Pseudospectre d'une suite d'opérateurs bornés
ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 6, pp. 671-680.
@article{M2AN_1998__32_6_671_0,
     author = {Harrabi, A.},
     title = {Pseudospectre d'une suite d'op\'erateurs born\'es},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {671--680},
     publisher = {Elsevier},
     volume = {32},
     number = {6},
     year = {1998},
     mrnumber = {1652664},
     zbl = {0932.47001},
     language = {fr},
     url = {http://archive.numdam.org/item/M2AN_1998__32_6_671_0/}
}
TY  - JOUR
AU  - Harrabi, A.
TI  - Pseudospectre d'une suite d'opérateurs bornés
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1998
SP  - 671
EP  - 680
VL  - 32
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/item/M2AN_1998__32_6_671_0/
LA  - fr
ID  - M2AN_1998__32_6_671_0
ER  - 
%0 Journal Article
%A Harrabi, A.
%T Pseudospectre d'une suite d'opérateurs bornés
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1998
%P 671-680
%V 32
%N 6
%I Elsevier
%U http://archive.numdam.org/item/M2AN_1998__32_6_671_0/
%G fr
%F M2AN_1998__32_6_671_0
Harrabi, A. Pseudospectre d'une suite d'opérateurs bornés. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 6, pp. 671-680. http://archive.numdam.org/item/M2AN_1998__32_6_671_0/

[1] P. M. Anselone, Collectively Compact Operator Approximation Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1971. | MR

[2] P. M. Anselone and T. W. Palmer, Collectively compact sets of linear operators, Pacific Journal of Mathematics, 25, No 3. 417- 422, 1968. | MR | Zbl

[3] P. M. Anselone and T. W. Palmer, Spectral analysis of collectively compact, strongly convergent operator sequences, Pacific Journal of Mathematics, 25, No. 3. 423-431, 1968. | MR | Zbl

[4] A. Böttcher, Pseudospectra and singular values of large convolution operators, J. Int. Eqs. Applics, 6: 267-301, 1994. | MR | Zbl

[5] H. Brezis, Analyse Fonctionnelle. Théorie et applications, Masson, quatrième édition, 1993. | MR | Zbl

[6] F. Chaitin-Chatelin and V. Frayssé, Lectures on Finite Precision Computations, SIAM, 1996. | MR | Zbl

[7] F. Chatelin, Spectral Approximation of linear operators, Academic Press, New York, 1983. | MR | Zbl

[8] N. Dunford and J. T. Schwartz, Linear operators, part I, general theory. Wiley (Interscience), New York, 1958. | MR | Zbl

[9] S.K. Godunov and V. S. Ryabenki, Theory of Difference Schemes: an Introduction. North-Holland, Amsterdam, 1964. Translation by E. Godfedsen. | MR | Zbl

[10] T. Kato, Perturbation theory for linear operators, Springer, New York, 1976. | MR | Zbl

[11] H. J. Landau, On Szegö's eigenvalue distribution theorem and non-hermitian kernels, J. Analyse Math., 28 : 335-357, 1975. | MR | Zbl

[12] E. R. Lorch, The spectrum of linear transformation, Transactions of American Mathematical Society, 52: 238-248, 1942. | MR | Zbl

[13] O. Nevanlinna, Convergence iterations for linear equations, Birkhauser, Basel, 1993. | MR | Zbl

[14] J. D. Newburgh, The variation of spectra, Duke Math. J., 5: 165-176, 1951. | MR | Zbl

[15] S. C. Reddy, Pseudospectra of Wiener-Hopf integral operators and constant-coefficient difference operators, J. Integral. Eqs. Applics, 5: 369-403, 1993. | MR | Zbl

[16] L. Reichel and L. N. Trefethen, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear algebra and its applications 162-164, pages 153-185, 1992. | MR | Zbl

[17] A. E. Taylor, The resolvent of a closed transformation, Bull. AMS, 44: 70-74, 1938. | MR | Zbl

[18] L. N. Trefethen, Pseudospectra of matrices. In Numerical Analysis. 1991, D. F. Griffiths and G. A. Watson editors, Longman, Harlow, 1992. | MR | Zbl

[19]L. N. Trefethen, Pseudospectra of linear operators. SIAM Rev., 39: 383-406, 1997. | MR | Zbl