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MATHEMATICA!. MODELLING AND NUHERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 32, n° 6, 1998, p. 651 à 669)

ASYMPTOTIC ANALYSIS OF MAGNETIC INDUCTION WITH HIGH FREQUENCY
FOR SOLID CONDUCTORS (*)

Olivier COULAUD (*)

Abstract. — In this paper we describe the behaviour both in time and in space of an induction field created by an imposed high frequency
altemating current around a solid conductor. To do this, we introducé two time scales and we décompose the induction field in a mean field
and an oscillating field. With the help of singular perturbations theory and multiple scales method we obtain two uncoupled models; one
for the large time seule and the otherfor the high frequencies. For a cross section of a solid column of métal, we build the two first terms
of the asymptotic expansion of the induction field. Moreover, we justify the classical harmonie approximation used in such configuration.
Finally in the case of a cylinder column, we apply the previous results by Computing numerically the induction for different values of the
frequency. © Elsevier, Paris

Key words : multiple time scales, singular perturbation, Maxwell's équations, high frequency, eddy current, boundary layer, time average.

Résumé. — Dans ce papier nous décrivons le comportement en temps et en espace du champ d'induction magnétique créé par un courant
alternatif à haute fréquence imposé autour d'un conducteur solide. Pour cela, nous introduisons deux échelles de temps et nous décomposons
le champ d'induction en un champ moyen et un champ oscillant. À l'aide de la théorie des perturbations singulières et des méthodes
d'échelles multiples nous obtenons deux modèles découplés, un pour les grandes échelles de temps et Vautre pour les hautres fréquences.
Dans le cas d'une coupe d'une colonne de métal, nous construisons les deux premiers termes du développement asymptotique du champ
d'induction. De plus, pour un courant harmonique mono-fréquence nous justifions l'approximation harmonique pour les temps grands.
Finalement, nous appliquons les résultats obtenus dans le cas d'une colonne cylindrique, en calculant numériquement le champ d'induction
pour différentes fréquences. © Elsevier, Paris

Contents

1 Introduction 652

2 Modelization and équations 652

3 Asymptotic Analysis 655

3.1 Two time scales and time décomposition 655
3.2 Asymptotic behaviour of the oscillating terms 657

3.2.1 Asymptotic expansions 657
3.2.2 Expansion in the bidimensional boundary layer 658
3.2.3 Expression of the first order term 659
3.2.4 Higher order terms 661

4 A particular case: a harmonie current 662

4.1 General cross section of a column 662

4.2 Numerical results for cylinder column 665

5 Conclusion 667

6 Appendix 667

(*) Manuscript received February 10, 1997.
C) INRIA Lorraine, BP 101, 54602 Villers Lès Nancy Cedex (France). E-mail: coulaud@loria.fr

M2 AN Modélisation mathématique et Analyse numérique 0764-583X/98/06
Mathematical Modelling and Numerical Analysis © Elsevier, Paris



652 Olivier COULAUD

1. INTRODUCTION

Nowadays a lot of mdustrial processes based on magnetic induction are used in mdustry and in laboratones
(see [12]) The mam feature of magnetic induction is that ît can act at distance So Thermal or mechamcal energy
is brought to matenal without any contact When an alternatmg current flows in the inductors, ît générâtes mduced
current m conductors The induced current m liqmds mduces a magnetic field which créâtes Lorentz forces These
forces may be used to confine the métal or to maintain ît m lévitation Furthermore, these forces create a motion
which may be turbulent Applications concerned by the mechamcal effects generated by Lorentz Forces are for
example electromagnetic stirnng, electromagnetic contmuous casting for aluminium [1], guidmg or confining jets
of liquid metals [13], electromagnetic lévitation [10], [14], [9], and so on In all these processes, the frequency
of the ïmposed alternatmg current m the inductors is an important parameter In fact, with this parameter we can
adjust the depth of the pénétration of the magnetic field mside the conductors and by this the layer where we give
thermal or mechamcal energy

Hère we are înterestmg m frequency at magnitude 104 to 105 Hz At such frequencies the magnetic field is
concentrated m a thin layer near the surface of the conductor This phenomena is the so called "skm-effect", this
means that we have a boundary layer near the surface of the conductor The thickness of this layer is proportional
to the inverse of the square root of the frequency œ of the ïmposed alternatmg current For very high frequencies
like 104 Hz or more, due to the fact that the magnetic field does not penetrate into the hquid, we can consider
that the eddy currents are only on the surface

Because we consider high frequency current we have a small time scale which is given by oscillation of the
ïmposed current Now the magnetic field penetrate by diffusion mside the conductor The diffusion characteristie
time is independent of the frequency, it dépends only on the feature of the matenal Therefore this is a slow time
scale compared with the previous one Then, our problem has two time scales

Our goal is for high frequency to desenbe the most important terms To do it, we will use asymptotic expansion
with respect to the inverse of the frequency This requires to consider two time scales

In this paper we consider only solid conductors (see [4] for hquid conductors) to understand the couphng m
multiple time scales methods and smgular perturbation methods Moreover to construct the expansion at the
second order in the boundary layer we will restnet for simplicity our calculus to a bidimensional geometry

With the knowledge of the behaviour m space of the induction we will be able to build efficient scheme to catch
the boundary layer effect The idea is to use informations obtained by smgular perturbation analysis m the scheme
of domain décomposition methods (see [7]) This aspect will not be dealt m this paper

In the first section we give the natural hypotheses for those applications to obtain Maxwell's équations rewntten
only with the magnetic induction field (b-formulation) In their non dimensional forms Maxwell équations m the
conductor have a small parameter denoted by e In section 2, we introducé two time scales m the System A small
one given by the frequency of the ïmposed current density called the magnetic time scale and a large one define
by r = et Moreover we introducé the décomposition of the induction in mean value field and a fluctuatmg one
By a smgular perturbation method the first order term of the induction field is obtained Then m the third section
we apply the previous resuit m the case of guidmg jet Firstly for a harmonie current and a gênerai cross section
of the column we construct first and second order term of the induction and the mduced current Finally for a
cylinder cross section some numencal results are given

2 MODELIZATION AND EQUATIONS

In this section we give the hypotheses and we establish the nondimensional set of équations
We dénote by K a compact set m [R3 (correspondmg to the inductors), Q an open set in R3 with compact closure

Q (correspondmg to the solid conductors) We assume that K and Ü do not mtersect We dénote by Qo the
complement of Q u K (which corresponds to the vacuüm or the arr) and by Qom the extenor of Ù (see 2 1)

We assume that the followmg hypotheses hold
• The Maxwell équations are valid in the whole space
• The air is non conductor
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Q_J inductor

Figure 2.1. — Section of a solid column.

• The media have a linear behaviour and Ohm's law is valid.
• The current displacement can be neglected in Ampère's équation.
• There is no induced currents inside the inductors.
All these assumptions are natural in our range of applications.
The total given current density outside the conductor is given by

J(x, 0 in K,
in fl0

and satisfies

div J = 0 in Qout and J( x, t ) = 0 .

Under these hypotheses the induction field B and the electric field E satisfy (see [8] for more details)

'divB = O in

in
1

^ 4- — rot rot B = 0 in Ü ,

^ + r o t E = 0 i n a«*

where fi:=jj(x) is the magnetic permeability and a the electric conductivity of Q.
The boundary conditions at the interface between the conductor and the vacuüm are

[B.n]=O, [ ju" 1BAn]=O and [ E A n ] = O

where [ . ] dénotes the jump across the interface.
At infinity we impose

lim I B I I = 0 .
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DIMENSIONLESS EQUATIONS

Olivier COULAUD

To study our problem we introducé dimensionless quantifies. The time is normalised by the inverse of the
frequency œ of the imposed current density, the space coordinates by L, a characteristic length, the induction field
by JdjÀ0L, the electric field by Jd/cr, where Jd is the maximum of the imposed current and

10~7Hm~1 the vacuüm magnetic permeability. We define the relative magnetic permeability % by

*(*):=

and we introducé the parameter e defined by

X0=l

X =

/i0 uL co
(2-1)

Because we are interested in high frequencies, e is a small parameter. This parameter e is the inverse of the
so-called "screen parameter". Let us define cod = ju0aL2, the parameter codL is the speed of diffusion of the
magnetic field inside the conductor. Also the parameter e can be consider as the ratio of the frequency of the
characteristic magnetic diffusion time in the conductor to œ the given frequency of the imposed current density.
This means that when e is small the speed of diffusion of the magnetic field inside the conductor is small too and
then the magnetic field does not "propagate" inside the conductor. Through this paper we will see the importance
of this parameter on the behaviour of the induction field.

With the same notations for B, E and J, the dimensionless set of équations is

divB = 0 in IR,

= J i OMt'

" 1
^y + ex rot rot B =0 in Q ,

= 0 in O „

(2.2)

with the boundary conditions

[ B . n ] = 0 , [ / " 1 B A n ] = 0 , [ E A n ] = 0 and lim | | B | | = 0 . (2.3)

LEMMA 1: The system (2.2)-(2.3) has at last one solution.

Remark 1: We will not consider in this paper the question of existence but rather look at expansions of the given
regular solution with respect to the small parameter.

Proof of the lemma: By linearity, we have to prove that J = 0 implies B = 0. We dénote by
&out (resp. B^ ) the value of B outside (resp. inside) the conductor Q and the same for Eo

B the équation in Q in system (2.2). Then by integrating on ü we obtain
. We multiply by

i BQ
rot B A n . Bp J j = 0 .
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With the help of Ampère* s équation and of the Ohm law the condition on the electric field [ E A n ] =0 on
dü may be rewritten as follows

X ^ , A n = Eotó A n .

Because Bs . n = Bout . n on dQ and with the above condition we have

, A n ) . B 5 =^(E o l t f A n ) . B o

and by (2.2) the boundary intégral writes

C Y

L ( r o t B* A n ) - B * d s = T i lB-1'2(^,)•
Finally we have

This implies that |B( ( 0 | 2 = Op./?, in t and complètes the proof.
Because we are only interested in the induction field, in the rest of the paper we do not consider the équation

and the condition on the electric field.

3. ASYMPTOTIC ANALYSIS

In this section we study the behaviour in e of the induction. We introducé two time scales and a corresponding
time décomposition for the various quantities. The induction is written as the sum of a mean value and of an
oscillating term. As we will see after only the system of the oscillating terms has a small parameter also we will
concentrate on this system through this part. We will give a complete scheme to construct all terms of the singular
expansion.

3.1. Two time scales and time décomposition

Because we have the factor e~1 in front of all the time derivatives in (2.2) as we have shown by asymptotic
analysis in [3], all the quantities are stationary at the first order in the metal at the magnetic time scale. In many
applications the magnetic time is closed to the millisecond whereas the diffusion time is closed to the second.
Typically e is closed to 1CT4.

The idea here is to use multiple-scale analysis (see [11]) to overcome these difficulties. We introducé a slow
time T defined by

T := et

and we consider the quantities, B and J, as functions of the three independent variables x, t and z as follow

If we come back to the dimensional quantities, the nondimensional slow time r is defined by
Z = (JJ0GL2) tr-codtr, where tr is the actual time and cod is defined in the previous section. This shows that
T is the good nondimensional time to follow the diffusion in the conductor.

vol. 32, n° 6, 1998
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We plug the relation

Olivier COULAUD

dt' dt dz

in the system (2.2) to obtain the new set of équations:

div B = 0 in Rc

rot / 1 B = J ( X , T , 0 'müout>

i = 0 in Q ,

with the boundary conditions

and the initial value

lim | | B ( X , T , 0 1 1 = 0 ,

forxe Ü .

(3.1)

(3.2)

(3.3)

(3.4)

(3-5)

(3.6)

Due to the choice of the dimensionless time the given current density J(x, T, t) is a 2 7c-periodic function in t.
We décompose the given current density and the induction into their mean value and an oscillating term as

follows

J(x, T, 0 := J(x, T) + j(x, T, t) ,

B(x ,T ,0 :=B(x f T)+b(x ,T ,0 .

where •, is the mean operator defined by the average over a period

(3.7)

B(X,T) :=Y~ f B(x,z9s)ds,

and the oscillating induction terms j and b are 2 7r-periodic in t.

Remark 2: With the définition of the mean operator we have b = 0.
Classically, we obtain the system satisfied by the mean field which is

divB =

B = J(x, r )

^ + X~1rotrotB = 0

[ B . n ] = 0

[ Z - 1 B A n ] = 0

( lim | | B ( X , T ) | | = 0 ,
|| B +

in INT,

on Q,

ondi3 ,

for x G 42 .

(3.8)
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To construct the system satisfied by the oscillating terms we substract (3.8) to (3.1)-(3.6) and we obtain

divb =

rot/"1

— 1 ö D

öt
[b.n]

0

b=j(x, 1

= 0,

in Hrf

> = 0 in £2 ,
(3.9)

lim ||b(x,T,f)ll =0 .

Let us emphasise the following features of this décomposition
• Because the system (3.1)-(3.6) is linear the system for the oscillating terms (3.9) and the system for the mean

value (3-8) terms are uncoupled.
• Only the oscillating system (3.9) has a small parameter. So we only have to expand b in term of e.

3.2. Asymptotic behaviour of the oscillating terms

As shown in [3], we expect hère a boundary layer near dQ. Indeed, it is easy to get a contradiction when
assuming regular expansion for the magnetic field. In fact, the transmission conditions at the interface are over
determined.

3.2,1. Asymptotic expansions

We use the boundary function method (see [6], [15]) to solve this singular perturbation problem (3.9). The
perturbation term of the induction is decomposed as follows for all integer N

2N

t b =

inside the conductor

outside the conductor

where E^ b is the regular part of the expansion, E^ b is the corrector term given by

2N 2N

a n d (3.10)
i = 0

with b*, h°ut and bfl 2 7r-periodic in t.

Notation: The superscript s, out (resp. bl) is used for fields inside, outside the conductor (resp. for fields inside
the boundary layer).

The above décomposition looks spatially like in the following picture. We see that the boundary layer is at the
junction of two "regular domains". This means that the boundary layer is actually a transition layer. This implies
that we cannot construct independently the two regular expansions E^"' b and E^ b.

We expand the given oscillating current density j as follows

27V

(3.11)

In many applications j is only given by j (x , T, t) = j 0 (x, t ). This case will be studied in detail in section 4.
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Maxwell in the air Maxwell in the solid conductor

Boundary layer

interface

Figure 3.2* — The transition layer.

Now we construct the set of équations satisfied by the functions appearing in the regular part of the two
expansions of the induction. By using (3.1Ö)-(3.11) in (3.9) we obtain for each power of e that the induction terms
satisfy the two Systems.

Outside Q

11*11

= 0

lim ||bff(x,T,O|| =0.

infi. V* 5= 0 . (3.12)

Inside Q

ÖDQ dUj

3bf dbs
f_0 ,

-TT- = T - ^ + X fot rot b 9 i ^ 2 ,
dt dr A l~2

div bf = 0 i: 25 0 .

(3.13)

To obtain the boundary conditions of the above Systems we have to introducé the boundary layer terms.

3.2.2. Expansion in the bidimensional boundary layer

In the boundary layer the corrector E ^ b = b - satisfies

dt dt
+y 1 rot rot Ejjb = e^-5f- + ̂ 1 iotiotbj r 1 inX3. (3.14)

For simplicity we now assume that Q is 2-d. The 3-d case gives us only a more complicated équations rewritten
with the local variables of the surface.

We rewrite (3.14) in curvilinear coordinates. We refer the reader to figure 6.4 in Appendix for details. We
assume that the boundary, dQ, is smooth. This implies that the local curvature is such that

M2 AN Modélisation mathématique et Analyse numérique
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We stretch the normal direction of the curve, r by r = Vë<J. We write the équations as a series in e and by
identification we obtain the Systems

k-i

i = 0

f or k > 0 , (3.15)

where the operators Di and A. are defined in Appendix and the coefficients ak by aQ = ax = 0 and ak ~ 1 for

The matching relation for the corrector terms (see [15]) implies the following decay when £ —> 4- °o

lim bz (5, £, T, f) = 0 . (3.16)

At the interface dQ, we have

Li-'"" -1°^'. , , (3-17)

where bf = 0. s + y/i n, n is the outer normal of Q and s is the tangential vector.

3.2.3. Expression of the first order term

PROPOSITION 1: The first order term of the induction perturbation is given by

bn =
b out

0
o ~ 1 ufc;b™ in Q,

where b^"' is solution outside Q of the following exterior problem

divb°"' =0
— 1 T^OUt

b™*. n = 0 on dQ ,

l i m | | b o " f ( x , T , f ) II = 0 ,
X - > + °o

wïï/i j 0 w 2 n-periodic in t.
Inside the conductor Q, we have bs

0 = 0 and the corrector term is only tangential and it is given by
bjj = <pQ s where

<po(s,Ç,x,t)=Real 1 exp(zAtf)

vol. 32, n° 6, 1998
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and

Olivier COULAUD

bk = ak(s, T ) exp(- O + sign(k) i) £ ) ,

where ak are the F ourler* s coefficients of the tangential trace on dQ of the outside induction

Inside the conductor the main quantity for applications using magnetic induction, like induction heating or stirring
effect, is the induced current. The induced current générâtes Joule effect and Lorentz Forces. The foilowing
corollary gives us the first term of its expansion.

COROIXARY 1 : The expansion of the induced current jind begins as follows

)bk(s,^x)zxp(ikt))eyhnd •e'1 '2 Real C
Remark 3: The above proposition shows that in the conductor the first order term of the oscillating induction

field is concentrated in the boundary layer near the surface. Moreover the induction is only tangential in the
conductor.

Proof of the proposition: For the first order, we have the following set of équations

div h°o
ut = 0

H x

in üout9

lKut =Jo(x»T'r) i n ^ >
lim \\b°o

ut (x, r, 011 = 0 -

with the interface condition

~8T = °
div hs

0 = 0,

in Q,

in O .

dt
l = 0

Because 1>Q and y/0 are 2 7r~periodic and their mean values are equal to zero, we obtain

bo = 0 and y/0 = 0 .

(3.18)

(3.19)

(3.20)

(3.21)
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Then by (3.20) we know bJJ*. n on dQ and we solve (3.2.3) with this boundary value. Now by (3.21), (3.19) and
(3.16) the first order term of the tangential part of the corrector satisfies

dt X
 d^

 :

0o(^O,TfO =
lim óJs,ö*'

f or Ç > 0 ,

), T, O . s for ^ = 0 , (3.22)

0O is 2 7Ï periodic in ?.

We introducé the Fourier expansion in t of b™' (P( J ) , T, 0 • s i-e-

0OU 0, T, ï) =^ o b^ ' (P( j ) , T, ï) . s = Real / 2 a t(5, T )

By using the Fourier transformation in t on the System (3.22) we obtain

bk{s,Q,T,t) = ak

f ar { > 0 ,

on £ = 0 ,

. This finishes the proof.
where bk are the Fourier's coefficients of <pQ.

It is easy to see that the solution is bk = ak exp(- \fx\k\Ï2( 1 + sign(k) i)

Proof of the corollary: The induced current is given by

Jw : = r o t B -

Due to the fact that the induction field is only concentrated in the boundary layer we obtain in terms of the local
variables of the curve the following expression

where ey = n A s, see [3] for more details. Then the first order term writes

.o d i
ma dr y

By plugging <pQ defined in proposition 1 we obtain the expression of the induced current.

- 1 / 2Remark 4: One important pont is to see that the expansion of the induced current begins by e . This means
that the modulus of }ind is large in the boundary layer.

3.2.4. Higher order terms
By this approach we have constructed the first order term of the induction field. Now by using the following

itérative scheme, we can build an approximation of the induction at any order.
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Let b*_ : , h°u?1 , bfi : = <pt s + y/t n be known; then

Step 1
Solve independently b^ in Q and the normal part of the corrector
y/ solution of (3.13) and (3.15).

Step 2
Construct the induction field outside Q with the condition
h°ut.n=y/i solution of (3.12).

Step 3
Construct the tangential part of the corrector <p{ with the condition
<PI = XQK"-S solution of (3.15).

Since b is periodic in r, by (3.15) it is easy to show that inside the conductor the regular part of b satisfies the
following proposition.

PROPOSITION 2: The regular part of the induction field in the conductor vanishes

Proof: Inside the conductor the regular part of the induction field is solution of

= 0 (3.23)

ibs
2k =

then obviously we have b* k = 0 for ail k,
This proposition means that inside the conductor the oscillating term of the induction field is only concentrated

in the boundary layer of thickness Vê. S o ail effects outside this layer are due to the mean value of the induction.
In next section we apply the above scheme for an harmonie current and for N= 1.

4. A PARTICULAR CASE: A HARMONIC CURRENT

We are interested in this section in constmcting the first and second order terms when the domain is a cross
section of a vertical column of métal. Now we consider a given harmonie current density (i.e. it is only an
oscillating term) in Q like

(4.1)

4.1. General cross section of a column

PROPOSITION 3: The approximation of order e of the induction perturbation field is given by

b-Real
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where h™1, and bj"f are defined by

rot* ' b ^ =

lim II bh

div b?"' = 0

i • n = ~ ^ i

lim || tf1"'

i n Qout>

on dQ ,
(4.2)

= 0,

on
(4.3)

- 0 ,

andb™ by

(4.4)

where a = fi(l + i), a its conjugale value, j3 = V^/2, gt(s) = xQ^ut (P(s)) .s and p(s) is the curvature
of ÔÛ.

Proof: Due to the fact that (3.12) is linear and J is given by (4.1) we look for the following form of the induction

B = Real(B(x)e lV).

Proposition 1 easily gives that the first order term is solution of (1) outside Q and inside the corrector term
b0 = <pQ s + y/Q n is given by

where go(S)=XQ ^C (X) • S for x e d^-
Now by (3.12)-(3.15) the second order term of the regular part is solution of

ib\ =0

div b?wr = 0

mü ,

in

lim ||biUf(x,r,OII = 0 .
11» + ~

and the corrector term is solution for £ > 0

at

vol. 32, n° 6, 1998
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Because b* = 0 the transmission conditions on dQ give

b r ' . n = ^ and ^^XQK

The construction of y/x needs the following compatibility condition

*2 dt ds

We can write it as foliows

By the construction of 0O this condition is satisfied. Then by solving this set of équation we find the expressions
given in the proposition. If we corne back to the real value, the second order approximation of the induction is
given by outside the conductor Le. in Qout

and inside the conductor

b =

with b°o
ut resp. bf ' solution of (4.2) resp. (4.3).

PROPOSITION 4: The behaviour in time of the first order term of the induction Bo is given by

Jhn^ [Bo (X, T, t) - V2b0 (x) e*] =0

where b0 is given by

div b 0 = 0

b0 . n = 0

inQ

in Q

dQ ,

ouf

ouV

d(x)

bö(x)=V2b0(P(s)).se 0 vi s in Ü ,

where P(s) is the orthogonal projection of x on dQ, d(x) is the distance to dQ.
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Proof: The stationary solution, BST, E5r of (3.8) is given by

div B5r = O

rot/"1 8^=0

665

rot rot x l B5T = 0

[BST A n ] = 0
[EST A n ] = 0

lim ||BOT|| = 0 .

in Q ,
on d£2 ,
on dQ ,
on 3D ,

It is easy to show that the solution of (PST) is B s r = E s r =0. Then the behaviour of the induction is given
only by the perturbation term. The first order term is given by proposition 3, tMs finishes the proof.

This proposition means that the behaviour of the induction field for large time is given by the oscillating field.
The mean part is here only to relax the initial condition. This could be viewed as a justification to the fact that
when we have (4.1), we can search the induction with the harmonie approximation.

In this case expansion of the induced current inside Q begins by

with r = dist (M, dQ) when M is inside Q and $ = V//2.

4.2. Numerical results for cylînder column

In this section we illustrate the results given in proposition 3. We consider that O is the unit disk, and the given
current is defined by

4
Ik, l / . — tUÖ \l J f j /£ U%^ \ A ) Vy

where x̂  = 2.0^exp^^), B^~k%i% Ik=(-l)k and Sx is the Dirac funetionr at point xk. This kind of current
density is classical used in casting or guiding jet, see ([2]). We solve the problem satisfied by the first and second
order term with the help of the potential. These exterior problems (4.2) and (4.3) can be easy rewriting in potential
form like

<fi = 0 for |x| > 1 ,
(x, t)~g(x, t) for |x| = 1 ,

Then, we have to solve two harmonie problems with different Durichlet conditions. To solve the above system we
introducé the Fourier expansion of g defined as follows

ifceZ
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then the solution of the above System writes

0< r, £ 0 = 2 ak0) r' w exp( M)

see [5] for more details.
In this part we show the behaviour in space of the first and second order terms of the induction and we compare

the two first terms with respect to e.

Tangentieî component Normal component

— . . / * • » t , * **• .

1.5

1

0.5

0

-0.5

-1

-1.5

-2
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 4.1. — Second order induction field for e = ÛÛÛ5

Figure 4.1 shows the isovalues of the approximation of the induction field at the second order for
e = 5.10" and at time t=l. The maximum of the tangential field is 0.5 while the maximum of the normal
field is 0.04. In the next figures the horizontal axis represents the intensity of the function while in vertical axis
we put the value of |x | .

Seconö otdBT tangential

0 6 0 5

Figure 4.2. — Different order of approximation for the tangential magnetic field.

Now figure 4.2 shows for 6 = 0 and t= 1» the first and the second order approximation of the tangential
magnetic field for different values of € = (0.01,0.001,0.0001,0.00001). At the first order we see that the
frequency has no influence on the magnetic field outside the conductor (i.e. for r > 1 ).
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second orasr tangential field

D Dl ana
D 01 and

oraer Û —
order 1

Second order Csngential field

Figure 4.3. — Comparison for different values of e at 6 = 0 between the first and the second order of the tangential magnetic field.

Figure 4.3 compares for 0 = 0 and t—l, the first order approximation with the second order approximation
of the tangential magnetic field for different values of e = (0.01, 0.0001 ). Here, we can see the influence of the
second order term on the exterior problem even for the smaller value of e.

5. CONCLUSION

We have shown that in the case of solid conductors the magnetic induction can be well described for high
frequencies as a superposition of a mean value field and an oscillating field. Moreover, only the oscillating term
has a boundary layer behaviour and it does not propagate in the depth of the conductor. The induction is only
concentrated near the surface of the conductor also, the diffusion of the magnetic field in the conductor is only
due to the mean value of the imposed density current. By our décomposition we can solve the induction problem
without the harmonie approximation and then solves transient problems. Finally, we have an explicit expression
for the first order term of the induced current in a conductor and then it is easy to construct the Joule force for
thermal heating or Lorentz force for stirring, lévitation, ...

In the particular case when the mean value of the current vanishes we have shown that for the first order term
the behaviour of the induction for large time is given only by the oscillating term. This point could be view as
a justification of the harmonie approximation.

6. APPENDIX

We introducé the new local variables defined in figure 6.4. We assume the surface y has a normal parametri-
sation gy then the tangent is given by s~g'(s). Let the point M(JC, v) in Q we dénote the distance MP by r.
The pair ( r, s ) will be the new coordinate of the point M. If the <5-neighbourhood of the surface
{ö ^ s ^ s0} x {ö =S r s£ 3} is small enough there exists a one to one correspondence between the two
coordinates (JC, y) and (s7 r ) expressed by

A function <9 is decomposed as

vol. 32, n° 6, 1998



668 Olivier COULAUD

M = (x,y)

Figure 6.4. — Curvilinear System of coordinate.

In this new coordinate the Maxwell's équations are given by (see [3] for more details)

hi L

dd) dhi¥~\ds dr J

dt dK dri ds ) ^d

with hi — l + p(s) r9 where p is the curvature of the surface. It is positive when the corresponding centre of
curvature lies on the side of the surface to which the normal n points.

If we apply the transformation

s := s

then the above System becomes

where the operators are defined by

with

dt

A. &=T.e"2A 0

Â, 0 =
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