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n j n m MATHEMATICAL MODELLIKG AND NUMERICAL ANALYSIS
flfBSB MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 32, n° 4, 1998, p 479 à 499)

EXPANDED MIXED FINITE ELEMENT METHODS FOR L1NEAR SECOND-ORDER ELLIPTIC PROBLEMS, I (*)

Zhangxm CHEN (l)

Abstract — We develop a new mixed formulation for the numencal solution of second-order elliptic problems This new formulation
expands the standard mixed formulation in the sense that three variables are exphcitly treated the scalar unknown, its gradient, and its flux
(the coefficient times the gradient) Based on this formulation, mixed finite element approximations of the second-order elliptic problems are
considered Optimal order error estimâtes in the Lp~ and H~ s-norms are obtained for the mixed approximations. Vanous implementation
techniques for solving the Systems of algebraic équations are discussed A postprocessing method for improving the scalar variable is
analyzed, and superconvergent estimâtes in the Lp-norm are denved The mixed formulation is suitable for the case where the coefficient
of differential équations is a small tensor and does not need to be inverted © Elsevier, Paris

Résumé —L'objet de cet article est l'écriture d'une nouvelle formulation mixte relative aux problèmes elliptiques d'ordre deux, et
l'implémentation de méthodes d'éléments finis mixtes pour la détermination de solutions approchées On donne alors des estimations
d'erreurs en norme Lp et H~ s Enfin, on construit une méthode pour laquelle des résultats de superconvergence en norme îf sont obtenus
© Elsevier, Pans

1. INTRODUCTION

Mixed finite element methods have been found to be very useful, for solving flow équations ([17], [18]), along
with other applications. For example, when the governing équations that describe two-phase flow in a petroleum
reservoir are written in a fractional flow formulation (î.e., in ternis of a global pressure and a saturation), mixed
methods can be used to solve the pressure équation very efficiently and accurately. However, mixed finite element
methods have not yet achieved application in groundwater hydrology. For petroleum reservoirs total flux-type
boundary conditions are conveniently imposed and easily incorporated in the mixted finite element formulation.
But, for groundwater reservoirs often complex boundary conditions involving combinations of individual fluid
fluxes and pressures must be specified, and it is sometimes impractical to express them in terms of the total
quantifies [8], [33], Consequently, two-pressure formulations are commonly used by hydrologists ([8], [33]), since
the complex individual boundary conditions can easily be handled. However, the coefficient in the two-pressure
formulation may tend to zero because of low permeabihty, so that its reciprocal is not readily usable as in standard
mixed finite element methods ([4], [5], [6], [14], [27], [28], [30]). Therefore, a direct application of mixed methods
to a two-pressure formulation is usually not practical.

This is the first paper of a series in which we develop and analyze a new mixed formulation for the numerical
solution of second-order elliptic problems. This new formulation expands the standard mixed formulation in the
sense that three variables are explicitly treated; i.e., the scalar unknown, its gradient, and its flux (the coefficient
times the gradient). It apphes directly to the two-pressure formulation mentioned above, so that it can treat indivi-
dual boundary conditions. Also, it is suitable for the case where the coefficient of differential équations is a small
tensor and does not need to be inverted. As a resuit, it works for the differential problems with small diffusion or low
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permeability tenus. The other advantage we have found so f ar with this new formulation is that it leads to optimal
error estimâtes for certain nonlinear elliptic problems while the standard mixed formulation gives only suboptimal
error estimâtes [12]. A detailed analysis for nonlinear problems is given in the second paper of the series [13].

In the next section, we propose the expanded mixed formulation for a fairly gênerai second-order elliptic
problem with the variable tensor coefficient. Then we show that this formulation applies to all existing mixed finite
éléments. In §3, we analyze the continuous problem and prove that the new formulation has a unique solution
and is equivalent to the original differential problem. In §4 and §5, we deal with the expanded mixed finite element
method. It is demonstrated that the discrete formulation has a unique solution and gives optimal error estimâtes
in the If and ETs. Then, in §6 we analyze a postprocessing method for improving the accuracy of the
approximation of the original scalar variable and dérive superconvergent estimâtes in Lp. Finally, in §7 we discus s
some implementation stratégies for solving the System of algebraic équations produced by the expanded mixed
method, including preconditionel itérative methods, alternating-direction itérative methods, hybridization
methods, etc. Numerical examples are presented in the second paper.

We end this section with a remark that the idea of using an expanded mixed formulation has been used in
elasticity (see [24] and the références therein). However, the setting for the present problem is different from that
of elasticity problems. Specifically, a combination of the spaces L2 and H1 is used in the elasticity problems, while
the spaces L2 and H(dïv) are used here. In the author's opinion, the analysis for second-order elliptic problems
is more elegant and difficult.

2. EXPANDED MIXED FORMULATION

Let Q be a. bounded domain in IR", n = 2 or 3, with the boundary dü = / \ u 7^, Fx n F2= &. We consider
the elliptic problem

(2.1a)
(2.1b)
(2.1c)

- V .(aVu-

u = - g

( oSJu - Z ? M -

in Ü ,
on Fx ,
on F2 ,

where a(x) is a tensor, b(x) and c(x) are vectors, d(x) is a function, / (x) e L (£?), g(x) e H (Fx)
(Hk(Ü) = WK2(Q) is the Sobolev space of k differentiable functions in L2(Q) with the norm || . H* ; we omit
k when it is zero), and v is the outer unit normal to the domain. Let

iv ; f l ) = {i;e (L2(Q))n : V . v e L2(Ü)} ,

V={v <= H{ div ; Q ) : v . v = 0 on F2},

and let ( . , . )y, dénote the L2(£f) inner product (we omit S? if £f = Q). Then (2.1) is formulated in the
following expanded mixed form for (a, À,u) e. Vx A x W:

(2.2a)
(2.2b)
(2.2c) (V.cr, w) + (du, w) = (ƒ, w) ,

Vu G V,
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To define a finite element method, we need a partition êh of Q into éléments E, say, simplexes, rectangular
parallelepipeds, and/or prisms, where only edges or faces on dQ may be curved. In #ft, we also need that adjacent
éléments completely share their common edge or face; let dSh dénote the set of ail interior edges (n = 2) or
faces (n = 3) e of êh, We tacitly assume that Bêh =£ 0. Finally, each exterior edge or face has either Dirichlet
or Neumann conditions imposed on it but not both [1].

Since mixed finite element spaces are finite dimensional and defined locally on each element, let, for each
E e êh, Vh(E) x Wh(E) dénote one of the mixed finite element spaces introduced in [4], [5], [6], [14], [21],
[27], [28], and [30] for second-order elliptic problems. Then we define

Ah = {/J e A : jd\E e Vh(E) for each E e <f J ,

Vh = {v e V:V\EG Vh(E) foreach£ e êh) ,

Wh = {we W:W\EG Wh(E) for each E e S J .

The expanded mixte finite element method for (2.1) is to find (ah, Âh, uh) G Vh x Ah x Wh such that

(2.3a) (aXh, fi) — (ah, /LI) + (bu^ /J) = (c, fi) , V/i G Ah ,

(2.3b) (Xh, v)-(uh9 V.v) = (g, v . v ) r i , \fv e VA,

( 2.3c ) ( V . ah, w ) + ( du,, w ) = (ƒ, w ) , Vw e Wft .

We shall show that standard stability and convergence results hold for (2.2) and (2.3) in the next two sections if
the usual regularity assumption on the solution of (2.1) is made. Note taht if a is positive definite, Àh can be
eliminated element by element from (2.3) to obtain a traditional System involving only uh and ah where a is
inverted. However, as mentioned in the introduction, we keep Xh in (2.3) since this formulation applies to the case
in which a is a tensor and may tend to zero. Also, while an extra unknown is introduced in (2.3), the computational
cost for solving (2.3) is almost the same as that for solving the traditional mixed method System, as shown in §7.
Finally, we shall see that the expanded formulations (2.2) and (2.3) are not a trivial extension of the traditional
one from the discussions carried out in the next two sections.

3. CONTINUOUS PROBLEM

To fix ideas we carry out an analysis for the model problem

(3.1a) Lu = - V . (aVw)=/ in fi,

(3.1b) u = 0 onôO.

The extension of the analysis below to the gênerai problem (2.1) is straightforward [1], [20]. As mentioned in the
previous section, we want to show that the standard stability and convergence results hold for the expanded mixed
method if the usual regularity assumptions on the solution of (3.1) are made; the less regular case will be discussed
in a later work. Hence, we assume that a(x) is a uniformly positive definite, bounded tensor:

(3.2) (a^ti) f a i b l i 2 , V ^ i ,

and that, if ƒ e HS(Q), then ue Hs + 2(Q) n Hl
0(Q) and there is a constant C such that

(3 .3 ) I I K | I , + 2
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which will be used in the H~ *-error analysis later. For problem (3.1), (2.2) reduces to the following form for
(a, A, M) e VxAxW:

(3.4a) (oA,/i)-(ff>Ai) = 0> V / ^ e i ,
(3.4b) ( A , U ) - ( K , V . U ) = O, V D G 7 ,

(3.4c) ( V . a , w ) = ( / ,w) , V W G W ,

where now V - H( div ; Q ).
For a mathematical analysis of (3.4), let U-WxA with the usual product norm

2 2> T = (W, ju) e {ƒ, and introducé the bilinear forms a{ . , . ) : U x f/ —> R and

( 3 . 5 ) fl(*,T)

( 3 . 6 ) £?(T, ü ) = (w, V . ü ) - ( j u , t>), T = ( w , / i ) e t/, t; E V .

Then, (3.4) can be written in the Standard form for (/, er) e [/xV such that

(3.7a) a(*,T)+*(*.*) = *"(*). Vref/,

(3.7b) &(Z.») = 0, VveV,

where the continuous form F( x ) on C/ is defined by

F(r) = (f9w), T=(w,Ai)e t/ .

Finally, we define the notation

Z = { r e U:b(r,v) = 0, Vu e V} .

We are now ready to prove the next resuits.

LEMMA 3.1: Lef x = (w, ju) e £/. r^en, x ̂  Z if and only if w e Hl
Q(ü) and ju = - Vw.

First, let T = (W,JU) G t/ such that w e H^Ü) and ̂  = - Vw. Then, for all u E V,

so that T G Z.
Next, let T = ( W , / I ) e Z. Define u E V with vx = <p G D(Q), the restriction of the functions infinitely

differentiable and with compact support in Rn to Q, and vi = 0, f = 2, ..., n. Then, by the définition of Z,

Since H\Q) = D(Q), the closure of D(Q), this implies that ^ = - dw/öjcr Similarly, p^-
i = 2, . . . ,«; consequently, ju = - Vw. Therefore, by the définition of Z and Green's formula, we have

(w9v . v)flfl = 0, Vü E V.

Since w 18Ö G //1/2( ÖD ) and the mapping: u >-> f . v | dü defined on V is onto H 1/2( ^D ), the équation above implies
that w| a ö = 0 ; i.e., WG H J ( Ö ) . D
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LEMMA 3.2: The mapping T = ( W , JJ) G Z >—> \\/u\\ defines a norm in Z equivalent to the original norm
IITU^; i.e.t there is constant ax > O such that

(3.8) a j t l l t , ^ IIAIII « \\xWjj.

Proof: Let T = ( W , j u ) e Z. Then, by Lemma 3.1, w e H\(Q) and /j = - Vw. Hence,

~ ^ c | | V H | 2 + | | H 2 « c | | H l 2 ,

from which (3.8) follows, since the second inequality is obvious. G

LEMMA 3.3: There is a constant /? > 0 such that

(3.9) fl(T.T)» jffJMI2,, r e Z ;

i.e., a( • , . ) is Z-elliptic, and

(3.10) s u p K ^ ü V I l T l l y ^ IMI, V i ? e V .
re t/

Proo/: Let T = (W, /J ) G Z. Then, by (3.2) and (3.8),

which implies (3.9) with ƒ?= aav Next, for all i; e F,

s u p è C T . ü V I l T l l ^ » sup & ( ( O , j u ) , » ) / | | (
t e U (O,JU)G C/ ^ e /I

so (3.10) is true. D

THEOREM 3.4: The problem (3.7) (and thus (3.4)) has at most one solution.

Proof: Let ƒ = 0. From (3.7) and (3.9) we see that / = 0. Hence, (3.7a) becomes

KT,(X) = 0, V i € t / 5

which, together with (3.10), implies that a = 0. D
The following result characterizes the relation between the solutions of (3.1) and (3.7).

THEOREM 3.5: If (x,a) s UxV is the solution of (3.7) with # = (K, A), then u e H\{Ü) is the solution
of (3.1) with X = — Vw. Conversely, if u G H\(Q) is the solution of (3.1), then (3.7) has the solution
(/ , cr)e UxV with Z=(w, A), A = - VM, and a = -aVu.

Proof: First, let (#, <r) e UxV be the solution of (3.7) with x = O , A). Then (3.7b) implies that # G Z SO
that, by Lemma 3.1, ue H^ÇQ) and A = - Vw. Hence, for all >v G H\(Q) and ju = - Vw, it follows from
Lemma 3.1 that

(«Vu, Vw) = ( ƒ > ) , VWG Hj

Hence, u is the solution of (3.1).

vol. 32, n° 4, 1998
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Next, we assume that u e Hl
Q(Q) is the solution of (3.1). Set / = ( w , / ) with 2 - - Vu and

a = - a Vu. Then it follows from Lemma 3.1 that / e Z s o that (3.7b) holds. Thus it remains to prove (3.7a).
For each r e U with r = ( w , ja),

a(X> T ) + b{%, G) = (aAy/u) + (w, V . c ) - (ji, a )

= ( W , - V . ( Û V M ) )

= (/ ,w), V w e W ,

which yields (3.7a). D

4. ff~ * -CONVERGENCE ANALYSIS

In this section, we dérive error estimâtes for the expanded mixed method (2.3). We focus on the Brezzi-
Douglas-Marini mixed triangular space [6] if n = 2 and on the Brezzi-Douglas-Durân-Fortin mixed simplicial
space [4] if n — 3. Other mixed finite element families can be treated in the same way. For each E e êh, the
Brezzi-Douglas-Marini mixed triangular space [6] or the Brezzi Douglas-Durân-Fortin mixed simplicial space [4]
is defined by

where Pk(E) is the restriction of the set of all polynomials of total degree not bigger than k ^ 1 to E. Note that
this space is the most natural choice for the expanded mixed method (2.3) from the Standard finite element point
of view. We again consider the problem (3.1). In this case, (2.3) is formulated for
(<Th9Xk,uh)e VhxAkxWh as

(4.1a) (a^,Ai)-(<7„Ai) = 0, V̂u e Ah,

(4.1b) (A fc,t>)-(uA,V.t;) = O, Vue V„,

(4.1c) (V .a , ,w) = ( ƒ > ) , VWG Wh.

The error analysis below makes use of three projection operators. The first operator is, if n = 2, the

Brezzi-Douglas-Marini operator [6] or, if n = 3, the Brezzi-Douglas-Durân-Fortin operator [4]

nh:(H(Q))n -> V̂  ; IIh satisfies

(4.2) \\v-nhv\\ ^ C\\v\\rh\ 1 ^ r ^ k+ 1 ,

(4.3) (V ,(v-nhv),w) = 0, Vive Wh.

The other two operators are the standard L2-projections Ph and Rh onto Wh and Ah, respectively:

(4.4) (w-Phw, V . ü ) = 0, VweW,veVh,

(4.5) (AI-/?,/! , T ) = 0 , V^E 4 , 1 6 ^ .

They have the approximation properties

(4.6) l l w - ^ w I L , ^ C\\w\\rh
r + \ O ^ s , r ^ k ,

( 4 . 7 ) | | / i - / 2 A A i | L , ^ C | | / i | | r / i r + J, 0 < J f r *k k+ 1 .
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Now, let

zh = Phu-uh.

Then subtract (4.1) from (3.4) and apply (4.4) and (4.5) to obtain the error équations

(4.8a) (aa fc lAi)-Oi,d fc) = 0, ty e Ah,

(4.8b) (,zh,V.v)-(Ph,v) = O, V»eVfc,

(4.8c) (w, V.dA) = O, Vwe TVfc.

LEMMA 4.1: There is a constant C > 0 independent of h such that

(4.9) l lV.rfJI « C | | V . « r | | r A r , 1 ^ r ^ f c .

Proo/- It follows from (4.3) that

(w, V . e j = (w , V . dh) = 0, Vw e Wfc ,

so that V . efc = 0. Hence,

HV.rfJI = | | V . ( < 7 - 7 7 f c a ) | | ^ C | | V . a | l r / i r , l ^ r ^ k . •

L E M M A 4.2: There is a constant C > 0 independent of h such that

(4.10) K i l ^ C ( | | A | | r + | M | r ) / T , l ^ r ^ k + 1 .

Proof: Take n = Ph in (4.8a) and t; = eh in (4.8b) to see that

{aPh,Ph) = {a{RhX-X),Ph) + (aah, ph)

= (a(Rhl-l),ph) + (Ph,dh)

= {a{RhX-X),fSh) + (zh, V.eh) + (ph, a-IIha)

= (a(Rh X - X), ph) + (ph, a - 77, a) ,

so that

WPJ ^C(\\RhX-X\\ + \\a-nh<7\\).

Thus, by (4.2) and (4.7), we see that

Ha* II « II A II + \\RhX-X\\

« C ( | | A | | r + | | f f | | , ) A r , l « r « * + l . D

LEMMA 4.3: There is a constant C > 0 independent of h such that

(4 .11) K i l s £ C ( P | | r + | | f f | | r ) / i r , l « r « i k + l .
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Proof: Choose ju = eh in (4.8a) to get

(eh, eh) =

Zhangxin CHEN

-c9 eh) + (dh, eh)

Consequently,

\eh\\ **C(\\nha-o\\ + K i l ) ,

which, together with (4.2) and (4.10), yields the desired result (4.11). D
We now turn to the analysis of the errors zh, oth, and dh in H~ S(Q), s ^ 0. Our analysis follows the argument

described in [20]. Note that (4.8b) is still satisfied when ph is replaced by ah by (4.5).

LEMMA 4.4: For s ^ 0, we have

(4.12) llzJL,«c((KH +

Proof: Let â, e H\Q) and let (p e Hs + 2(Q) o ^ ( ö ) such that L* <p = Ç. Then, by (4.3) and (4.8), we see
that

= (z*. - V . (a V0)) = (z„ - V . = - (ah,

= - (aov V0 - /?,( V0)) - (aaA, Rh(V<p)) + (a„ a V0 - llh(a V0))

= - (aah, h

+ (dh, V0 - Rh( V0)

so that

|(zfc,<?)| «C{ | !aJ | ||V0-/?A(V0)H + ||V.dJ| \\4>-Ph4>\

+ \\dj \\V<p-Rh(Vcf>)\\ + \\ah\\ \\aV<p-nh(aV<P)\\}.

Hence, by (4.2), (4.6), (4.7), and (3.3), we obtain the desired inequahty (4.12). D

LEMMA 4.5: For s > 0, we have

(4.13) . dj _ s

Proof: Let £ e H\Q). By (4.8c), we see that

Thus, (4.13) follows from (4.6). D

LEMMA 4.6: For s 3= 0, we have

(4-14) KIL,*£
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Proof: Let £ e (Hs(Q))n. By (4.3) and (4.8), we find that

= {dh,Ç-RhÇ)- (aah, Ç - RhÇ) + («„

= (dk,Ç -RhO~ (««„, Z-Rh{) + («„, aÇ - i l .UO) + (zh, V

= {dh,Ç-RhZ)- (aa„ Ç-RhO + (<*k,aÇ- IIh(aÇ)) + (zh, V

so it follows from (4.2) and (4.7) that

Therefore, by the regularity result (3.3), we have the error bound (4.14). •
The same argument can be used to demonstrate the lemma below.

LEMMA 4.7: For s ^ 0, we have

(4.15) ' K I U ^ C((\\dh\\ + l l a J D A ™ ^ ^ 1 ^ | | z J L J + 1 ) .

We now collect the above results in the foliowing theorem.

T H E O R E M 4 . 8 : Let (er, X,u) e Vx AxW and (ah, Xh, uh) e Vhx AhxWh be solutions to (3.4) and (4.1),
respectively. Then,

(4.16) \\u-uh\\_s^C\\f\\r_2h
r + s, 2^r^k + 2,0^s^k-2,

(4.17) \\X-Xh\\_st

(4.18) | |GT-<TJ|_ S :

(4.19) \\V.(a-ah

(4.20) \\uh-Phu\\ ^ CWfW.h™^*2*2^.

The proof of this theorem is completed from Lemmas 4.1-4.7 and the elliptic regularity result (3.3). The error
result (4.20) is needed for the analysis of a postprocessing scheme given in §6. When k~ 1, we need the
requirement ||/|| v As shown in [32], if ƒ e Wh, we need only ||/|| in the right side of (4.20). The same remark
applies later.

We end this section with the discussion of existence and uniqueness of the solution to (4.1). Since it is a System
of linear algebraic équations, it suffices to establish the uniqueness. For this we assume that ƒ = 0. Take
w = V ,oh in (4.1c) to have ( V • ah> V . ah) = 0, so that V . ah = 0. Next, take JJL = Xh in (4.1a) and
v - ah in (4.1b) to yield ( aXh, Xh ) = 0, so that Xh = Q. Also, choose l^ = cfh in (4.1a) to see that
( ahJ ah ) = 0, and ah = 0. finally, as in Lemma 4.4 we see that

Kil «C(|UJ| A+ IkJI A+ ÏÏV.dJ),

vol. 32, n° 4, 1998
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which means that uh = 0. Therefore, the uniqueness has been demonstrated.

5. If -CONVERGENCE ANALYSIS

We derived the optimal error estimâtes in the H' s-norm for the mixed nnite element method (4.1) in the last
section. For the completeness of the error analysis, we now obtain error estimâtes in the Z/-norm through an
adaptation of Durân's arguments [22], To use his arguments requires that we make some appropriate assumptions.
We consider the planar case and assume that the coefficient a is constant. The error estimâtes below still hold for
the cases of three space variables and variable coefficient if we apply more sophisticated arguments, such as those
of Gastaldi and Nochetto [25].

We need the foliowing approximation properties:

(5.1) \ \ v - n h v \ \ ^ p ^ C \ \ v \ \ r i p h r
9 l / p < r * £ * + l , l ^ p ^ o o f

(5.2) \\™-Ph"\\o,p < C||w||r,,*
r, 0 ̂  r ̂  K 1 ̂ P ^ ~ ,

(5.3) ll/i-^AiHo^ sS C\\ii\\nph
r, 0 *S r ̂  *+ 1, 1 «S/> *£ ~ .

Also, let Dk be the L2-projection onto the space Vh [22] of the divergence-free vectors:

It has the stability properties

(5.4)
(5.5)

where Cp = Cp. It follows from (5.5) that

and that, by duality,

(5.7) Il-D^llo,!^ C|logft| \\v\\0A

LEMMA 5.1: We have

(5.8) ch-nh(T = Dh(tT-nhc),

(5.9) RhX-Xh = Rh{a\o-ah))

Proof: It follows from (4.8a) and (4.8b) that

( a - oh, v ) = 0, Vt? e Vh ;

i.e.,
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Thus, (5.8) holds. Now, by (4.5) and (4.8a), we see that

aRhA-Ah)-a
1(a-ah),aM) = O, V/i e Ah,

which implies (5.9). D

THEOREM 5.2: We have, for 2 s= p < °o and 1 $ r =S ik + 1,

(5.10a) Ik-'Jo.^ÇJMIr,,*'.
(5.10b) l k - f f J l o . - ^ C ( | | f f | | r t - + | l o g A | 11/11 r _ ! , ~ ) / i r ,

(5.10c) | |ff-(Tj|0 i l

(5.11a) U-KKp

(5.11b) I U - ^ | | a - i |

(5.11c) \\X-Xh\\0A^C\logh\ \\X\\rAhr.

Proof: The estimâtes (5.10a) and (5.10c) follow from (5.8), (5.4), (5.7), and (5.1). To see that (5.10b) is true,
note that

(5-12) V.(a-nha)=f-Phf,

and, by duality,

(5-13) I I / - i V L !,-<£"/* ||ƒ-/>,,ƒ II o,-•

so that, by (5.5) and (5.8),

« C(\\a-nha\\0^+ \logh\ \\V.(tr-nh(r)\\_lt„)

^C(\\a - nha\\0 „+ \logh\ h\\f- Phf\\0„) ,

which, together with (5.1) and (5.2), implies (5.10b). Finally, (5.11) follows from (5.3), (5.9), and (5.10). D

LEMMA 5.3: For k > 1 and 2 ̂  p < <», we have

(5.14) IU*llo.p^ ^((11-1-^110^+ | | f f- f f A | | 0^)fc+ l l V . C f f - ^ ) ! ! ^ * ™ * 2 ' ^ ) .

PWCÏ/:- Let <J e Lq(Q), where l/p + 1 / ^ = 1 , and let 0 e wj1 *(fl) satisfy L <p = Ç. Then, as in Lemma4.4,
we see that

(X - Xh, a V0 - Rh{a V0) )

(V . (<T - <7„), 0 - P A 0 ) + (ff - ah, V<j> - Rh(V<p))

JOp %q .(G - ah)\\0Jcp\\2qh^2^ + \\a -

which, together with an elliptic regularity result for (3.1), yields (5.14). •
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THEOREM 5.4: The following results hold:

( 5 " 1 5 ) H » - « * l l a , « \cHu\\'ph
h> 2<r<kifk>l

l <-p tl
 u il r,p

 n * z ^ r ^ f c , Ï / / C > I ,
( 5 . 1 6 ) \ \ u - uh\\0oo ^ C\logh\2 hr\\u\\roo, 2 ^ r =S k.

Proof: Note that, by (5.14), (5.10a), (5.11a), (5.12), and (5.2),

where ôlk is the Kronecker symbol. Thus, (5.15) follows from (5.2) and this inequality. Also, by (5.17) and the
inverse estimate

|| z || ^ Ch~ 21| z II » 2 ^ p < oo >

we have

(5.18) lUJIo , -^ C^lr"2/|' + r + 1 - ^ | | ( j | | ^ , 1 < r * = * + l .

Since Cp = Cp, take p = |logft| in (5,18) to yield

which, together with (5.2), implies (5.16). D
We close this section with a remark that all of the results in this section can be extended to the case

1 <p < 2 since (5.4) can be replaced by the following inequality [22] in this case:

llDhvh P ^ Cpllvh p + CpllV» v\\_ 1 , 1 <p < 2 ,

where Cp = C/(p - 1 ).

6. POSTPROCESSING AND SUPERCONVERGENCE

From the error analysis carried out in the previous two sections we see that Àh and ah are more accurate
approximations than uh. In this section, we consider a postprocessing scheme which leads to a new, more accurate
approximation to the solution u than uh. The present scheme is an extension to the expanded mixed method (4.1)
of the postprocessing procedure originally developed in [9], [11], and [32] for the traditional mixed method.
Another postprocessing procedure, proposed in [2], differs from our scheme, First, the construction of their
scheme is ad hoc in the sense that different mixed finite element familites need different constructions; our scheme
is applicable to all mixed families. Second, their construction dépends on Lagrange multipliers defined over edges
or faces, while ours does not Finally, the present scheme can be implemented more efficiently.

Let

W*h = {w e W:W\EG Pk + ^E) foreach£ e ih).

Then the postprocessing method is defined for uh e Wh as the solution of the system

(6.1a) ( « ; , 1 ) * = K , 1 ) B , V E e * h ,

(6.1b) {aVuh,Vw)E=(J,w)E-{oh.vE,w)SE, Vw e Pk + ,(£), E e êh,
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where (ah, uh) satisfies (4.1) and vE is the exterior unit normal to E.

THEOREM 6.1: Let uh be defined by (6.1). Then

(6.2) H M - ^ I I ^ C | | « | | i k + 2 / i i n i l l { f c + 2'2*}, k>l.

Proof: For each E G g h, let PE dénote the L2-projection onto P0(E). Note that PQ(E) <zz Wh(E), so that it
follows from (4.1c) that

' h •

Therefore, System (6.1) has a unique solution uh,
From (3.1) and Theorem 3.5 we see that

(6.3) (aVu,Vw)E= (f,w)E- (a .vE,w)dE, Vwe Pk+1(E),Ee gh.

So, we have the error équation

(6-4) (aV(u-uh\Vw)E=aGk-G).vE,w)dE, Vw e Pk+1(E)9Ee «h.

Choose MG ̂ + i ( ^ ) ' shift u to M, and take w = ü — uh to obtain

(6.5) (aV(ü - uh\ V(ü - uh))E={aV(ü- u), V(fi - uh))E

Then, it follows from (3.2) that there is a constant C such that

Now, properly choose ü to approximate u on each E that P£( M - u ) = 0, and apply a scaling argument to have

(6.7) \\h-E
m(ü-uh)\\9E< C\\V(ü-uh)\\E.

Using (6.7), (6.6) becomes

(6.8) \ \ V ( ü - u h ) \ \ E *i C ( \ \ V ( Ü - u ) \ \ E + \ \ h ^ ( a h - a ) . v E \ \ d E ) .

Again, it follows from a simple scaling argument that

llwll^CMVwHj, Vwe (I-PE)Pk+l(E),

where I is the identity operator. Consequently, by (6.8), we find that

(6.9) l |S-«;ilE« Ch£(| |V(iï-«)||JÏ+ \\hf(oh-o).vE\\SE)

+ \\PE<iü-uh)\\E.

Hence, it remains to estimate || PE( ü - uh ) || £. Since PE is bounded and PE( ü — u ) = 0, we have

(6.10) \\PE{ü-uh)\\E^ \\PE(u-uh)\\E.
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Also, since PEPH\E = ^E by m e définition of PE, it follows from (6.1a) and (6.10) that

(6.11) \\PE(ü-uh)\\E^ \\Phu-uh\\E.

Therefore, combine (6.9), (6.10), and (6.11) to observe that

(6.12) \\ü-uh\\E « \\Phu-uh\\E+Ch^ | | V ( M - M ) | | £ + \\hf(oh - a) . vE\\BE) ;

then sum on E to obtain

\ Phu-uh\\ + ^ 2 \\hf{o-nho).vE\\dE

Finally, the desired result (6.2) follows from (6.12), (4.20), (4.18), the approximation property of I7h, and the
triangle inequality. D

As in §5, we now consider the ZZ-error estimâtes for the scheme (6.1). For 1 ^ p ^ 2, the following results
follow immediately from (6.2).

THEOREM 6.2: Let uh be defined by (6,1). Then

II u ~ uh II o,p ^ CII u II A + 2 h ' fcSsl, l * £ / ? ^ 2 .

Next, we concentrate on another interesting and useful situation: k = 0. This case, in fact, corresponds to a
postprocessing scheme for improving the lowest order Raviart-Thomas-Nedelec mixed method solution on
triangles or simplices, the most commonly-used case in practical computation. When k = 0, Wh becomes

(6.13) Wh = {w e W : w\E e P^E) for eachi? e d^} .

THEOREM 6.3: Let uh be the solution of (6.1) with W*k given in (6.13). Then, if u e W2tP(Q),

(6.14a) || w - uh\\Q p ^ Cp\\u\\^ph
2, 2 < p < °° ,

(6.14b) || M - M*||0)OO ^ C|logA| / Ï 2 | |M| | 2 J O O .

Proof: Let W^ be the space of continuous functions in Ö, which are piecewise linear polynonünals and vanish
on dQ, and let ü be the interpolation of u in W™. Then, for each E G <f ^ by (3.1) and (6.1) we see that

C | | V ( M - M : ) | | * *£ (<N(ü-uh\V(ü-uh) I V C M - M ; ) ! ' - 2 ) ^

Thus, using the same techniques as in Theorem 6.1, we obtain

(6-15) I | V ( « - « ; ) | | O J 1 , , £ ^ C ( | | V ( M - M ) | | O I
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To estimate \\ü - uh\\0 p, we apply a standard duality argument. Let w be determined by

\p ~- Aw = sign (ü - uh) \ü- uh\
p ~ 1 in Q ,

w = 0 on d*2 .

Then, with q = p/(p - 1 ), we seet that

(6.16) l lwU^ ^ C||Aw||0^ ^ C\\ü~uh\\
p
0-\

Let wft be the interpolation of w in the space W**. It can be shown in the same way as in (6.12) that

which, together with (6.15) and (6.16), yields

Consequently, the result (6.14a) follows from the définition of W*h*\ (5.10a), and the triangle inequality. Finally,
(6.14b) can be shown in the same manner as (5.16). •

7. IMPLEMENTATION

Let a, P, and y dénote the degrees of freedom of the solution functions Ah, ah, and uh, respectively. Then the
algebraic system associated with the mixed method (4.1) takes the form

(7.1a) Aa-Cp = 0,

(7.1b) By-CTa = 0,

(7.1c) BTP = F,

where A, B, and C are the coefficient matrices of appropriate dimensions, and F is the vector associated with the
right-band side of (4.1c). In this section, we discuss several implementation techniques for solving (7.1).

7.1. Traditional approach

If (3.2) is satisfied, then (7.1) can be inverted to the algebraic system arising from the traditional mixed finite
element method as follows. Since the degrees of freedom for Xh are internai to a single element, A has a simple
block diagonal structure with each block corresponding to one element. Thus, an a priori inversion of A element
by element leads to

(7.2a) CTA~1CP-By = 0,

(7.2b) BTy = F.

This is a sparse linear system for oh and uh, where CTA~ 1 C is symmetrie and positive definite. We may solve
this system and then recover kh (if needed) through a = A" l ft by means of a simple element-by-element
postprocess. However, when (3.2) is not satisfied, the following implementation techniques are suggested.
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7.2. Preconditioned itérative methods

Note that, using the bilinear forms a( . , . ) and b(., >), the mixed method (4.1) can be written for

(73a)

(7.3b) *(**,» ) = 0,

where #/, = («/,» ̂  ) and Uh = Wh x Ah. The coefficient matrix of system (7.3), given by

M N

NT 0

is symmetrie, nonsingular» and indefinite. Namely, the algebraic system associated with (7.3) is given by

(7.4a) M^ + Np^F,

(7.4b) NTÇ = O,

where â, is the degrees of freedom of %h- Thus, the minimum residual itérative method [7], [29] can be used to
solve this system. Since one of the condition numbers associated with M and Af increases as the discretization is
refined and the convergence is too slow, a direct application of the minimum residual method is usually not
practical. Therefore, to speed up the convergence, preconditioned versions of this method have been suggested
[23], [31]. For completeness, we will consider a block diagonal preconditioner for the system (7.4).

Let the dimensions of Uh and Vh be n and m, respectively, and let L e UnXn and S e Um x m be nonsingular
matrices. Then the system (7.4) is equivalent to the system

(7.5a) L~ * ML~ T f + L" l NS' l y/ = LT l F,

(7.5b) (L"1 iV5"1) rC = 0 ,

where f = LT Ç and y/ = S$. The system (7.5) has the same structure as (7.4). The minimum residual method
applied to (7.5) converges f aster if L and S are appropriately chosen. The matrices L and S should have the
property that linear Systems with coefficient matrices given by LLT or ST S can be solved by a fast solver. This
requirement is necessary since such linear Systems have to be solved once in each itération of the preconditioned
minimum residual method. One example of the choices for L and S are that L = /, the identity matrix, and S
should be chosen such that ST S is a preconditioner for NT N. ST S can be obtained from the incomplete Cholesky
factorization ofNTN [31], for example.

7.3. Alternating direction itérative techniques

Uzawa and Arrow-Hurwitz alternating-direction itérative methods have been developed for solving the
algebraic équations arising from traditional mixed methods [4], [5], [15], [16], [19]. We now describe similar
itérative techniques for solving (7.1). We limit ourselves here to the Uzawa-type algorithms for the Raviart-
Thomas spaces on rectangles; the Arrow-Hurwitz-type algorithms and other mixed finite element families can be
treated analogously.
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The Uzawa itérative techniques are based on a virtual parabolic problem introduced by adding the virtual time
derivative of y to (7.1c) and initiating the resul ting évolution by an initial guess for y. Thus, we consider the System

(7.6a) A a - Q Ï = O, f ^ O ,

(7.6b) By-CTa = 0, t^O,

(7.6c) D^ + BTP = F, t&09

(7.6d) y(0) = / ,

where the choice of D is somewhat arbitrary, though it should be symmetrie and positive definite. The System (7.6)
corresponds to an expanded mixed fmite element method for the initial value problem

for some coefficient d. Let now the domain Q be a rectangle and Sh be a partition of Q into subrectangles. Then,
if the Raviart-Thomas space on rectangles is used in (4.1), it is easy to see that (7.6) splits into équations of the
form

Ax a, - Cx fix = 0, A2 a2 - C2p2 = 0 ,

Bx y - C[ ax = 0, B2 y - C\ a2 = 0 ,

where the av y81-parameters and a2, ^-parameters are ordered in an ;trorientation and an x2-orientation,
respectively.

The Uzawa itérative algorithm is described as follows. Let y0 be given arbitrarily and détermine a0 and j6° (only
/?2 need to be computed to initiate the itération) by the System

Ax a? -C.p0^ 0, A2 a°2 - C2 p\ = 0 ,

The gênerai step splits into the following JCj-sweep and x2-sweep:

A l al + m - CJÏ + m = 0 ,

n + 1/2 _ n
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and

A2 a2 — C2p2 = 0 ,

B2y -C2a2 = 0 ,

n + 1 n + 1/2

Note that «2 + 1/2, ̂  + 1/2> a i + *' a n d fiü + * d o n o t e n t e r i n t o t h e évolution; they need not be calculated at all,
though it is probably a good idea to compute them to be consistent with the final y upon termination of the
itération.

No spectral analysis has been made yet for this itération. However, on the basis of expérience with the
traditional mixed methods, we conjecture that the Uzawa itérative algorithm converges rapidly when the
parameters f are properly chosen, A complete spectral analysis for this itération is for future work.

7.4. Hybricüzation

Note that the normal component of the members in Vk is continuous across the interior boundaries in d$h.
Following [2], we relax this constraint on Vh by letting Vk = Ah, and introducé the Lagrange multipliers to enforce
the required continuity on Ah :

1 hen the unconstrained expanded mixed rnethod is to find ( ah> Xh, uh, lh ) e Ahx AhxWhx Lh such that

(7.7a) (aAh,n)-(ah9jj) = 0> \fjueAh,

(7.7d) 2 (ah-vE>D)3E = °> V Ü G L A .

As a resuit of (7.7d), the solution function ah generated from (7.7) coïncides with that produced by (4.1). Hena
the triple (ah, Xh, uh) from (7.7) is the same as that from (4.1). That is why we use the same notation as befon
The System associated with (7.7) is given by

(7.8a) Aa - Cp = 0 ,

(7.8b) Ca - By + Ke = 0 ,

(7.8c) ÉTp = F,

(7.8d) KT@ = 0,
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where e is the degrees of freedom of the solution lh. Now note that C is symmetrie and positive definite. An
élimination of ƒ? element-by-element gives the following new system:

(7.9a)

(7.9b)

(7.9c)

Ca - By + Ke = 0 ,

BT(TlAa = F,

KTCT * Aa = 0 .

The system (7.9) has the same number of unknowns as the system generated by the hybridization of the standard
mixed methods. We can solve this system for QL, y, and e in the marmer that follows and then recover fi (if needed)
through p = C~ l Aa. Multiply (7,9a) with C~ 1 to have the new system

(7.10a)

(7.10b)

(7.10c)

Let the matrix

C~ lIa - CT 'By + C * Ke = O ,

ÉTCT xAa = F,

KTCTlAa = O.

j * = \ -ÊTcrlA

KTCTlA

-er
o
o

o
o

and let the inner product on Ah x Wh x Lh be

THEOREM 7 . 1 : The matrix sé is symmetrie with respect to the inner product [ . , . ] .

Proof: Note that

- (Au - ACT lÉv + AC~ l Kw,x) - (ÉTC~ lAu,y) + (KTC~ 1 Au, z)

= (Au,x - C~ lÉy + Kz)-(v, ÉTC~ l Ax) + (w, KTCT 1 Ax)

D

From this theorem we see that the itérative techniques developed for the conventional mixed method (cf, [3])
apply to the expanded mixed method.
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7.5. Other options

Traditional mixed methods can be efficiently implemented by exploiting their équivalence with certain
nonconforming Galerkin methods [2], [1], [10]. Again, on the basis of expérience with the traditional mixed
methods, we think that the expanded mixed methods (2.3) and (4.1) may be rewritten equivalently in standard
finite éléments methods or even in finite différence methods. This will be explored in the second paper. Also,
numerical results to illustrate our theoretical results will be presented there.
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