@article{M2AN_1998__32_5_539_0, author = {Chehab, J.-P. and Miranville, A.}, title = {Incremental unknowns on nonuniform meshes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {539--577}, publisher = {Elsevier}, volume = {32}, number = {5}, year = {1998}, mrnumber = {1643485}, zbl = {0913.65088}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1998__32_5_539_0/} }
TY - JOUR AU - Chehab, J.-P. AU - Miranville, A. TI - Incremental unknowns on nonuniform meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1998 SP - 539 EP - 577 VL - 32 IS - 5 PB - Elsevier UR - http://archive.numdam.org/item/M2AN_1998__32_5_539_0/ LA - en ID - M2AN_1998__32_5_539_0 ER -
Chehab, J.-P.; Miranville, A. Incremental unknowns on nonuniform meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 5, pp. 539-577. http://archive.numdam.org/item/M2AN_1998__32_5_539_0/
[1] The Hierarchical Basis Multigrid Method, Numer. Math. 52, 1988, 4227-458. | MR | Zbl
, , ,[2] Calculation of two-dimensional shear-driven cavity flows at high Reynolds numbers, Int J. for Num. Meth. in Fluids, vol. 14, 1087-1109 (1992). | Zbl
and ,[3] Time-Stable Boundary Conditions for Finite Difference Schemes Solving Hyperbolic Systems Methodology and Application to High-Order Compact Schemes, ICASE Preprint series. | MR | Zbl
, and ,[4] Nonlinearly Stable Compact Schemes for shock calculations, ICASE Preprint series, May 1992. | MR | Zbl
and ,[5] Solution of Generalized Stokes Problems Using Hierarchical Methods and Incremental Unknowns, App. Num. Math. 21, 9-42, (1996). | MR | Zbl
,[6] Incremental Unknowns Method and Compact Schemes, M2AN, 32, 1, 1998, 51-83. | Numdam | MR | Zbl
,[7] Incremental Unknowns for Solving Nonlinear Eigenvalue Problems New Multiresolution Methods, Numerical Methods for PDE's, 11, 199-228 (1995). | MR | Zbl
and ,[8] A Nonlinear Adaptative Multiresolution Method in Finite Differences with Incremental Unknowns, Modélisation Mathématique et Analyse Numérique (M2AN), Vol. 29, 4, 451-475, 1995. | Numdam | MR | Zbl
,[9] Incremental Unknows in Finite Differences in Space Dimension 3, Computational and Applied Mathematics, 14, 3 (1995), 1-15. | MR
, and ,[10] Incremental Unknows for Solving Partial Differential Equations, Numerische Matematik, Springer Verlag, 59, 1991, 255-271. | MR | Zbl
and ,[11] Incremental Unknows in Finite Differences Condition Number of the Matrix, SIAM J. on Matrix Analysis and Applications (SIMAX), 14, n° 2, 1993, 432-455. | MR | Zbl
and ,[12] Non Linear Galerkin Method in the Finite Difference case and Wavelet like Incremental Unknowns, Numer. Math. 64, 1993, 271-294. | MR | Zbl
and ,[13] The Nonlinear Galerkin Method: A Multiscale Method Applied to the Simulation of Homogeneous Turbulent Flows, Theorical and Computational Fluid Dynamics, 7, 4, 1995, 279-315. | Zbl
, and ,[14] Existence and uniqueness results for a velocity formulation of Navier Stokes equations in a Channel, Applicable Analysis, 55, 1994, 103-138. | MR | Zbl
and ,[15] Numerical investigation of turbulent channel flow, J. Fluid Mech. (1982, vol. 118, 341-377. | Zbl
and ,[16] Compact Finite Difference Schemes with Spectral like Resolution, J. Comp. Phys., 103, 1992, 16-42. | MR | Zbl
,[17] Nonlinear Galerkin Methods, SIAM Journal of Numerical Analysis, 26, 1989, 1139-1157. | MR | Zbl
and ,[18] Nonlinear Galerkin Methods; The Finite elements case, Numerische Mathematik, 57, 1990, 205-226. | MR | Zbl
and ,[19] Hopf bifurcation of the unsteady regularized driven cavity flows, J. Comput. Phys. Vol. 95, 228-245 (1991). | Zbl
,[20] Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal. 21, 1990, 154-178. | MR | Zbl
,[21] Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Science, Springer Verlag, 1988, 68. | MR | Zbl
,[22] Bi-CGSTAB a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 1992, 631-644. | MR | Zbl
,[23] On Multilevel Splitting of Finite Element Spaces, Numer. Math. 49, 1986, 379-412. | MR | Zbl
,