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MATHEMATICA!. MODELLING AND NUMER1CAL ANALYSIS
MODÉLISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 32, n° 5, 1998, p 579 à 610)

AN ASYMPTOTIC STUDY OF A PLATE PROBLEM BY A REARRANGEMENT METHOD.
APPLICATION TO THE MECHANICAL IMPEDANCE (*)

Alain CAMPBELL C1), Sergueï NAZAROV (2)

Abstract — We consider a vibrating plate Q with a small inclusion coe The motion of œE is given and we note e the ratio between the
diameters of cos and Q We have already studied the behaviour of the solution when e tends to zero by the matched asymptotic expansion
method and we propose here to study this problem with a re arrangement method For a ngid movement ofcoe, we apply the results to obtain
some equivalent représentations of the impédance terms © Elsevier, Paris

Résumé — On considère les vibrations de flexion d'une plaque mince Q, donc une inclusion œ£ a un mouvement donné En désignant
par E le rapport des diamètres de œ£ et de Q, nous avons déjà étudié le comportement de la solution de ce problème quand e tend vers zéro,
par des méthodes de raccordement de développements asymptotiques et nous proposons ici une nouvelle approche par une méthode de
réarrangement Dans le cas où coe est rigide, on applique les résultats obtenus à la détermination d'équivalents de termes d'impédance
© Elsevier, Pans

INTRODUCTION

We consider a Love-Kirchhoff plate subjected to vibration with given stresses in the présence of a small
inclusion œe, the movement of which is supposée to be given. The parameter e is taken to dénote the ratio of the
diameter of the inclusion cos to the plate diameter. An asymptotic description of the displacement solution is
proposed for e sufficiently small. Such a problem has already been considered by the authors in [1] and [2] where
it was shown that inner and outer expansions problem can be sought with suitable matching requirements (cf. [4],
[6], [9] and [11]). In those works, an equivalent impédance matrix for free boundary plate as well as for the rigid
body motion of co£ were obtained. It is noted worthy to recall that the impédance matrix was used to compute
the stresses applied to co£ by the plate (cf. [1]). These equivalent terms are rational in In e.

In the present paper, we propose to study this problem by another method: We use series expansions of solutions
of limiting problems to write the displacement, and we describe the rearrangement procedure (cf [3], [7], [8] and
f9]) to obtain a suitable séquence of problems.

For brevity and convenience, we shall use the same notations employed in [2] and shall of ten refer to the results
m that work. We start therefore by recalling the main notations and hypothesis.

Let Q and œ be two bounded domains in U2, the contours of which being denoted by BQ and dco and are
C1. Note that co is strictly included in Q. Also, let O be a point in œ, choosen as the origin of the coordinates.
The parameter s is supposed to be positive and we set,

CÜ£ = {JC = (jcp x2) e U2 with e~ l . x e CD}

with,

(*) Manuscript received in lts revised Version May 9, 1997
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580 A. CAMPBELL, S. NAZAROV

Let "a" be the usual bilinear form for plates, 2 = (2V @2) and 2e be the Dirichlet operators on dQ and
dcoa (displacement and normal derivative), and let Jf = (J^v ^ 2 ) anc* ^E-> ^ e t n e Neumann operators on
dQ and dcoe (boundary forces and bending moments) (cf. [1]). The Green formula is given by,

a(u,U)Q(£) = (J2
xu,U)QM + (jru,^U)aQ+(J^eu,^U)aa)e. (1)

By the dilatation £ = x/a, we define 3œ( Ç, V^ ) and Jfœ( £, V^ )respectively the Dirichlet and the Neumann
operators on dco.

Let A be a real number. Hence, we have the gênerai boundary value problem:

A\ u(a,x) - Au(e9x) = f(x) in Q(a) (2)

*(jc>Vx)M(fi,x) = 0(x) = (01(x),02(jc)) ondQ (3)

&(x, Vx) u(e,x) = h£(e,x) = (h\(e, x), he
2(e,x)) on dco£ (4)

where 3% = (&v &2) represents the operator corresponding with the arbitrary boundary conditions on dQ.
The boundary condition (4) can be expressed in terms of the fast coordinates £ as given by,

z K on dco . (5)

Thus, we may write,

\ and h\( %

and suppose that ƒ (resp. g and hœ) are C°° on Ù (resp. 5̂ 2 and dco),
It is known ihat suitabie variationai spaces for these kinds of problems are Kondratiev weighted spaces (cf. [2],

[5], [9]). Let £ be an integer, P an arbitrary real number (which is supposed in this study to belong to
]£ + 1, £ + 2[ ), and let 0> be a subset of [R2.

By V^(^ ) , we dénote the space of functions on & with the norm,

/ e \ m

Hz; Vj (^) | | = ( 2 H*-> kl""' + " V ^ ( x ) ; L 2 ( ^ ) | | 2 j . (6)

The norms in the suitabie trace spaces are,

{ 1/2 = Inf {||z ; Vj(fi(e) ) H, Vz withz = z^ on

The homogeneous Sobolev problem may then be defined as corresponding to the free vibrations of a plate
Q, with homogeneous boundary conditions on dQ with O fixed. This problem takes the form,

A2
x v - Av = 0 in O

0>(x9Vx)v = O ondQ (7)

v(O) = 0
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MECHANICAL DVIPEDANCE FOR A PLATE PROBLEM 581

Let us now introducé the space,

Jf = {v e H2(Q) withv(O) = 0 md @;v = 0 on dQ if Oj < 2 (j = 1,2)}

where ot dénotes the order of the highest derivative in 0èv We have then only kinematical boundary conditions
on dQ. Then, there exists an eigenvalue séquence (An) for which the problem (7) has nonzero solutions in
Jf (cf. [2] and [10]).

Note that A is supposed not to be one of the eigenvalues An

We introducé the fundamental solution of the biharmonic équation

8 71 ' ' 8 71

and let - &l be the xt first derivative of <P.
Within this framework, we can define two limiting problems.
The first is the outer problem which has the form,

A2
xv -Av=f inQ

@(x,Vx)v = gl ondQ (8)

for which the following results (cf. [2] Theorem 8) hold true:
If {/, g1} belongs to the space Re

pV(Q),

R^ V( O\ — Ve( O\ * V2 ~ °x + ll2( AO } x Ve ~ °2 + 1/2( AO}

The homogeneous problem associated with (8), has two independent solutions rj1 and rj2 in the space
V£n+

+\(Q). They have the following représentation,

rjJ(x) = &(x) - rA xx - r2x2 + rj\x) (9)

where Fk are constants depending on dQ (F,2 = F2X), and where fj3 belongs to Ve^ + 4(Q).
Then, problem (8) has a unique solution in Vp + 4( Q ) if and only iff1 and g1 satisfy the compatibility équations,

(f\fIk)Q+(g\?rrik)dQ = O * = 1 , 2 (10)

where 9" is the dual operator of SS.
The second limiting problem is the inner problem. It can be writen in fast coordinates £ = xe" x as,

A\w=f mU2\co

@co(Ç,Vç)w = h2 onöcü. (11)

Similarly, if {/, h2} belongs to Re
fi V( U2 \co)9

RpV(U2\a>) = Vp(R2\co) x vyi/2(dœ) x Ve/ 5/2(dœ) .

We have the following properties (cf. [2], Theorem 11).
Let C1 and Ç2 be the solutions of the homogeneous problem (11) under the following form,

yA ^ - yA Ï2 + ÏJ(O (12)
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582 A. CAMPBELL, S. NAZAROV

where yJk are some constants depending on dco, (y12
 = >2i)' anc* where Cy belongs to V^ * 4

X( R \œ).
Problem (11) admits a solution w in V2

p
 + 4( R2 \œ) which is not unique and takes the form of an arbitrary linear

combination of C and C - Nevertheless, a unique solution can be obtained on using the orthogonality condition,

I k = 1, 2 . (13)

In addition to the previous hypothesis, let r and 0 be the polar coordinates in Oxx x2(p and 0 in OÇl £2), and
suppose that f g et hœ are polynomial in r and In r, the coefficients of which are smooth functions of 9 on

s\
In the flrst part of this paper, we shall study the spectral properties of biharmonic problems with right hand sides

of the previous type, where we obtain asymptotic expansions for the outer and inner solutions of (8) and (11).
The second part is central for asymptotic analysis of our study. We give a formai représentation of the solution

u of (2), (3), (4); we use series expansions of solutions of suitable limiting problems and we describe the
rearrangement method. We obtain a séquence of problems and we then explain how it is possible to solve them
by itérative methods.

In the third part, an estimation of the remainder of the series expansion solution is made. Then it is justified
a posteriori by an asymptotic method.

Finally, these results are applied to obtain equivalent expressions to impédance terms if the small inclusion is
rigid. Then, we conclude by comparing this rearrangement method to matched asymptotic expansions method
(cf [2]).

1. ASYMPTOTIC DESCRIPTIONS OF OUTER AND INNER SOLUTIONS

1.1. Spectral properties

Let us consider the biharmonic équation,

A2
xu=f mU2\O (1-1.1)

where ƒ has the form,

We seek for a solution of (1.1.1) as,

u(x) = rÀ+1 U(0) . (1.1.3)

It is easy to see that,

A2
xu(x) = /-3P(À,de)U(0) (1.1.4)

where P(À, de) dénote the pencil of operators (cf [3, 9]),

~! r ^2 n
(1.1.5)

P 1

Then, we have to solve in C (S ) the équation,

P(l,d9)U(9) = F(d). (1.1.6)

M2 AN Modélisation mathématique et Analyse numérique
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1.2. Spectral représentation of the pencîl P

If A is a real number, then P(A, dô) is selfadjoint, and the following spectral properties hold true. We shall
consider four différent cases.

1.2.1. A does not belong to Z

The homogeneous équation (1.1.6) has only the zero solution, and so the complete équation (1.1.6) has a unique
solution in Ce + \Sl).

1.2.2. A belongs to Z and A is different from 1 , - 1 and 0

Then, A is an eigenvalue and its index is 1. The homogeneous équation (1.1.6) has four eigenfunctions,

V ^ ( ö ) = c o s ( A + l ) 0 ; v2(e) = s i n ( A + l ) ö ; V°3(0) = cos (A - 1 ) 0 ; V°4(6) = sin (A - 1 ) 0

and there is no associated functions since the matrix

[(P'X(A, de) V°k(0), V°(9))LHsl)]kJ=^A (1.2.1)

is regular (cf. [3]).

1.2.3. 1 = 0

0 is an eigenvalue and its index is 2. The eigenfunctions are,

and the associated functions are solutions of,

P(0, de) V](6) = - P'x(0, d0) V°(0) (1.2.2)

where,

The right hand side of (1.2.2) is not zero and we obtain an associated function of order 1,

The associated functions of order 2 are solutions of,

P(0, de) V]{6) = - P\(0, de) V?(Ô) -^P'l(0, de) Vf(ö) . (1.2.3)

Since the matrix,

[(^(o,ae)yI
1(ö) + ̂ Pi(o,5ö)v°(ö)X(ö))L2(Sl)]!.jfc = i 2 (1.2.4)

is regular, there are no associated functions of order 2.

vol. 32, n° 5, 1998



584 A. CAMPBELL, S. NAZAROV

1.2.4. À=l or - 1

The index of this eigenvalue is 2 and the eigenfunctions are,

V°l(0) = cos2O; V°2(6) = $in2 0; V°3(0) = l .

The associated functions must satisfy,

P(± 1, dg) V){9) = - P'x(± 1, dB) V°(0) . (1.2.5)

It is easily seen that only the third eigenfunction has an associated function and that this function is equal to zero.
Setting,

= -P'x(±hdo)V
l
3(0)-±P';(±hde)V°3(0)

the matrix,

(1.2.6)

is regular and then there is no associated function of higher order.
In this case, the geometrie multiplicity of 1 and — 1 is 3, the algebraic multiplicities are respectively 1, 1 and

2 and the total multiplicity is 4.
We see that the spectrum of P coincides with Z while each of its eigenvalues is of total multiplicity 4.
If A is an eigenvalue and if V° is an eigenfunction, then,

is the solution of homogeneous équation (1.1.1). If v) is an associated function, then,

is the solution of homogeneous (1.1.1) in [R2\{0} (cf. [3, 9]).
So we meet again the fundamental solution 0, its derivatives and A<P.
The complete équation (1.1.6) has a solution in C2 + 4(Sl ) if the right hand side F is orthogonal in L2(Sl ) to

eigenfunctions. The solution is define with an arbitrary eigenfunction.

1.3. F is a polynomial in In r

We consider équation (1.1.1) with the right hand side,

f(x) = /~3 F(0, l n r )

where F is a polynomial in In r, with coefficient in C f(S' ). We have the lemma,

LEMMA 1: Let X be a real number. If X is an eigenvalue of P(X, 3e) with index 0, 1 or 2, then the équation,

2 / 3 n r ) sur R2\O (1.3.1)

M2 AN Modélisation mathématique et Analyse numérique
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where F is a polynomial in In r, with coefficients in C (S ), has a solution in the form,

u(x) = / + 1 U(0,lnr) (1.3.2)

where U is a polynomial in In r, with coefficients in C + (S ). Moreover,

(1.3.3)

Proof: Let p = Deg F. We note,

F(eAnr) = ̂ ±Fq(0)(lnry (1.3.4)
q = 0 ̂ '

and seek U in the form,

j k l n r ) k . (1.3.5)

By noting that,

and with u taken in the form (1.3.2), we must have,

A\u = r~ 4 P( r dr - 1, dô) .r
X + lU(e, In r) . (1.3.6)

Moreover, since,

we find,

( r dr- 1 y ( r A + l U{9, In r ) ) = / + l[(l + d,f U(8, t)\ _ tar

and then,

= r x ~ 3 [ P ( 2 + dp d 9 ) U ( 9 , t ) l = ]nr. (1.3.7)

vol. 32, n° 5, 1998



586 A. CAMPBELL, S. NAZAROV

By (1.3.5) and by using the Taylor décomposition for P, we obtain,

DegPp + s

Alu = r1'3 V yAëP^CX^d.) ïd{tkL

2 " S 9}i± (In r)*P0)(A, a,) t/ + (ô) (1.3.8)
0 0 /* t / '

by setting q = k—j and by shifting the sums.
Then we have to solve,

p + s - g

Let us now consider the different resulting situations.

1.3.1. Let X not in Z (s = 0)
Then, équation (1.3.9) for q equal to p, is,

and by using results of § 1.2, there exists a unique solution U° ïn C£ + 4(Sl).
Then the équation for q = p - 1 is,

, d9) Up _1(0)^Fp_ ,(6) - P'x{k, de) U°p(6)

and we have a unique solution UQ _ : in C + 4(S1 ).
By itération, we obtain the unique solution U with degree p.

1.3.2. Let X belong to Z and be different from 1 , - 1 and 0 (s = 1 )

From (1.3.9), we have for the terms of order p + 1 the foliowing équation,

The solution of which may be written in the form,

2
n= 1

where cw p + 1 dénote arbitrary constants (c/ § 1.2.2)). For the terms of order p, we have,

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



MECHANICAL IMPEDANCE FOR A PLATE PROBLEM 587

i.e.

P(X, dg) Up(d) = Fp{6) - 2 P'X{X, dg) cnp + 1V°n(e).
n = 1

This problem has solutions if the right hand side satisfies to the compatibility conditions,

for ail m from 1 to 4. Since the matrix (1.2.1) is regular, we have four conditions and so it is possible to obtain
the four constants cn p + v Then we can find the solution U (0) with an arbitrary eigenfunction, that is,

Likewise, for p - 1 order ternis, we can calculate cn in order to satisfy the corresponding compatibility
équations; we obtain Up _ x{6) with an arbitrary function. By repeating this procedure, the functions Uk(6) are
computed. Note that the Uk(0) unless Uo(6), are unique, but there are no compatibility équations for U0(6).

The solution U is a polynomial in In r of degree p + 1. We have,

U{ 0, In r) = U\ 0, In r) + 2 crt0 V°( 0) .
n= 1

1 . 3 . 3 . Létf À be equal to 0(s = 2)

P\{À, d9) is equal to zero. For the terms of order p 4- 2 in (1.3.9) we find,

where the solution has the form, J£ cM + 2 V°n(6). For order /? + 1, we have,
ri = i

and similarly the solution can be written in the form,

2

Ï = 1

For the terms of order /?, we have,

vol. 32, n° 5, 1998



588 A. CAMPBELL, S. NAZAROV

The compatibility conditions give the constants cn p + 2 because the matrix (1.2.5) is regular. So we obtain
Up(6). The équation for the ternis of order p — 1 allow us to calculate the cn + x in order to satisfy the
compatibility équations where we compute Up _ x( 0), and so on. Finally, we write the solution U as a polynomial
in In r. Its degree is p + 2 and the constants cn x and cn 0 are arbitrary.

1.3.4. Let X be equal to ± 1 (s = 2)
For order p + 2 terms in (1.3.9), we have,

(cf. § 1.2.4). The order p + 1 gives,

and we have solutions only if P'x(± 1, de) Up + 2(6) is orthogonal to the eigenfunctions.
So, the constants c1 + 2 and c2 + 2 are equal to zero. We have,

The équation corresponding to order p is,

Likewise, the compatibility conditions give the constants because the matrix (1.2.6) is regular. Then we obtain
Up, By itération, the solution U appears as a polynomial in In r. Its degree is p + 2 and c3 x and cn 0 are
arbitrary. •

1.4. Application to several examples

1. Let Q be a domain, O a p
V , we seek for the solutions of

1. Let Q be a domain, O a point inside and ^ \ the subspace of functions in H2(Q) which vanish in O. In

in U2 \O

which can be written as a sum of rk + l Uk( 0,lnr).
F from lemma 1, is equal to zero.
If k is an integer, k is an eigenvalue of P and we can obtain a nonzero solution. Moreover, this solution belongs

to 'V if k is positive and if Uo does not depend on In r. Uo is then a linear combination of the eigenfunctions
cos 9 and sin 6.

Let us look for Ul as a polynomial with degree 1 in In r,
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We then have,

so that,

Un(9) = cxo cos 2 9 + cn sin 2 6 + cl2 .

As,

P(l,d0)Ulo(O)+P'x(hde)Un(O) = O

we obtain,

P(hde) U10(9) = 16(c iocos2 0 + c n sin 2 0) .

By writing the orthogonality of the right hand side with cos 2 9, sin 2 0 and 1, we see that c10 and c u are equal
to zero. So,

t/t( 0, In r ) = c12 In r + c00 cos 2 0 + c01 sin 2 0 H- c02 .

We find again that cos 2 0 and sin 2 0 have no associated functions, and that the associated function to 1 is equal
to zero. For k greater than 1, we show that Uk(0, Inr) is a linear combination of cos ( fc+ l )0 ,
sin (k + 1 ) 0, cos (k — 1 ) 9 and sin (k - 1 ) 9, without In r terms, because they ail disappear in compatibility
équations (these eigenfunctions have no associated functions). We obtain the classical expression of biharmonical
functions in ^ ,

Cj xx + c2x2 + cl2r In r + r ( c00 cos 2 9 + c01 sin 2Ö + c02) + • - •

2. Let us study the solutions of Â\V - Av = 0 in IR2 \0 , i; e TT.
We look for a solution as a sum of r V.(ö, In r) (i ^ 1 ), where the V. are polynomial in In r. The four first

terms are biharmonic and so they are obtained as in example 1. Then, we have,

A\ r V5(9, In r) = ArV^9, In r ) - A(cx xr + c2x2)

and so we obtain,

4

r5 V5( 0, In r ) = ^ A( ci xi + ci X2 ) •

Then, we have to solve,

A\ r6 V6( 0, In r ) = y4c12 r
2 In r

and so on...
3. Resolution of zf2 u(9, In r) = r" 3 sin 9 in lR2\a
In this case, we have X - 0 and F( 9, In r ) = sin 9. We look for solution rU( 9, Inr) with,

0, In r) - C/0(ö) + t/x(ö) In r + 2^ (In

vol. 32, n° 5, 1998



590 A. CAMPBELL, S. NAZAROV

Then, the functions U2(9) and 11^9) must belong to the kernel of P(0, de) and so are written in the form,

Ut(9) = c.j cos 9 + ci2 sin 9 ;

and Uo is solution of,

We have,

i p j ( 0 , d0) U2(9) = l(J^ - l ) £/2(ö) = - 4(c21 cos 9 + c22 sin 0) .

The compatibility conditions can be written as,

(sin 6 -\P"x(0, d0) U2(0), sin o ) ^ = 0

( sin e - \ PK o, d0 ) «72( ö ), cos e )L 2 ( S , } = o

and we obtain, c2l = 0 and c22 = — 1/4. We find Uo as an arbitrary linear combination of cos 9 and sin 9, Finally,
the gênerai solution is given by,

u(x) = rU{9, In r) = c01 r cos 0 + c02 r sin # + rln r ( c n cos Ö + c12 sin 9) g sin 6 .

1.5. Représentation of the outer solution

Let us consider the flrst limiting problem (8). We have properties (9) and (10). Moreover,

THEOREM 2: If the function f in (8) can be written as,

Çj is polynomial in m r, f- belongs to C {S ) and ƒ L to V^ _ L(Q).
ie solution v belongs to V^ (O) and has the form,

L

v(x) — 2 J: + l vj(@> m r ) + ^ L ( X ) (1.5.2)

where v- is a polynomial in ln r, with coefficients in C + 4(Sl ), and where vL belongs to Vn + A
L(Q).

Proof: v is the unique solution of the outer problem (8) if the right hand side satisfies the compatiblity
équation (10).

So, the proof is given by lemma 1. Likewise, as in example 2, we successively obtain the v. functions as
solutions of équations (1.3.1). Moreover, as

e + i <p<z + 2,

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



MECHANICAL IMPEDANCE FOR A PLATE PROBLEM 591

^"3(resp. r]+l) belongs to V̂  _ L(Q) (resp. V2
p
+_4

L{Q)) if and only if; is strictly greater than L (cf [2],
Theorem 8). •

1.6. Représentation of the inner solutions

Hère we consider the second limiting problem (11), which has a unique solution w under the orthogonality
condition (13). We have the theorem.

THEOREM 3: If the function f in (11) can be written as,

^ ] n p ) + f 2
L ( ^ ) (1.6.1)

where f} is polynomial in In p (p = re~ 1 ), f} belong to C2( S1 ) and f2
LtoVe

p + L+ x( U
2 \œ ).

Then the solution w belonging to V^ + 4(U2\co), has the form,

w(O = ̂ pl~3™3(0Mp)+wL(O (1.6.2)
7 = 0

where w} is a polynomial in In/?, with coefficients in C + ( S 1 ) , and where wL belongs to V ^ L + j(IR \co).

The proof follows from lemma 1 and the properties stated in [2] (Theorem 11). Moreover, for P with,

2 + 1 <p<2 + 2 ,

we note that p~3 ' 3 ( resp. z?1 "7 ) belongs toVpH+l(U
2\w)( resp. v£ + 4

L + x( U
2 \co ) ) if and only if j is strictly

greater than L.

2. FORMAL CONSTRUCTION OF AN ASYMPTOTIC EXPANSION

2.1. Preliminaries

We are giving an asymptotic expansion of the solution u of problem (2), (3), (4), using a rearrangement method.
An asymptotic study of u was done in [1] and [2] by matching methods (cf [4], [6]). By these methods, we could
easily obtain all the first terms of the expansions, but it becames very cumbersome to obtain the following terms.
The rearrangement method which was introduced and developed in [7] and [8] will give us a représentation of
u by using solutions of a séquence of outer and inner problems. Ail of them will have the same difflculties and
we will solve them by itération.

We look for u as,

t»

u(e,x) = 2 ek{v\x,]ne) + ewk(e~ 1 x9 lns)} (2.1.1)
k = 0

where the fonctions vk and wk belong respectively to V^ + 4( Q ) and V̂  + 4( R2 \co ).
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The solutions vk am
uniquely in the form,

The solutions vk and wk will be rational fractions in In a. Let us recall that ail rational fraction R can be written

where E, P and Q are polynomial functions and where deg P < deg Q. We call "denominator degree of R", the
positive integer deg Q - deg P. So, the denominator degree of a sum of Rx and R2 is smaller or equal to the
greatest denominator degree.

We show first, on a simple example, why it will be necessary to turn to the rearrangement of some
discrepancies. Let us suppose that ƒ is equal to zero. Then, we could think that v and w would be solutions of,

A2vk-Avk = 0 (2.1.2)

Alwk=Awk'4 (2.1.3)

and so we should have,

Aw = 0

By using Theorem 3, we should have the décomposition,

and w° would belong to v£ + 4( M2 \œ ) but not to v£( M2 \œ ).
For k equal to 4, the right hand side of (2.1.3) would not belong to the good space to apply Theorem 3. To avoid

this difficulty, we have to proceed to the rearrangement of the problems.

2.2. Rearrangement

We propose to write a séquence of suitable problems for the functions vk and wk of (2.1.1).
Concerning w\ we saw that some terms in / / , with polynomial coefficients in In p, belong to V^ + 4( M2 \œ ) but

not to v£( M2 \œ ). We have,

3

wk ~ 4(£, In e) = 2 P1 ~J % ' \°> lnP>ln e) + ™k ~ 4(^ l n £ )
] =

where wk 4 belongs to V^(R2\co). Then, Awk 4 is convenient for the inner problem.
The other terms are not suitable for the inner problem but they can be written in x-coordinates as,

p1 ~J wk ~ \ 9, ln p9 In e ) - é ' l r ~J wk ~ \ (9, ln r - In e, In e )

and for j integer between 0 and 3, r1 ~J belongs to V (̂ Q ) and can be used in suitable right hand sides of the outer
problem.

So, we will write suitable right hand sides of outer and inner problems. For the modified boundary conditions,
it will be sufficient to introducé the good terms and to shift r into p or conversely.

The rearrangement method will consist in doing this procedure at each step of the asymptotic construction.
Let us note that wk ~ 4( 9, ln /?, ln s ) is a polynomial in In p and is rational in In s.
S o, w ( 9, ln r — ln e, ln e ) is also a polynomial in In p and is rational in ln e.
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2.3. Construction of the problems
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According to Section 2.2, we will write équations for vk(x, In s) and wk(£, In e). We formally replace u by the
expansion (2.1.1) in the left hand side of équation (2),

[ek(A2
xv

k(x, l n e ) - Avk(x, In e)1 ) + efc " 3 À\w\£, Ine ) - Aek + x w*(& In e ) ]

Due to remark 2,2, we can write,

A2
xu(e,x)-Au(s,x) =

k=0
V\X, In e) - ^t?fc(x, In e) - A ^ ^ " * r1 " 7 w^( ô, In/?, In^

[ek ~ l i n s ) ~ A s k + lwk
3(Ç, I n e ) ] \ .

We will try to solve,

V\X, In e) - Av\x, In e) = A ̂  rl ~ l wk
t ~

 l(0,ln r - In e,ln e) +f(x) ô{ Ok

and,

A \ w\ ^ In e ) = Aw\ ~ 4( ̂  In a )

where all the functions with négative index vanish. Concerning the boundary conditions (3) and (4), we have,

u ( e , j c ) = ^ e k [ v \ x 9 I n e ) + e ( / ? w j ( 0 , l n r - l n e , I n e ) + • • • + / > fcw^+1(0,:
Jfc=0

fe=
e [y (x, In e ) H- rwo( 8, In r — In £, In £ ) + ï , l n e ) ] .

Then, by identifying £ terms, we obtain on

= g(x)ôok-@(rwk
o(9,lnr-lne,lns)+ • - • + r~ k + * w°k(G, In r- In e, lne) )
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Similarly,
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+ / + * vk
L(0, In r, In e) + vk

L (*, In fi) ) + sw\^ In

eL pL+ l vk
L( 6, In p + In e, In e ) + v * ( e£, In e ) ] £, In e ) ]

and we obtain the boundary condition (5) on dco,

pk + * v°k(6, \np + lne,

Finally, we obtain the following séquence of problems:

Let k be an integer, 9 et r (ou p) the polar coordinates. The function vk is solution of the outer problem

v\x, In e)-Av\x,]n e) ^ r lwk~ l( 6, In r - In e, In e ) in £2

C, \n e) = g(x) öm- -In eA on (2.3.1)

where all the functions with négative index vanish.

Moreover, the function wK is solution of the inner problem Pt{k),

A\ wk(t In Ê) = Awk ~ 4((f, In e) in R2 \co

In e) = In c, In e) ) on (2.3.2)

2.4. Method for solving (2.3.1) and (2.3.2)

We will describe an itérative procedure for solving these problems.

Let F2 ' *( & In e ) and Hk{ £ In e ) (resp. F1 ' *( JC, In e ) and ( G*(x, In e ) ) be the right hand sides of (2.3.2) (resp.
(2.3.1)). Let us suppose that v°, u1, ..., vK ~ l and w°, w1,..., w^ ~ x are known and admit the décompositions (1.5.2)
et (1.6.2).

For k equal to K, the functions vpf ~ 4, t?f ~ ( are well known and the right hand sides F2'K and HK are
determined. Due to (12) and Theorem 3, we have,

W
K = WK + c f C1 + c f C2 (2.4.1)

where WK belongs to V^ +
+ \{ U2 \co ).
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As the functions Ç have the form (12), we have,

where S is the following biharmonical function,

, In e ) = 2 <\ ( *'( £ ) - Y* ^i ~ 7 a ^ ) • (2-4.2)
1= 1,2

It then appears that the right hand side of (2.3.1) can be written in the form,

where F0 'K and G0'K are completely defined and where WQ dépends on the factors cf and c \̂
To obtain these two numbers, we will write the compatibility équations (10) for the outer problem.
We have,

(F°'K(x9 In e) + Arw*(9, In r - In g, In e), rjJ(x))Q

+ (G°'K(x, lns) - «(nvo(ö, In r - In e, In g)), ST^(jc))ao = 0

that is,

(F°'*(x, In fi) + ̂ rW^(ö, In r - In s, In e), tf(x))Q

+ ( G°-'(JC, In fi) - #(rW£(0, In r - In e, In e) ), ST^(x) ) a û

= -(EAS\e-lxMeXri3{x))Q + {e<%(SK(e-xxMe)XVriJ(x))dQ. (2.4.3)

Let us introducé the disk d(O,ö) and its contour Cô. We define the form q by,

^ ( « > I ? ) = ( ^ ( M ) , ® ( Ü ) ) C . - ( ® ( M ) , ^ ( Ü ) ) Q (2.4.4)

q is bilinear and antisynunetric and has the following properties {cf. [1] and [2]),

(2.4.5)

By writing the Green formula on Qs = Q\d(O,S), the right hand side of (2.4.3) becomes,

(s3K(s~ 1 x, l n s ) , A2
xrf(x) - A?jJ(x))Qs + (e?f(3K(e~ 1 x, In e ) ) , <Mrf(x))dQ

- {SJV(SK(S~ l x,lna)), 2r}J{x))Cô-^ (a^(SK(8~ l x,ln e)), jVffix)]

and then,

[SK(e~ l x, In e)), 3YJ3{X))C +• (s^{SK{e~ 1 x, In e) ), jV"t]J(x))c = ^(JC —> — ESK(S~ X, In e),rjJ
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because rf is a solution of the homogeneous outer problem. Replacing SK by its expression (2.4.2) and rf by its
asymptotic expansion (9), we obtain (cf [2]),

- • t u
where the matrix T(e) is defined by (cf [2]),

T(s) = [rpq + ̂ lneöpq- ypq]pq __^. (2.4.6)

This matrix is inversible for sufficiently small £. Consequently, we can choose the constants ct as,

c K l
1 =T(e)~ '[(F0'^*, \ne) + ArW^e, In r - In e, In e),

c2\

) )aJ,= i,2 (2-4-7)

so that the outer problem has a unique solution in V^+ (Q).
Moreover, if Fl'K and GK are rational in In e, as WQ, the cf are also rational in In e.
As the degree of the determinant of T(e) is 2, the product by T(s)~ 1 in (2.4.6) will increase the denominator

degree to 2.
In this way, we have formally built step by step, the représentation (2.1.1) of the solution u where v and

wk appear as rational functions in In e. Their denominator degrees are less than 2 & + 2.
Now, we must justify the validity of this solution u.

3. JUSTIFICATION OF THE METHOD. ESTIMATION OF THE REMAINDER

3.1. Approximated solution

We can write an approximated solution of problem (2), (3), (4) by the truncation of the expansion (2.1.1). Let
TV be an integer and,

AT

uN(e,x) = 2 £k{vk(x, In e) + ewk(e~ l x, In e)} . (3.1.1)2
The functions vk and wk belong respectively to V£

p
 + 4( Q ) and V£

p
 + \ R2 \co ), and then to V* + 4( ü( e ) ).

We have to estimate,

\\(A2
x- A) (uN- u)^{uN~ u\ 2\uN- u) ;R^V(Q(e))\\ (3.1.2)

where,

J j j ^ f f 2 + 7/2(ai2) x v j + 7/2( to£) x V^+ 5/2(aa;£) (3.1.3)
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and then we will use the results of [2] {cf. Theorem 13) where the estimate of the norm of the operator inverse
of {A2

x-A, M, &} : vy4(Q(s)) -^ R2^V{Q{E)), was obtained.

3.2. Estimâtes of the remainders

We propose to evaluate the discrepancy introduced by using the approximate solution (3.1.1).

1. Boundary condition on dQ

For the équation (3),

0$(x, Vx) u(e, X) = g{x) on dQ

we have,

âSuN(e,x) = J£ ek{â8v\x9]ne) + eâBwk(e~ 1JC, lne)}
* = o

and, from (2.3.1),

N N k

e~ x x, In e) - ^ «* 2 m^ ' ' w\ " '( ̂  l n r " l n £ ' l n

ik = 0

N-k

2 pl ~~l w% 0,ln r — ln e, ln e)

Then by (1.6.2), we have,

N
1 .(fi^jclne)) (3.2.1)

where ^ -> wJr _ t ( ^ ln e) belongs to vj ̂  _ ̂  + j( R2 \co).
So we are going to estimate @uN(e,x) - g(x) in V^ " °l + 7/2(dO) x V2

p ~ at + 7/2( dQ) or equivalently, in
He -a1+ T2(dQ) x ^ - 2̂ + 7/2(ôf2) where CTJ and a2 are dérivation orders in 08.

If z^ is the trace of z on dQ, we known (c/. [2], Lemma 1) that we have for any real y9

\zQ\H2-m(dQ)\\

We obtain,

\\38zQ ;H2-^ + v\dQ) xHe~^ + 7/2(dQ)\\ < c\\z
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and then,

e . - i i * - * uN( e, x ) -g(x);He ai
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+ 1/2(dÜ)xHe~a2

NAZAROV

+ 1/\dü)\\

N

Now,

= e" ' ( ' + 4 )

wkwk
N _ fc belonging to x( U

2\œ), by choosing y = (3 + N - k + 1, we have,

where S is an arbitrary positive number and where s follows from the rational dependence on In e.
Finally,

2. Boundary condition on dœe

ïn fast coordinates, we have the Dirichlet condition (5),

aN~ô (3.2.2)

We have,

uN(e, l n

k=0
ï . lne)}

and due to (2.3.2),

l n £ ) ~
N / k

/

k=\
7 ! + * y* '( ö, In /? + In £, In e ) )

and as in (3.2.1), we obtain,

« w- * ( ^ In e)) (3.2.3)
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where x —» v N_ k(x, In e) (cf (1.5.2)), belongs to V^ N + k(Q), and where we have set the convention,

We are going to estimate the norm Q2 of &° uN( e, eÇ ) - hœ( Ç ) - hco( £ ) in

Now, if zœ is the trace of z on dco, we have for any y (cf. [2], Lemma 1),

\\za;H
l-m(dœ)\\ < c £

f - 1 - " | | Z ; V ^ f 2 ( £ ) ) | |

then,

\\3azœ ;He + 7/2(dœ) x He + 5l2(dœ)\\ ü cse + 2 ~ ' | | z ; V
e
y
 + \Q(e))\\ .

S o we have,

k = 0

with

))ll * \\x^vk
N^k(xAn8)-V; + 4(Q)\\ .

As v h
N _ k belongs to V^ * 4

N + k( Q ) , we choose y = fi - N + k and we obtain,

jt = O

and therefore,

Q2 ^ ce~P + e +2eN'\ (3.2.4)

3. Estimate of the remainder in the équation (2)

This équation is,

A2
xu(e,x)-Au(£,x)=f(x) inO(e).
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By using the approximated solution uN, we have,

( A 2
x - A) uN(e,x) = ^j£k(A2

x- A) (vk(x, \na) + ewk(a~ 1 x , I n a))

=Ax
N r 3

) + 2 Ael ^^-'w^Xe^nr-ln s, In e) + e" 3w* " 4(^, In s) -
1 x, In e)

5=0 \ï=l

N-$

s=N-3

by shifting the sums. From (1.6.2),

and we propose to evaluate,

that is,

e'+1wJ,_,(e~Ulne);Vj(fl(e))
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by using the imbedding of V̂  * \ into V^ We have,

N

Ö3 ^ c ^j e II s ~^ Wpf _ j( Ç» l n e ) ; Vo + ^ _ 5 4
5 = ̂ - 3

^ c e ' i - ^ + 1 ) s N - â . (3.2.5)

Finally, due to (3.2.2), (3.2.4) and (3.2.5), we have obtained an over-estimation of the norm (3.1.2),

\\(A2
x- A) (uN- u), @(uN- u), ®£(uN- u) ;RepV(Q(e))\\ ^ c(ep ~ (2 + 1} + e(e + 2 ) " *) eN ~ â .

Let us recall that if U is the solution of problem (2), (3), (4), with right hand sides F, G and H, then we have
the estimate (cf. [2], Theorem 13),

| | t / ; V j + 4 ( f l ( c ) ) | | ^ c e - l^ ~ e ~2^ \ l n e \ - l\\{Fy G, H } ; R ^

so we obtain,

and finally, for any positive S, we have the estimate,

\\uN-u;Vp (X2(e))| | ^ c(s p + 1 ) e . (3.2.7)

As j? belongs to ]£ + l , £ + 2 [ , we can write a rougher over-estimation,

| | M i V - W ;V^ + 4 ( ^ ( £ ) ) | | s s c f i ^ " 1 . (3.2.8)

4. APPLICATION TO THE IMPEDANCE MATRIX

4.1. Impédance matrix

We are in the framework of the introduction. Q( s ) is a plate, the boundary dQ is free and œe has a rigid motion.
So we have the following problem (2), (3), (4),

A2
xu(a, x) - Au(e,x) = 0 in Q(s)

J^(x,Vx)u(e,x) = 0 onaD

^e(x,Vx)M(e,x) = (/Il(e,x),^2(£,x)) on dtoe (4.1.1)

with,

A1(e,x) = t/0- é ^ + 0^2

^(e,*) - dB(- 02xx + ^ x 2 ) (4.1.2)
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where Uo dénotes a translation perpendicular to the plate and &x and <92, the rotations around Ox1 and Ox2 If
Uo is non zero, the Drrichlet condition on dco is not of the same kind as that in (5) We will have to adapt ît To
have more clear notations, we set,

a0 = Uo, OLX ~ - 02 and a2 = Sx

and we dénote by ua the solution of the problem We calculate the réduction éléments of the stresses apphed by
Q( s ) on œE,

2

R = _ (JfE
 u

a, 2B 1 ) = q(x —> 1, ua) = ^ J (e) a
k-0

— M — — ( A^e ua <3$e x } = a( x -^ x ua} ~ ^ 1 ( p} a (4 1 3 ^
Jt-0

where ^ is the bilinear form (2 4 4) The terms Jlk(z) are impédance terms (in an other order (cf [1] and [2]) and
we propose to apply the previous results to study their behaviours when s goes to zero

4.2. Asymptotic expansion of the impédance terms

We propose to wnte an approximation of the impédance terms by usmg a truncation of the solution in (4 1 3)
We set,

TV

ua(e, x) = 2 ek{vk(x, In e) + ew\s' 1 x, In e)} + wa(e, x) (4 2 1)

we then have

PROPOSITION 5 Let N be an integer Then the impédance terms defined by (4 1 3) admit asymptotic expansions
in the following forms,

N

k-O

N-l
j ^a^ __ ^ a

k j k ^ j n £^ + Q^e
N - 1 + *^ (4 2 3)

k = o

where K IS arbitrary in ]0, ̂ [> and where the 7 ^ ( l n e ) (ƒ? = 0, 1,2) are rational fractions in In £
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Proof: 1. We suppose that aQ is equal to zero.
1.1. Let us prove (4.2.2).
We replace the solution u* by (4.2.1) in q(x —> xl9 u

a). We have the estimate,

{cf. [2], § 7), and we have also {cf. [2], Lemma 1),

\\{0,Q,^Xi);R[e_fi + ,V{Q{e))\\ ^ ||x, ; VeJ% + 4 ( 0 *£ |x | *£ ce) II « ce'-'*2.

So, due to (3.2.7), it remains

| « ( x - > x , , i n | ^c{ee-fi + 2
 + s-e-1 + (S)eN-2â (4.2.4)

where ö is an arbitrary positive number. As ƒ? is arbitrary in ]£ + 1, £ + 2[ , we have,

e" + K (4.2.5)

where K is arbitrary in ] 0, « [.
Moreover, the quantity,

q(x —> xt, x —> sw ( a x, In e) )

is rational in In £ : Indeed, this term can be written as,

- (x -» BBxx, x -> <yTÊ £>vfc(£" 1 x, In e) )aWe

and in f ast coordinates,

and we know that wk( cj, In e) is rational in In e (cf. § 2.4).
Now we have to estimate,

q(x —> xx ,x —» vk(x, l n £ ) ) .

From (1.5.2), we can write,

v\x, In e) = 2 ^ + : ^ ( Ö, In r, In e) + û k
s(x, In s)

where f;
fc and v k

s, belonging to V^+_\(Q ), are rational in In £. We have,

q(x -> ^ , x -> r* + 1 u^( Ö, In r, In e) )

> ®œ Çt, <J -> JTa pf + * Vj(6, \np - In e, In e ) ) a

where ö | is rational in In e.
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Finally, as for (4.2.4), noting B(Ca) the bail B( O, s), we have

. \\v k
s ; V

2/ \B(Ce)\œe) \\

ce2 + 2~ ? es\\d k
s;

because r is equivalent to s in B( Ce )\coe.
Finally,

and we have obtained,

5

ce + 2 " § es (4.2.6)

q{x -> xt, x -> v\x, In e) ) = ^ ^ ö*( In e) + o(a5) . (4.2.7)
1

S o we have an asymptotic expansion of the impédance terms in the form (4.2.2).
1.2. The proof of (4.2.3) is similar. We have to estimate,

The only différence cornes from,

\\(0,0,@el);R*2e_p + 4V(Q(e))\\ ^ \\xt ; V
e
2l% + 4(0 ^ |JC| < ce)\\ * es' ~ fi+ l

we obtain,

\q(x->l,üa)\ ^C8N-1 + K (4.2.8)

where K is arbitrary in ]0, «[, and,

\q(x^> l , x ^ 5 * ( j c , l n e ) ) | ^ ce2 + l ~ ̂  es . (4.2.9)

We have only the order N - 1 for a truncation of the solution at order N. So the proof of (4.2.3) and of
proposition 5 is finished in the case a0 equal to zero.

2. If a0 is not zero, we study (4.1.1) with the right hand side hx(e,x) = £«0, h2~0.
By linearity, we obtain the results with expansions at order N+ 1. We will see a concrete example in 4.4. •

4.3. Leading part of the impédance terms. Case of a rigid rotation of œe ( a0 = 0 )

We propose to use the previous results to find the leading part of impédance terms. We already know these
approximates by using the matching methods (cf. [1] et [2]).

We flrst suppose that the rigid motion of co8 is a rotation ( a 0 = 0). We then have,

and %(Ç
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in (5). We write the expansion (2.1.1) of the solution ua,

ua(e,x) = 2 £*{"*(*, In e) + ewk(e~ l x, lue)} (4.3.1)2

where vk and wk are the solutions of (2.3.1) and (2.3.2). Then we calculate the impédance matrix by using a
truncation at order 0 or 1.

Let us look at the first terms of (4.3.1). w° is solution of P / 0 ) (cf. (2.3.2)),

] ( Ç A ) in[R2\o)

w°( Ç, In e ) = ( OLX £x + a2 Ç2 ) on dco

and we will have all the solutions by adding an arbitrary linear combination of the functions Ç (cf. (12)),

with,

We deduce the first term of (1.6.2) associated to w°,

WQ( 0, In p ) = a1 cos # + a2 sin 0 + ^ c°{ p~ 1 3^( £ ) - y^ cos ö - yj2 sin ö ) .

Then, we can write the outer problem Pe(0) whose solution is v° (cf. (2.3.1)),

A\ V°(X9 lne) - Av°(x, \ne) = A(alx1 + ot2x2) 4- ^ ^(£0J(e~ l x) - y}l xx - yj2x2) in Q

because Jf(xt) is equal to zero.
We have a unique solution provided the right hand side satisfies the compatibility équations (10). We obtain

the constants c° by (2.4.7), that is here,

From the properties of the functions rf (cf. [2], Lemma 9), it remains,

(4.3.2)
Lc2j L-2J
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The unique solution v° of P / 0 ) , belonging to Vp + 4(Q), is,

2 J ' 1 X ) - yjX xx - yj2x2 + rj\x) )
1,2

by (9) and (4.3.1).
We may obtain an approximate of ua by keeping only one term of (4.3.1), i.e.

MO( s, x ) = u°(x, In £ ) + £w°( £~ l x, In £ )

E ° ) + e?(6-1x)) (4.3.3)

where (12) was used.
We will find an approximated value of the impédance terms by replacing (4.3.3) in (4.1.3). By using the

properties of the form q (cf. (2.4.4) and [2]) and (9), we write,

x, u0) = q(x-> x,, 2 c] &)=- Sv c»
\ 7=1,2 /

q{x

and then by (4.3.2), we have the equivalent of the impédance matrix [Jpq] (p, q = 1, 2) , equal to the inverse
matrix of T(e). Finally,

(4.3.4)

This result is the same as in [1] and [2], that we have obtained by matching expansion methods. The leading
m, T^q

l(e), is a rational fraction in In e.
To obtain the leading parts of 701 and J02, we have to calculate,

The ff functions have the représentation (cf. [l]),

x2

where rf belongs to V2p+_\(Q).
By using the classical properties of the q form (cf. [1]), we obtain,

q(x —> 1, r2 v\ + ew°) = .

[rwr20]T(£y
1

(4.3.5)

m
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and it follows that,

•w- ~r~» T"1 ~ ^ / \ _l_ 7"" T = ^ / A _1_ f\{ K\ f A O > \̂
Où 10 1 o V ./ 20 2 o ^ ' '̂̂ V. y * V * * /

This equivalent représentation is of course the same rational fraction in In e as in the previous studies (cf. [1]
et [2]).

4.4. Leading parts of impédance terms. Case of a rigid translation of coe ( a i = a2 = 0 )

Let the rigid motion of coe be a translation defined by a0. We have,

And we have to study eua. We seek a solution of the form,

a u a ( e , x ) - ^ ^ ( x , I n fi) + e w k ( e ~ l x , I n s ) } (4.4.1)

Then w° is solution of P ((0) (c/ (2.3.2)),

w ( ĉ , In s ) = a0 on ÖOJ

so we have,

The first term W^ of (1.6.2) associated to W° is equal to zero. Due to (2.4.5), the constants c° vanish and we obtain,

The outer problem F e(0) is homogeneous and the only suitable solution is zero. The inner problem Pt( 1 ) (cf.
(2.3.2)) is also homogeneous and the solution is,

1 — 1 r1 + l E2

The function Ŵ1 associated to w1 in (2.4.1) is then equal to zero. We can write Pe( 1 ) which has the form,

A2
xv

l(x, In e) - Avl(x, In s) ~ Aa0 + yl ^ cl(e<P](e~ 1 x) - y , jca - >
7 = 1 , 2

^ , , . on ai2,
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The compatibility conditions show that,

= -0-7X0" •[':]
where the constants FQ are defined in (4.3.5).

0 9

Let tj the solution in H (Q) of the problem,

A2
xrj°-Af]0=l in Q

Jfrp = 0 on dQ

so that ?7° has the représentation (cf. [1] and [2]),

= r1Q xx + r 2 0 x2 + r 0 0

where r/° belongs to V£
p

+_\(Q).
We obtain a unique solution of Pe( 1 ) in

vl(x9 In,
/

00
r03 ^=

r03 -^

2̂ _ \

^ + £°(x) 1

= 1.2

Then we calculate the approximates of the impédance tenus by (4.3.5),

q{x -> xt, Mj) = e~ ' Ç(JC -^ JC, , r2 v° + ew° + er2 v\ + e2) + 0(sK)

= fi" ' q(x -> x,, e a i 0(x) + r03 ^L ^ J J

and, by the properties of the q form, we have,

q(x -» x,, «,) = 9(x

and we obtain the equivalent relation,

x,, c\ c\ &\x)) + O(eK)

( e ) r20 + O(eK ) (p = 1, 2 ) .

(4.4.2)

(4.4.3)
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The matrix T(s) is symmetric and we find the same expression as in (4.3.6) and this is in accordance with the
symmetry of the impédance matrix.

It remains to estimate /00. We hâve,

q(x ^ l,u2) = q(x ^ l, aoroo&(x) + ^ c) Fjo &M V O(fi*>

which gives us the last équivalent représentation,

•'oo = - ^oo + [^io r20] ne Y ' [ ^ J + O(eK ) . (4.4.5)

This rational term in In s, is the same as that we hâve obtained in [1] by the matching methods.

CONCLUSION

With this rearrangement method, we hâve found a new représentation of the solution "u" of problem (2), (3),
(4) and then we hâve justified the approximations of impédance terms.

First, we note that the détermination of équivalents in the case of a rigid motion of the inclusion, is only an
example. This method can be used with more gênerai displacement conditions.

Moreover, the rational form of the coefficients in expressions like (4.2.2) or (4.2.3), has been proved. It was
not the case with the matching methods.

However, the main advantage of rearrangement lies in the structure of the two methods. In the matched
asymptotic expansion method, we calculate the flrst terms of outer and inner solutions; then we match, and then
we write again the solutions; We match again and so on. We hâve more and more difficulties to obtain the
expressions of the solutions because of the increasing number of terms. In the rearrangement method, ail the
problems we use to obtain the expansion of "u", are of the same kind. The difficulty of their resolutions does not
increase as the itération dictâtes.
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