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MATHEMATfCAL MODELUNG AND NUMERICAL ANALYSIS
MODELISATION MATHÉMATIQUE ET ANALYSE NUMERIQUE

(Vol 32, n° 5, 1998, p 521 à 537)

REGULARITY OF SOLUTIONS TO A ONE DIMENSIONAL PLASTICITY MODEL (*)

I. BABUSKA C1) and R SHI t

Abstract —A quasi-static one dimensional plasticity model subject to multi-hnear kinematic law is formulated as a System of variational
inequahties H2 regulanty in the space variable is proved for the displacement and Hl regulanty is proved for the stress

Résumé — On étudie un modèle uni-dimensionnel quasi-statique de plasticité basé sur une loi cinématique multi-hnéaire, et formulé
comme un système d'inégalités vanationnelles On montre la régularité H dans la variable d'espace pour la déformation, et la régularité
H pour la contrainte

1. INTRODUCTION

In this paper, we consider a cyclic plasticity model that is subject to a multi-linear kinematic hardemng law.
Our model is more gênerai than the classical bilinear kinematic law but it does not include isotropic hardening.
Besides certain new features in the modeling aspect, the main purpose is to prove higher regularity of the solution
than those that appear naturally in the weak formulation. We also obtain higher order norm estimâtes of the
solution in terms of the prescnbed load. Our resuit is the first of this kind in the mathematical hterature of cyclic
plasticity. In the present paper, we restrict our attention to the quasi-static one dimensional case only in order not
be obscured by the technicalities. We plan to address the same topic for the higher dimensional case in a separate
article.

It is known that solutions to cychc plasticity models suffer threshold of regularity due to the interface between
the elastic and plastic régions. In particular, second order time derivatives of the displacement and the stress do
not exist in gênerai even for analytic load. This has mccurred significant difficulties in establishing convergence
rate for numerical solutions of the continuous problem. Previous work have either assumed higher regularity of
the solution or certain variants of the same assumption in order to achieve a convergence rate. In a recent work
by Li an Babuska [12], an h-version high order finite element method is considered for a large class of two
dimensional models, but only weak convergence of the approximate solutions is obtained, the reason of which
is partially due to the lack of certain regularity estimâtes. Our regularity result so obtained is sufficient to give
rise to a first order convergence rate for a continuous Galerkin method. For detail, we refer the reader to the
authors forthcoming paper [2].

There is a sizable literature devoted to the study of cyclic plasticity. For the constitutive theory, we reader to
[13], [15], [14] and [17] for an overview. We refer to Babuska et al [1] for a discussion on the reliability questions
of various models.

On the mathematical side, the first existence resuit is given by Duvalt and Lions [4] for the dynamic problem
of elasto-perfect plasticity. Johnson [8, 9] extend the analysis to the quasi-static case, including also the hardening
effect. For related work we also refer the reader to the book by Hlavack et al [7] and the références therein. These
approach carries a common feature of using the penalty method. They also resort to a special technique that
enables to elirninate the velocity field from the équations. No regularity results for weak solutions have been
obtained in these work.

(*) Manuscript received February 6, 1997
C1) Partially supported by US Office of Naval Research Under grant N 0014-90 J 1030 and NSF grant DMS 91-20877
t The author would hke to thank TICAM for a Fellowship support dunng his sabbatical at University of Texas, Austain where the work

is completed The author would also hke to thank Dr Y Li for many helpful discussions
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Two monographs which symbolize recent advances of the mathematic theory of cyclic plasticity have appeared.
The first is by Han and Reddy [6], by large devoted to the numerical analysis of the subject. They used the
displacement and certain internai parameters as the primai variables in their formulation. The authors have
developed an abstract theory of evolutional variational inequalities of the second kind which can be used to model
the cyclic plasticity with a combined kinematic and isotropic hardening law. The existence and uniqueness of the
solution has been proved by use of the Rothe's time discretization method. No regularity of the solution is
discussed. The approach in [6] is quite different from the previous work in that a definite view has been taken
in using the displacement as a primai variable, invoking in a sysmatic way the theory of evolutional variational
inequalities. On the modeling aspect, the authors assumed a priori the existence of a so-called free energy
functional and introduced a related notion of generalized stress tensor in the description of their constitutive laws.
The second monograph is by Krejci [11], mainly devoted to the dynamic problems of cyclic plasticity although
the technique introduced there can well be applied to the quasistatic case also. The method in [11] is based on
the extensive use of convex analysis and the theory of stop-play operators introduced by KrasnoseFskii and
Pokrovskii [10]. The basic idea is to represent various constitutive laws in a unified form a = F(e), where F
is a functional characterized by certain abstract properties. The relation a = F(e) is in turn substituted into the
equilibrium équation to obtain a System of governing équations for the displacement. In this way, the internai
parameters do not appear explicitly in the formulation since they are embedded in the abstract properties of the
functional F

The rest of the paper is organized as follows. In Section 2, we discus s the constitutive model considered by
the authors. We emphasis on its connection with the standard gauge function approach. In Section 3 we give the
mathematical formulation of the problem and state the main resuit of the paper. The proof of the main resuit is
contained Sections 4, 5.

2. THE CONSTITUTIVE MODEL

The formulation to be given in the present paper is based on an idea of representing the stress as a sum of
suitable substresses {o^y = 1, ..., Af+l}, the physical meaning of which will be made clear later. Let
Q = ( 0, £ ) dénote the référence configuration of a one dimensional bar, and fix a time interval ( 0, T). We dénote
the displacement and the stress field at the time t by u(x, t) and a(;c, t) respectively, and dénote by
e(x, t) = ux(x, t) the linearized strain. Our proposed model for a iV+1 piecewise linear kinematic hardening
law is given as follows: for almost all (x, t) e (0, £) x (0, T),

N+l

o^yjai (2.1)

sgn" 1 ^ 1 3 o, €t, l*j<N9 (2.2)

where otf y} and fi are positive constants; sgn" l ( . ) is the maximum monotone graph defined by

(-oo,0] i f 5T = - 1 .
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The inclusion (2.2) is understood as follows: there exist a function À(x, t) such that

v Vj y
x, 0 e sgn x\ ' \t ), ajt + / = «,€,. (2.4)

The constitutive relation in the form (2.1)-(2.3) has the origin from the gênerai theological models (see [17]).
It has also been used in Visintin [16] in a slightly different version. Since direct use of monotone graphs in the
construction of multi-linear constitutive models in plasticity is not widely understood, it is désirable to make the
connection between our proposed model with the the more popular gauge function approach bef ore we proceed
further.

Kinematic hardening is known as the phenomenological behavior of a material for which the center of the yield
surface translates with the s train history while the size of the yield surface remains fixed. The yield surface is most
commonly described in terms of a convex function g(a, a ), called the gauge function, where a is the stress tensor
and a is usually a function taking values in Rm, m ^ 1, referred as the internai parameters. An admissible state
is characterized by the the pair (cr, a ) for which

0(<x,cO=£O. (2.5)

The set

E = { O , a ) ; 0 ( a , a ) < O } (2.6)

is called the elastic région and the set

/> = {(rx,a);9((7,a) = 0} (2.7)

is called the plastic région. The linearized s train tensor e allo w s an additive décomposition

e = ee + ep, (2.8)

where ee and ep are called the elastic and plastic parts of the strain respectively. It is further postulated that

where aijkl is a forth order, symmetrie, and positive definite tensor, describing the elastic response, the dot meaning
the time derivative. ep satisfies the normality principle

in E,

The évolution of the yield surface is governed by an ordinary differential équation for the internai parameter, given
by

f 0 in E ,
d = ( - A | j inP . forsomeA^O. ( 2 - H )

We thus refer the gênerai methodology described above as the gauge function theory. It turns out that in the special
case of bilinear kinematic hardening, the gauge function theory coincides with the constitutive approach taken by
the present paper. In order to justify this statement, we reason by aid of figure 1. In the situation we are concerned
with, the gauge function is given by
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where a is the internai parameter denoting the center of the yield surface (yield points in the one dimensional
case here), and y dénotes the diameter of the yield surface (see [13, 17]) Because of the hardemng effect, the yield
points depend on the current position of (e, er), which are denoted by a+ and a~ In view of figure 7,
straightforward calculation shows that

y — G —G — •
2 xE2 TE2 EX XE2 EX

where Ex and E2 dénote the plastic and elastic Young's modulus respectively, which comcide with the respective
slopes of the lines Lx and Le Therefore,

Figure 1. — The hystérésis diagram for bilinear kinematic hardemng law.

E2T
(2 12)

We now let

= G - Ere, G2 = -

Then we arrive at the identity

Er

(2 13)

(2 14)

Moreover, (2 13) leads to the stress décomposition

G = <Tj + G2 , (2 15)
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where a2 is in linear relation to the strain. From figure 1, it is easy to see that the elastic région and plastic région
can be characterized in terms of the single parameter av giving the simple form

E = {ax\ \ax\ < z} and P = {al ; \ax\ = r } .

In the région E, there holds an elastic relation a11 ~ ef, and in the région P,

Also observe that g defined in (2.14) has the same form of a gauge function for an elastic perfect-plastic material
[15]; the normality principle (2.10) can be written equivalently as

0

èp =

da,

in E,

in P, for some Â ^ 0 . (2.16)

Writing (2.16) by use of monotone graphs, we immediately arrive at

a ^ + s g n " 1 ^ ) B (E2-Ex)et,

which is identical to our proposed model.
The stress décomposition given in (2.1)-(2.3) is a postulate that the total stress is an additive sum of finite

number of substresses, in which one of them is linear to the strain while others are subject to the elastic
perfect-plastic responses. The coefficients {c ;̂ j = 1, ..., N} and ju control the slope of each linear segment in the
multi-linear model. With ju = 0 we recover a multi-linear elastic perfect-plastic material. This is the physical
meaning behind our constitutive theory.

In concluding this section, we direct our attention to a concrete example. Let

a = ax + a2

ex, + sgn" '0) e„ 1 « j ^ 2 , (2.17)

Suppose the input e is prescribed by

f, 0 ^ t =S 6 ,

We first establish a table that contains the information to produce the hystérésis diamgram.

t

è

Gi

a3

a

(0,1)

1

e

€

e

3e

1

1

1

1

1

3

(1,2

1

1

e

e

l + 2e

2

1

1

2

2

5

(2,6)

1

1

2

e

3 + e

6

[-1,1]
1

2

6

9

(6,8)

- 1

€ - 5

e-4

e

3 e - 9

8

- 1

- 1

0

4

3

(8, 10)

- 1

- 1

e - 4

e

2 e - 5

10

- 1

- 1

- 2

2

- 1

> 10

- 1

- 1

- 2

e

e - 3
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On a small time interval begining from t = 0, ox — a2 — e = t. This relation remains the same untill
a1 reaches 1 to enter the plastic région. That moment is t= 1. As time advances, ox remains as 1 while a2

maintains its previous relation to e untill it reaches 2 when t = 2, also to enter the plastic région. On the time
interval (1, 2), a11 — 0 while e = t, thus the inclusion in (2.17) forces sgn" l (c^) = 1. As the time continues
to evolve, both cr1 and a2 remains unchanged since they are all in the plastic région. As the time reaches
t — 6, the unloading begins and the strain is given by e = 12 — t. Since ef = — 1 for t > 6 and

= G2t = 0 on the time interval (2, 6), the relation in (2.17) forces both ox t and a2t to be négative immediately
after t = 6, which in turn causses a1 and a2 fall into the elastic région, implying that
sgn" 1 ( e^ ) = sgn~ 1 (a2) = 0, and the following equalities become valid: al ~ e - 5, a2 = e - 4. The
constants - 5 and - 4 are chosen to ensure the continuity of the stresses in time. The remaining entries of the
table can be obtained by similar arguments which we leave to the interested reader for details.

Based on the table, the stress-strain relation for this example is depicted as follows.

(6,9)

*" £

Figure 2. — The hystérésis diagram for kinematic hardening law.

3. THE MATHEMATICAL PROBLEM

Let QT= Q x (0, 7), T>0 . The quasi-static equilibrium équation coupled with (3.1)-(2.3) leads to the
following initial boundary value problem

(3-1)

ajt + sgn; * (<?,) - o,

1 ^

CJ/X, 0) =

0 in (3.2)

(3.3)

(3.4)
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where ƒ and q> are given functions,

1 1 Q j IGj^N. (3.5)

We remark that no initial conditions are necessary for the displacement u. Indeed, u( . , 0 ) is uniquely determined
by the equilibrium équation (3.1) and the initial conditions for {o}\ j - 1, ..., N}.

DÉFINITION 3.1: We say that a pair of vector-valued functions

(avav ...aN,u) and (Av À2, ... ÀN)

is strong solution to the problem (3.1)-(3.5) if u, uxt, u^e L2(QT), and for every 1 ^ j ^ AT,

a^ H\QT),

A ; (x , 0 e sgn~ l ( a / x , t)) a .e . i n QT,

the equilibrium équation (3.1) and the initial boundary conditions (3.3)-(3.4) are satisfied almost everywhere, and
the inclusion (3.2) is satisfied in the sense

ajt
+ X} - a uxt = 0 a.e. in Q

An alternative définition which is equivalent to Définition 3.1 can be given in terms of variational inequalities
where sgn~ (^(x, t)) and X} do not appear explicitly in the formulation.

DÉFINITION 3.2: We say that a vector-valued function o — (av a2,... aN, u) is strong solution to the problem
(3.1)-(3.5) if M, uxt, u^ e L2(QT), and a} e Hl(QT) for every 1 ^ j ^ N, the equilibrium équation (3.1) and
the initial boundary conditions (3.3) -(3.4) are satisfied almost everywhere, and the following variational
inequality holds: for all te (0, T)

J O ( C T ; '

The proof the équivalence between the above two définitions is a common practice in the theory of variational
inequalities by using the f act that sgnj is the subdifferential of the indicator function of the set [— yj9 y ], for
which we leave the detail for the interested reader (see Ekeland and Temam [5]).

The main results of the paper are the following three theorems.

THEOREM 3.3: Assume that for each 1 ^ j ^ N,

fp^H\Q)9 f e H2(0,T;L2(Q)). (3.6)
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Then the problem (3.1)-(3.5) has a unique strong solution. Moreover, the following estimate holds: with

et = {av ..., otN}, there exists a constant C = C(£, Af, a ) such that

J 0.7)

(3.8)

\u,(x,t)\ (3.9)

1/2

f )dxj +C (3.10)

dT

Moreover, the stress a = 2 °\ + ^M
x ^ ^stimated by

7 = 1

I M M

77ie proof of this theorem will be given in the next three sections.

4. REDUCTION TO INTEGRO-DIFFERENTIAL EQUATIONS

We first reduce the problem (3.1)-(3.5) equivalently to a system of integro-differential inclusions. We introducé
the Green's function

G(x,y)=

Assume that (av a2, ... aN, u) is a strong solution to the problem (3.1)-(3.5). Then the equilibrium équation (3.1)
is equivalent to

M(X, f) = i f G(x,y) 2 ajy(y, t) + /(v, O Lv .

M2 AN Modélisation mathématique et Analyse numérique
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An intégration by parts implies that

u(x, t) = F(x, t)+H%x\ a/y, 0 <*y - £ 2 f <j/y,
^ 7 = 1 Jo 0 = 1 Jo

t) dy

529

(4.1)

where

,0=7: G(x,y)f(y,t)dy. (4.2)

Hence

(4.3)

We substitute (4.3) into (3.2) to obtain

2r
jfc= i J o

k=i
(4.4)

that is,

E (4.5)

It is convenient to write the system of équations (4.5) in a matrix form. Let W dénote the N x N diagonal matrix
with diagonal entries {â ~ l, a^ \ ..., ot^1}. Let A be the NxN matrix with all entries equal to 1. Let

a = (av cr2, ... aN) and let

(crj 0

0

0

sgn^1 (aN)

We say that a matrix-valued function h = (ht)N x N is a sélection of the graph H(a) if

&y = 0 for i ̂  j ,

/iu(x, f) e sgn^ : (cr/x, ?)) a.e.,

in which case we use the notation h e H(a). We can now write (4.5) and the initial condition (3.4) in the form

) 3 Fxe (4.6)

<j(x,0) = (p(x) (4.7)

where <p = (<pv q>2,... <^ ) , 1 = ( 1 , 1, . . . 1 ) .
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We say that a vector-valued function a is a strong solution to the integro-differential inclusions (4.6)-(4.7) if

a e Hl(0, T\ [L2(Q)]N) such that (4.6)-(4.7) holds. As usual, the inclusion (4.6) is an abrieviation for the

following statement: there exists a sélection h e H( a ) such that

Careful observation reveals that the above calculations are réversible. We thus conclude the following lemma
without a necessity for further justifications.

LEMMA 4.1: Assume that the assumptions of Theorem 3.3 hold. Then the following statements hold. If

(a, u) is a strong solution to problem (3.1)-(3.5), then (cr, u) is a strong solution of the integro-differential

inclusion (4.6)-(4.7). Conversely, if a is a strong solution to (4.6)-(4.7) and let u be defined by (4A), then

(cr, w) is a strong solution to the problem (3.1)-(3.5).

5. BASIC ESTIMATES

By virtue of Lemma 4.1, our task has thus reduced to the investigation of (4.6)-(4.7). To this end, we let
H , e > 0, be the Yosida approximation of sgn~ l , namely,

1 z \

if

Hence each Hje is a monotone, Lipschitz function. Let

(5.1)

LEMMA 5.1: The intégral équation

(w+^A)ady+W\ a dy + W \ H(a)dx=p
v f ' Jo Jo

(5.2)

has a unique solution a e H2(0, T; L2(Q)]N) for each p e H2(0,T; L2(Q)]N).

Proof: We first consider the intégral équation

(5.3)
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REGULARITY OF SOLUTION TO A PLASTICITY MODEL 531

on the space [L2(0, t)]N, where =g e [L2(0,£)]N. The matrix *F+-A is nonsingular since
\( 1 \ 1 v w A*

*F~ ( ï i r + - A J = / + -A, where / is the identity matrix and A is the matrix with all rows equal to
{av a2, ..., aN} whose eigenvalues are equal to 0 or OL1 + • • • + aN. Therefore the intégral équation (5.3) is
of Fredholm type for which the uniqueness implies the existence. Integrating (5.3) over the interval ( 0, 2 ) with
g = 0, we find that

i:JO

which in turns implies that the intégral operator defined by

Idy (5.4)

is an isomorphism from [ L 2 ( 0 , £)]N onto itself. We can now write (5.2) in an equivalent form

lp. (5.5)\
Jo/o

Since (5.5) is a System of Voltera type intégral équations over the space L2(0, T ; [L2(0, £)]N), the kernel of

which He(o~) is Lipschitz continuous with respect to a, the existence of a solution a to (5.5) follows from the

Standard theory. To obtain further differentiability of a, we integrate (5.2) over ( 0, £ ). After cancellation of certain
common terms, we obtain

f
which in turn, together with (5.2) implies that a e Hl(0, T ; [L2(0, £)]N). Thus we can differentiate (5.2) with

respect to t and repeat the above argument to justify that a e H2(0, T\ [L2(0, £)~\N).
A simple application of Lemma 5.1 implies that the initial boundary value problem

Fj (5-6)

Zt(x,0) = v(x) (5.7)

has a unique solution ae e H2(ö, T\ L2(ü)) for each € > 0. We next pass to the limit as e -> 0. Estimâtes on

<7e must be established to validate the limit. For this purpose, we need some additional lemmas.

LEMMA 5.2 ([3], Lemma G]): Let rj, rj , k = 1,2,... , be maximum monotone graphs in Rl and

liir^(/+?7;T1(jc) = (/+^r1(jt), Vxe Rl .

Let (S,ju) be a a-finite measure space and let uk, u, vk and v be in Ll(S ; dja). Suppose vk e rjk{uk), ŵ  —> u
strongly in Ll(S ; dp) and vk —> v weakly in LX(S ; dju) as k —» «>. Then v G rj(u).

The next lemma is a L version of Grownall's inequality that is less used in practice, but it plays an important
part in obtaining our desked estimâtes. The effect of this lemma will avoid the appearance of a large constant in
the estimâtes that dépends on T exponentially.

vol. 32, n° 5, 1998
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LEMMA 5.3: Let y e WU1(O9 T) and g G Ll(09 T) such that

Then

y ^ O, \y

/yjt) « VyW) +

a.e. on (O,

on(0,T).

(5.8)

(5.9)

Proof: Let £{r; fe (O, T),y(t) > 0}. Since y e W^^O, T), £ is the union of at most countabally many
disjoint open intervals, E = <j (at, bt). We also have

i /=(Vy(ï) 2 }=VyTÖVy~U)', te E. (5.10)

Fix fe (0, 7"). If t £ E no proof is necessary. If t G £ we have t e (a^ bt) for some i.
Using (5.8) and (5.10) we obtain

Integrating the inequality from ax to t yields (5.9) since at ^ 0 and y(0) 5= y(at).
In the rest of the estimâtes, we shall use the letter C to dénote a constant that dépends only on £, N and

{a ;7 = 1, ..., iV}, whose value may vary from expression to expression, but whose dependence on these
parameters will not change.

We now difïerentiate (5.6) in time and multiply the result by aet to obtain

f '
i/O

f : , „ ,, f
/O I/O

Note that ( VH'^GJ aet, a& ) 5= 0. The identity (5.11) impliesJ

By the Cauchy-Schwartz inequality,

(5.11)

(5.12)
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Therefore, the quantity

DÇt)

is bounded below by

= 1 f ( *P + -A)a t,o , ) dy - -Kr\ A \ a dy, o tdy\

Using (5.13), we dérive from (5.12) that

1 d n ^

533

(5.13)

Using and Lemma 5.3, we obtain from (5.14) that

We now set t = 0 in (5.6) to get

1/2

dr.

(5.14)

(5.15)

(5.16)

Multiplying both sides of (5.16) by oEt(.x, 0), integrating the result over (0, £) and using (5.13) with t = 0 we
further get

D(0)

therefore,

We obtain from (5.15), (5.16) and (5.17) that

vol. 32, n° 5, 1998
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Next, we estimate a^. To this end, we choose xl > x2 in (0, 2) and evaluate (5.6) at xx and x2. We take the

différence between these expressions and multiply it by &fi(xv t) — <7e(x2, t). By virtue of the monotonicity of
7/e, the above calculations lead to

j j A ) ( £ „ ( * ! , t) - a ^ x 2 , 0 ) , ffe(xp0 - a£(x2, t ) )

(Fxt{xv t) e - Fxt{x2, t) e, CT£(X1; 0 - a^x2, f ) )

Hence

C\Fxt(xvt)-Fxt(x2,t)\ |ff€(x1,0-

Arguing as before we introducé

a,(i„ 0 - ae(x2, f)), K(*v 0 ~

(5-19)

Then (5.19) and (5.20) lead to

and Lemma 5.3 implies that

Note that

Hence (5.20)-(5.22) imply

from which we obtain

C | V ^ ( ^ T) " F x / ^ O| dr .
o

J |Fx ï(xp0-^(^

(5.20)

(5.21)

(5.22)

dr (5.23)
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In light of the estimâtes (5.18) and (5.23), we can extract a subsequence of {ae}, which is still denoted by

( a j , such that

a weak"inL°°(O, T;L2(Ü)), (5.24)

°*->°t weak*inL°°(O, r ;L 2 ( jQ) ) , (5.25)

aa -> ax weak* in L~( O, T ; L2( Q ) ) . (5.26)

Moreover,

|ffx(x,O| ^ c | |^(x)| + jV*»(*.*)| JT l . (5.27)

Indeed, denoting the right hand side of (5.27) by f(x, t), (5.23) implies that

IIKII L>W ^ 11/11 L'ÇEy l < P < + °° (5-28)

for all measurable subset £ c <2r Letting e —» 0 in (5.28) we get, using the lower semi-continuity of the Lp norm

from which as p —> + °o we obtain

l l^ l l™^ Wfh~w. (5.29)

Suppose now (5.27) does not hold. Then there exist a set 5 c QT of positive measure such that

\GX(X, t)| >f(x,t) on S. By Lusin's theorem, there exists a compact set E cz S of positive measure such that

ax | E and ƒ | E are continuous.

Hence

a = J S , ( £ ! - ƒ ) ( * . O >o,

which contradicts to (5.29). Thus, (5.27) is true.

LEMMA 5.4: Assume that the conditions on Theorem 3.3 hold. Then the system of the integro-differential

inclusions (4.6)-(4.7) has a unique strong solution o — (av er2, ... aN). In addition, the following estimâtes hold.

[ \2t(x,t)\2dxGC\\f\\H>to,T LHÜ))' (530)

\5x(x,t)\ ^ c\ \ix(x)\ +jjt(x,r)\dT i . (5.31)
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Proof: In light of the integro-differential équations (5.6) and the estimate (5.18), it is clear that the

[L2( QT)]NxN norm of #e(<xe) is independent of e. Therefore,

He(Z€)-+le H(a) weakly in [L2(QT)f x N . (5.32)

The existence then follows from Lemma 5.2 and the estimâtes (5.24)-(5.26) as e —> 0. Recall the définition of
F(x, t) given by (4.2). The 1 estimâtes (5.30)-(5.31) then follow from (5.18) and (5.27). The uniqueness part can
be carried out in a straightforward manner. Suppose

G1 = (a j , al
2, ... a

l
N), i = 1, 2 ,

are two pair of solutions to (4.6)-(4.7). Then

(W+^A){51 -G1)-\A I (G1 -?) dx+ ÎPr(X1-X2) = 0. (5.33)

Note that

( W(ll - I 2 ) , <? - <?) ^ 0 . (5.34)

We fîrst multiply both sides of (5.33) by a1 - a , integrating over (0, £ ), and dropping out the nonnegative term
using (5.34), to obtain

|V-?!2^o.
Jo

This implies a1 = G2. Hence (5.33) becomes ï / ( I 1 - I 2 ) = 0 and I1 = A2.
Lemma 5.4 asserts that integro-differential inclusions (4.6)-(4.7) has a unique strong solution

G = (GV G2, ... aN). Lemma 4.1 implies that G = (GV G2, ... a^, u) is also the unique strong solution to problem
(3.1)-(3.5). Ail estimâtes in Theorem 3.3 follow from Lemma 5.4 and the représentation of the displacement (4.1)
by straightforward calculations.
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