@article{M2AN_1998__32_5_631_0, author = {Courbet, B. and Croisille, J. P.}, title = {Finite volume box schemes on triangular meshes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {631--649}, publisher = {Elsevier}, volume = {32}, number = {5}, year = {1998}, mrnumber = {1643473}, zbl = {0920.65065}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1998__32_5_631_0/} }
TY - JOUR AU - Courbet, B. AU - Croisille, J. P. TI - Finite volume box schemes on triangular meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1998 SP - 631 EP - 649 VL - 32 IS - 5 PB - Elsevier UR - http://archive.numdam.org/item/M2AN_1998__32_5_631_0/ LA - en ID - M2AN_1998__32_5_631_0 ER -
Courbet, B.; Croisille, J. P. Finite volume box schemes on triangular meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 5, pp. 631-649. http://archive.numdam.org/item/M2AN_1998__32_5_631_0/
[1] Some error estimates for the box method, SIAM J. Numer. Anal, 24, 4, 1987, 777-787. | MR | Zbl
, ,[2] Connection between finite volume and mixed finite element methods, Math. Model. and Numer. Anal. (M2AN), to appear. | Numdam | MR | Zbl
, , ,[3] Finite Elemente, Springer Lehrbuch, 1991. | Zbl
,[4] The mathematical theory of finite element methods, Texts in Applied Mathematics 15, Springer. | Zbl
, ,[5] Mixed and Hybrid Finite Element Methods, Springer Series in Comp. Math., 15, Springer Verlag, New-York, 1991. | MR | Zbl
, ,[6] A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations, AIAA-83-0126, 1983.
, , ,[7] A "box-scheme" for the Euler equations, Lecture Notes in Math., 1270, Springer-Verlag, 1986, 52-63. | MR | Zbl
, ,[8] Schémas boîte en réseau triangulaire, ONERA, 1992, unpublished.
,[9] Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale, n° 4, 1990, 21-46. | Zbl
,[10] Étude d'une famille de schémas boîtes à deux points et application à la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale, n° 5, 1991, 31-44.
,[11] Conforming and non conforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O. 7, 1973, R-3, 33-76. | Numdam | MR | Zbl
, ,[12] Méthodes de volumes-éléments-finis: Application aux équations de Navier-Stokes et résultats de convergence, Thèse de l'Université de Lyon 1, France 1992.
,[13] The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J. Sci. Stat. Comput., 12, 1, 1991, 127-144. | MR | Zbl
, ,[14] A new mixed finite element for the Stokes and elasticity problems, SIAM J. Numer. Anal., 30, 4, 1993, 971-990. | MR | Zbl
, ,[15] On first and second order box schemes, Computing, 41, 1989, 277-296. | MR | Zbl
,[16] Adaptive finite element method for diffusion and convection problems, Comp. Meth. in Appl. Mech. Eng., 82, 1990, 301-322. | MR | Zbl
,[17] A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard éd., Academic Press, New-York, 1971, 327-350. | MR | Zbl
,[18] Nonlinear moving boundary problems and a Keller box scheme, SIAM J. Numer. Anal., 21, 5, 1984, 883-893. | MR | Zbl
, ,[19] The covolume approach to Computing incompressible flows, Incompressible Comp. Fluid Dynamics, M. P. Gunzberger, R. A. Nicolaides Ed., 1993, Cambridge Univ. Press.
,[20] Direct discretization of planar div-curl problems, SIAM J. Numer. Anal., 29, 1, 1992, 32-56. | MR | Zbl
,[21] Covolume solutions of three dimensional div-curl equations, ICASE Report 95-4. | Zbl
, ,[22] Some three-level finite difference methods for simulating advection in fluids, Computers and Fluids, 19, 1991, 119-140. | MR | Zbl
,[23] A mixed finite element method for 2nd order elliptic problems, Lecture Notes in Math, 606, Springer-Verlag, 1977, 292-315. | MR | Zbl
, ,[24] Application of compact difference schemes to the conservative Euler equations for one-dimensional flow, NASA TM 8326.
,[25] A two-point difference scheme for Computing steady-state solutions to the conservative one-dimensional Euler equations, Computers and Fluids, 12, 1, 1984, 11-30. | Zbl
,[26] Implicit conservative schemes for the Euler equations, AIAA J., 24, 2, 1986, 215-233. | MR | Zbl
, ,