 such that, for ail w e W*, || w||̂ > ^ C</( w, w). If this is not the
case, there exists a séquence (wn)n of We such that || wn||L2 = 1 for ail n and such that ae(wn, wn) —> 0. In this
case, according to a compact embedding resuit proved in [13], there exists a subsequence still called ( wn )n which
converges in L2(Qe)2, to a limit w.

Remark 5.8; Notice that hère the boundary condition is w . xe = 0 on F6 and w. ve = 0 on ^ , which does
not permit to apply Wcber's results [35] which hoid for a boundary condition ot the same kind on the whole
boundary.

Therefore (wn)n converges in //(curl, Qe) to w, with

Çnia.

| L2 = 1, curl w = 0, w . xe dQ = 0 and w . T ^ O
Jo

So, there exists q G Hl
e0(Q

e) (the compatibility condition is automatically fulfilled) such that w = Vq. Passing
to the limit in We, we finally find:

We corne to a contradiction, which proves the We -ellipticity.
In a second step, the inf-sup condition is straighforward to verify, which induces the existence and uniqueness

of the solution in i/e0(curl, Qe) x Hl
eQ(Qe).

Then, we notice that
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for the (q, q) •-» Vq . Vq'dx scalar product, with

We décompose qm into q0 + qA, with #0 e Hl
0(Q

e) and ^ e J^{Qe). As V#o e #e0(curl, £?e) we can use
it as a test function in (59), whence q0 = 0.

In (59), if we now use v = Vq\ for q' in Jf(Qe), we notice that:

R ra{3-1(v
e
s.T

e)+pe
s(R,d)-A0}Vq'.Tede+ f V^.V^'dx= f curl p's. Vç'tfx,

or /? f {^1(v;.T*) + 2pJ(/e,Ö)-A0}V^/.T'rfO + /ï f qAVq'.vedd = 0.

As V#'. T?^ and Vq'. ve>m are independent, we deduce in particular that qó = 0 on ̂ , which amounts to saying
that qA also belongs to Hx

Q(Qe), and so <?̂  = 0.
Finally qm = 0, which proves the existence and uniqueness of the solution of (57)-(58) in //e0(curl, Qe), and

as a conséquence the existence and uniqueness of the solution of (53)-(56) in //(curl, Qe). So the problem is
well-posed in H{ curl, Qe ). •

Remark 5.9: We have seen that£>5 is determined by A_ Y : with this method, this is also the case for \s. Indeed,
A_ j being fixed, we deduce ps and hence in particular the (An)n ̂  0. Using this we can compute v̂  solution of
(59)-(60). Finally, using the formulas (48)-(50), we find \c

s. •
Remark 5.10: In the stationnary case (2)-(4) we can compute the solution directly using one of these methods.

Indeed, recall that u5 = cv5, as the dimension of iV is 1. Also, we have, by orthogonality,

ƒ curl \sdx= curl u curl v5 dx ~ c \ ( curl \s )
2 dx = c \\ps \\ \i ,

which yields the value of the constant c. Then, the regular part u^ can be determined with the help of a usual
finite element method ([33], [5] or [14]). On the other hand, due to the steep gradients, we might need to refine
the mesh considerably at the reentrant corner if the global method (43)-(45) is chosen. •

5.2.2. Computation of\s using its stream function
In order to solve (40)-(42), we shall now use isomorphism 2 of lemma 2.1 between &/K and V (through the

curl operator). Indeed, to \s we can associate <ps E //1(^2)/[R such that

s s , (61)

d<j>s

~0onr. (62)

As (j)s is sufficiently smooth (i.e. of regularity Z/1), this problem is equivalent to the variational formulation:
Find <ps e H\Ü)/U such that

V<ps.Vy/dx=\ psy/dx, Vy/ e H\Q)IR . (63)
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As with the curl curl formulation, we could solve this problem directly with the above vanational formulation.
Ho we ver, error estimâtes in finite element methods rely on H2 -regularity of the solution which we do not have
here. From a computational point of view, the problem will be that the mesh will have to be refined drastically
near the reentrant corner in order to get an acceptable solution.

So, we shall make use of the explicit knowledge of 0 5 near the reentrant corner. Moreover, we know that
<ps is of regularity H2 away from this reentrant corner. We call <pc

s (resp. <pe
s) the restriction of <ps to Qc (resp.

Qe). As 05 vérifies (22) and (24), we can write it as

4>C
s(r, 0 ) = - 2 â r "" COS (m*ö)- 2 Z^T4'""a + 2cOs(naö)-

The expression of (An)n ^ _ l is given by (30), (32) and (34). From there on, we can easily express each of the
(Bm)m ^ 1 in function of the trace of 0^ on ^ . We have:

m = l 5 1 = - ^ <pc
s(R, 6)cos(a6)d6

^ A i^2 = 2 a + m - ^ ^ 2 ) ^ (64)
- 4 a ~ 1 4 + 4 a l / v /

\ ^(R Q) cos (ma6) d9-, ma
 AA R2

Jo 4 m a + 4 m2 B =_2mŒ_ \ ^(R Q) cos (ma6) d9-, ma
 AA R2 . (65)

m Rma J 4 m a + 4 m v J

d<f>c
s

The DtN operator, denoted by r, is defined by t: 0 5 t ^ ^^ — - - Which yields:
1 dv m

n^ 1 I JO

9g(r, 9) dr + „ _°L—A_1/?1 a c o s ( a ö ) , and (66)

0^( i?, 6') cos ( na^O ^ 0 ' !> cos ( naO) . (67)

Remark 5.11: Notice that the operators tx and Tx are identical.
The function 0^ is a solution of the following problem:
Find 05 e Hl(Qe)IU such that

dve

(68)

(69)

-^7 + K<t>e
s) = 0 on m . (70)

dv

d(p ç « d0c 1/9
Remark 5.12: As —^ = 0 on ƒ*, we have —-r, G H^(âS). We then deduce from (69) and from the

dv dv \m
d(p s ll2

transmission condition on the normal derivatives that — - G H (F ). •
dv
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As (p€
s is sufficiently smooth (1 e in Hl), this problem is equivalent to the variational formulation

Find <pe
s e Hl(Qe)/U such that

V<pe
s.Vy/dx + R f /0e)

Jüe Jo

\ pe
s¥dK + ±R\ \ \ pc

s(r,6)dr\ y,(R,6)d8

g Hl(Qe)/U (71)

It is important to notice that the bilmear symmetrie operators of (39) and (71) (associated respectively to pe
s and

0*) are identical As a conséquence, there exists one and only one solution of the above problem
Remark 5 13 In the steady-state case (2)-(4) we can compute directly the solution by using one of these two

methods •
d(ps 1/2

Remark 514 As Q is a curved polygon and as — - e H (F ), accordmg to Costabel-Dauge [17],
dv

section 4 d, we know that 0 ^ e H2(Qe) We find again here the result giving the regularity of <j>e
s On the other

hand, we have seen that ps is determmed by A_ l this is again true for 0 S Indeed, A_ 1 being fixed, we get
ps and hence in particular the (AH)n & 0 Therefore, we can compute (pe

s solution of (71) Finally, using formulas
(64)-(65), this yields <p€

s •

5.3. Resolution of the time dependent variational problem

We start by semi-discretizmg the variational problem (10) in space In addition to the classical test functions
given by the choice of the finite element method and which belong to a space denoted by Vh

Ry we also use the
test function v5, the antecedent of ps by the curl operator, which we assume being known exactly The test
functions are hence being chosen in Vh

R © Vs We assume that Vh
R a VR thus, (11) is automatically satisfied We

dénote by Ph the projection on VR in the sense of the L2( Q )2 inner product, i e for an element v e V,

f v.v>=[ r h y 'yRUX yyR^ V R

Remark 5 15 The projection Ph vérifies hm || \ s - Ph \ s || Li = 0 •
Now, if we wnte uh = uR + c(t) ys' with uR& vR, the variational formulation becomes, taking

\h = \ s - Ph vs as a test function and using the orthogonality of curl u^ and curl \ s

c"(0\ (vs-Phvs)
2dx + c(t)\ p2

sdx=\ curl u^ curl Ph vs dx + ? . ( v5 - Ph v5) dx (72)

The function c(t) is obtained by solving this ordinary differential équation According to the regularity of v5, an
estimation of the coefficient of c"( t ) is

K - n v s | I * 2 ^Ceh
2a~2e, Vfi>0 (73)

From this we can conclude that this differential équation is not stiff, and that it can be solved by a classical time
discretization scheme
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In order to compute u^, we write down the classical variational formulation for \h e. Vh
R :
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In order to compute u^,
Find nR e VR such that

^2 f uh
R. yRdx + f curl uR curl yh

Rdx = \ f . yR dx - c"(t) \ ys . v^ dx, Vv^ e Vh
R . (74)

dt JQ JQ JQ JQ

This formulation only involves the regular part of the fields, and can hence be solved by a usual finite element
method.

6. CONCLUSION

In this paper, we have presented several methods to solve numerically the Maxwell équations with perfectly
conducting boundary condition, in two-dimensional polygonal domains with reentrant corners. A mathematical
theory has been developed which supports these methods, and some numerical results have already been obtained
([2]). The more gênerai case of mixed boundary condition is considered in ([13]) and will be presented in a
companion paper.

APPENDICES

A. CASE WHEN u . V = 0 ON THE BOUNDARY

We now focuse on the magnetic field, still denoted by u.
We consider here the resolution of the steady-state and time-dependent problems with a boundary condition of

the type

u . v = 0 on F.

Hereafter, we mainly emphasize différences with the case u . x — 0 on F.
First, we shall need the spaces:

Hö(div 0 ; Q) = {v e L2(Ü)2
7 div v = 0, v . v - 0 on F},

as well as

V = {\ G H( curl, Q ), div v = 0, v , v = 0 on F)

endowed with the canonical inner product of #(curl, Q), and the space of stream functions:

& = {<pe Hl
0(Q)9Jç>e L2(Q)}.

Here we followed remark 2.3 of [23], chapter 1, where it is being noticed that for any function <p of Hl(Q),
V(p . T = 0 on F is equivalent to (p = À on the boundary, X being a constant.

LEMMA A. 1 : We have the following vector space isomorphisms:
1. The curl operator defines an isomorphism front V onto L (Q),
2. The curl operator defines an isomorphism from <P onto V.
3. The A operator defines an isomorphism from <P onto L (Q).
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As for the spaces V and 0, we know that when the boundary F is of class C2, or when the domain Q is convex
with a Lipschitz boundary F, the space Vis included in Hl(Q)2 according to [23], and the space 0 is included
in H2(Q) (see [26]). This is no longer true in présence of reentrant corners. So we shall need the regularized
spaces of V and 0 :

VR = {\e Hl(Q)2, div \ = 0, Y . v = 0 on F}

and

A.l. The model problems with u . v = 0 on the boundary

In this case the steady-state problem is defined by équations (2)-(3), (4) being replaced by u . v = 0 on F.
The time dependent problem must be formulated slightly differently than with the other boundary condition.

Given a function ƒ( t ) which belongs to L2( [0, T] ; L2( Q ) ) and two functions u0 e V and nl e Ho( div 0 ; Q )
independent of £, we are interested in the following problem:

Findu(t) e L2( [0, T] ; #(curl , O ) ), du/dt(t) e L2( [0, T] ;/70(div 0 ; ;Q) ) such that

2

$~Y + curl curl u = curl ƒ in Q (75)

dt

div u = 0 in Q (76)

u • v = 0 on F (77)

curlu-/=0onr (78)

with the initial conditions
u0 (79)

gUl. (80)

Remark A.l: The boundary condition (78) appears naturally when solving mathematically MaxwelFs équa-
tions. It is in f act a "physical" condition and is to be taken in some "weak" sense. It is only prescribed to ensure
the équivalence between (75)-(78) and the following variational formulation. •

These équations can be written in variational form as follows:
Find uo( t) e L2( [0, T] ; H( curl, Q ) ) such that

—2 u . v à + curl u curl v dx = ƒ curl v dx Vv e H{ curl, Q ) (81)
dt JQ JQ JQ

div u = 0 in Q (82)

u . v = 0 o n f (83)

with the initial conditions

u ( 0 ) = u 0 , U ( 0 ) = Ul. (84)

PROPOSITION A.l : Let f e L2(0, T;L2(Q)), u0 e V andux G H0(div0 ; Q). Then problem (81)-(84) admits
a unique solution u such that u G C°( [0, T] ; V) n Cl( [0, T] ; H0(div 0 ; Q) ), provided it stands for the
magnetic field.
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Proof: Apply the variational theory of Lions-Magenes [31], Tome 1, p. 286, to the complete Maxwell System
of équations. •

The results that we obtained in the case u . x = 0 on F still remain valid (see [4] for details). Let us only give
here the local expressions of the singular functions.

Let us dénote by Vs = curF N, where N is the orthogonal of A&R in L (Q). Then ps can locally be expressed
as 5° e L2(QC) solution of

A^ = 0 in Qc , (85)

5° = 0 on Ie . (86)

Using the method of séparation of variables we find that all the terms of the séquence

(rna sin ( n a 0 ) ) n e Z

are solution of (85)-(86). As rna sin (na9) <E L2(QC) if and only if n ^ - 1 and as it belongs to H\QC) as
soon as n ^ 0, Sr can be written

P 5 O , # ) = S Ân /ia s i n (na6), w i t h À_1*Q. (87)

The basis function üs of Vs is locally equivalent to S1 solution of

curl SL = 5° in Qc , (88)

div S1 = 0 m Qc, (89)

S1 .v = 0 i n / ^ . (90)

Computing S1 as befote yieids

net -
cos ( n a 9 ) ( A \ \

E ^^(^J^S/ ^ ^ ^ ^ J h ^ O . (91)

The stream function 05 of üs is locally identical to some 52 such that

S\r, o) = 0 o n r , (92)

and

either curl S2 = S1 in Qc,

or - AS2 = 5° in D c . (93)

S2 is of the form

S2(r, 9) = y] ^rna sin (na6)~ V . A" . r"a + 2 sin (na9) . (95)
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The Àn are computed as functions of the trace of 5° on ̂ , using the orthogonality of 0 *-» sin ( ma9 ) for the
different m ̂  1. Integrating S°( ƒ?, 0) sin (ma9) from 0 to 7r/a in 0, we obtain

Â 1 = 2 - 2 / r a 5°(i?, 0 ) s i n ( a 0 ) ^ 0 + /?"2 aA„ l s (96)
71 Jo

m :> 2 Âm = ^LR~ma S°(/?, 0) sin (maö) J0 . (97)

Finally, the 5m are computed as functions of the Am and of the trace of S2 on & in the same way, leading to

2 Moe

B^^^R-01 S2(R,9)$in(a9)d9
71 Jo

Pn/ac

' S\R,
Jo

^ 4 + 4a * '

0) sin (maö) d9 + 4 ? ^ a
+ 4 Â m 7 ? 2 . (99)

B. CASE OF SEVERAL REENTRANT CORNERS

We assume here that Q is a connected and simply connected polygon of R2 with a boundary JT whose angles

at the vertices have a value less or equal to n, except for K reentrant corners, where the angle is —, with

1/2 < ai < 1, for \ ^ i ^ K. For each reentrant corner, we dénote by Qc
t an open angular sector in its

/i = K \

neighborhood and by F^ its boundary. We dénote by Qe the open set such that l {J Q^ J n Qe = 0 and

/* = «-_ \ _ —
( {J üc

t ) u Qe = -Q, of boundary 7"e. For 1 $ i ^ ^ , we call 8èt the boundary / ^ n Fe, and we décompose
N / i = K

/ ^ into ^ = » ( u J ^ . Finally, we décompose T" into r e = U ^ u /*.
We consider the steady-state problem (2)-(4) and the time dependent problem (5)-(7) on such a domain.
Remark BJ: The case where the boundary condition u . x = 0 is replaced by u . v = 0 can be dealt with in

a similar manner. •

B.l. Computation of the solution

The first différence with the case of a single reentrant corner appears in the folio wing statement (cf. lemma 4.3).
DÉFINITION B.l: We shall dénote by A<PR the image of <PR by the Laplace operator and we let

LEMMA B.l: TTze space curl V̂  Z5 identical to A&R and the space N is of dimension K. We have the direct
orthogonal sum L2

Q(Q) = curl V̂  © N.
Proof: The proof is the same as for lemma 4.3. In the case of a domain with K reentrant corners, Grisvard [26]

has proved that the space N of functions p e L2( Q ) such that

Ap = 0 in Q ,

f? = 0onr'
is a vector space of dimension K. •
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Remark B.2: As in the case of a unique reentrant corner, there exist some compatibility conditions which are
automatically satisfied by the local expressions of p in the neighborhood of corners. •

Consequently, the space Vs = curl" 1 N is also of dimension K. When we write u - u^ + u5, where u is the
solution of (2)-(4) or of (5)-(7), with u^ G V ,̂ and u5 G VS, U5 can be written as

where (v^)x ̂  ( ^ K is a basis of Vs. This brings us naturally to look for this basis.
To that aim, we start by determining a basis (p^X ̂  l ^ K of solutions of
Find ps G LQ( Q ) such that

Apl
s ~ 0 in Q ,

dp^_
dv ~ ° n '

We use the following strategy: knowing that on Qc
} the restriction of pl

s, denoted by pl$\ is a solution of
Find pV G L (Qc

t

-£- = o on r

the gênerai solutions of which are

PsJ= S A ^ ^
& 1n ^ - 1

we can choose in particular

plsJ = 0 in O' , for j ^ i . (101)

We have:

a. f717"' . .
(102)

(103)

m^2 A^ = —R-ma>\ 'psXRt,0t) cos (m^ÔJrfo,. (104)

This yields, with the help of the transmission conditions on the boundary, the restriction of pl
s to Qe, denoted by

p^ e , solution of
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FindpY e Hl{Qe)IU such that

Aps
e = 0 in Q\ (105)

(106)

- ^ ~ + T\pY) = 0onJr (107)

Here, Tl and Tv 1 ̂  i'^ K, are the DtN operators defined by (35), with R replaced by Rt, a by at, etc. We
verify that this problem, equivalent to:

FindpY e Hl(Qe)/U such that

\ Vp^.Vqdx + RÏ 'ri(p
lse

A1*1 /*^/«,

i0ï = 2 a ( - ^ - cos (ai6i)qd0i \fq e Hl(Qe)/R , (108)
*/ 0 /v^ ' J 0

is well posed in Hl(Qe)/U and that it consequently admits one and only one solution in this space. Moreover,
it is easily checked that the global solution/?^ is determined in function of Al^\. Finally, it is clear that the familly
of K solutions (ps)l ̂  t ̂  K is free in Af by construction.

Hence there remains to détermine the ( v^ ) Y < t < K solutions of
Find Vs e H{ curl, Q ) such that

curl v^ = pl
s in Q , (109)

divv^ = 0 i n D , (110)

v^.T = 0 o n r . (111)

Remark B.3: A resolution method of this problem based on the curl curl formulation can also be used
(see [4]). •

In order to solve (109)-(lll), we use the isomorphism curl of lemma 2.1 between &/R and V: to v^ we associate
<f)l

s e H\Ü)/U such that

- A<pl
s=pl

s'mQ , (112)

^ = 0onr. (113)

This problem is equivalent to:
Find (f)l

s G H\Q)/U such that

S7(pl
s.

JVi{/dx=\ pl
sy/dx, \/y/B Hl(Q)/U.

JQ in
(114)

We can, in a second step, make use of the explicit knowledge of (pl
s in the neighborhood of the reentrant corner.

We call 0^(resp. (pl$e) the restriction of <pl
s to Q^ (resp. Qe). So <pl$ is a solution of
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Find <f)l
s
J G H1 (£2*) such that

A<t>l
s
J=ps

3 in Q],

d<t>lJ

= o on r .
J

= o on r
dv J

thus we can write it as

2ëOcos(n«0,)- 2 j^^r, ""'+ 2 cos
n ^ l i n ^ — 1 '

n ^ 1 J

BÎJ

r, naj c o s (naO), for i
j v j j / ,

The (Al^)n ^ _ v l ^ i ^ K, are those of formulas (102)-(104). The (Bl
m

J)m ^ p 1 ̂  / , ; ̂  ^ , are given
by formulas of the type (64)-(65).

The DtN operators, denoted by t*, are defined by t1 : (ps\m ̂  — i - They correspond to (66)-(67), with R
1 J dV \

replaced by Rr etc. Notice that, for i ^ j, t!{(p^e) reduces to ^ (0^ e ) .

The function 0^e is a solution of the following problem:

Find <p'se e H\Qe)/U such that

- A<t>lse = pl
s
e in Q\ (115)

d<t>s
(116)

? . f o r l ^ j ^ K . (117)
d v ~ J

As 0^e is sufïiciently smooth (i.e. in Z/1), this problem is equivalent to the variational formulation:

Find <pse e H\Q€)/U such that

H l ( i 2 e ) / R . (118)

Remark BA: The bilinear symmetrie operators of (108) and (118) (respeetively for the computation of pl$e and

se) are still identical, if we notice that T\ = ̂  for l ^ j ^ K and that T\(p^e)=0 for i =* y, as
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B.2. Resolution of the variational time dependent problem

We semi-discretize (10) in space. The test functions are still chosen in VR ® Vs, with Vh
R a VR, whence (11)

can be satisfied. We use again Ph, the projection onto V^ in the sense of the L2( Q ) inner product. Compared to
(72)-(74), the différence is that we have in this appendix K functions (v^), ^ ^ K instead of only one, so that
uh can be written

First, we take the following K functions: v* = v̂  - Ph v's. We obtain, thanks to the orthogonality of curl u£ and

dKI>;(0 f (vi-^v^-l^-^V^rfx+fc/f) f p'sp/s
j=\ JQ j=l JQ

= f c u r l u ^ c u r l Ph\
l
sdx + \ f . (Vs- Ph vs) dx f o r l ^ i ^ K .

ia ia

This System of équations can be put in matrix form

(119)

with the KxK matrices A = ( a y ) 1 < ï j < A : and B = (b )2 < t} < K, as well as the vectors

( O ( ( ) ) f i , ^ and f ( O C / ; ( O ) \ H

(^-P^.i^-P.v^dx^b^ f

fl(t)=\ curl u*(f) curl PA v ^ x + f f \ f ) . ( Vs - Ph v
l
s) dx .

JQ JQ

PROPOSITION B.l: A and B are two symmetrie positive definite matrices. Moreover, we have the following
estimation:

K I ^ Ceh
a' + a'-2e

7 V £ > 0 . (120)

Proof: Obviously A and B are symmetrie and positive, and B is positive definite as (ps)l <= t ̂  K is a basis of
N. Moreover, the estimation of the éléments of A is obtained by using the result which spécifies the regularity
of the functions ( v̂  ).

Then let y = {yj)l ̂  j ^ K be such that Ay = 0. Set v5 = 2 y, v*5 e Vs.
From Ay = 0, we deduce

0 = 2 y, f Os " PM ' « - PM dx, forl^i^K,
j Ja

=> 0=f (Vs-Phv's).(vs-Phvs)dx,forléi^K,
J Q

=> 0= f (vs-Phvsfdx.
JQ
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Whence finally \ s = Ph vs e Vh
R, that is vs = 0, or y = 0.

In particular, we deduce that if the value min ctj is reached for a unique jQJ the dominant term is cijojo- If there
exist jf0, ...Jt which minimise the value of min as, the dominant terms are among ( ^ 0 ^ / e yQ _jty In any case,
this linear System of ordinary differential équations is not stiff, and can be solved by a classical time discretization
scheme.

Finally, to compute u£, we write the foliowing variational formulation:
Find uh

R G VR such that

£-A u ^ . v ^ x + f c u r l u £ c u r i v ^ x = f t . v* À -% cj (t) f V5 . v
h
Rdx, WRzVR. (121)

dt JQ JQ JQ fT\ JQ

This formulation, involving only the regular part of the fields, can be solved by a usual finite élément method.
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