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i MATHEMATICA!. MODELUNG AND NUMERICAL ANALYS1S
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 32, n° 6, 1998, p. 715 à 728)

BIFURCATIONS OF FINITE DIFFERENCE SCHEMES AND
THEIR APPROXIMATE INERTIAL FORMS (*)

Rolf BRONSTERING (X) and Min CHEN (2)

Résumé.—Dans cet article, on montre que les diagrammes de bifurcation des semi-discrétisations par différences finies de certaines
équations aux dérivées partielles paraboliques dissipatives peuvent être bien approximés par leurs formes inertielles approchées (AIFs)
quand un ensemble d'inconnues incrémentales du second ordre, L2-orthogonales, est utilisé.

Abstract. — In this paper, we show that the bifurcation diagrams offinite différence semidiscretizations of certain dissipative parabolic
partial differential équations can be well approximated by their approximate inertial forms (AIFs) when a set of second-order,
L2 -orthogonal incrémental unknowns is used.

1. INTRODUCTION

An Inertial-multigrid-algorithm is proposed for the long time approximation of solutions of dissipative Systems
because it offers flexibility and better stability which results in a better efficiency (cf. [3], [6], [17] and the
références therein). Suppose that Y is the solution space of the differential équation and Yh is the approximate
solution space under standard finite différences. In the case where the dimension of Yh has to be very large to
describe the fine structure of the solution, the inertial-multigrid-algorithm can be used to save the CPU time and/or
the memory. The scheme is based on decomposing Yh into Y*h = &h © j2A, where 0*h corresponds to a coarse
grid approximation of Y and 2Lh is the complement of 8Pk in Yh, and decomposing the solution uh e Yh into

and then treating yh and zh differently (cf. [4] and [5]). Following the theory of inertial manifolds, the
short-wavelength component zh carries only a small part of the total energy, and therefore some terms involving
zh can be neglected. The motivation of the scheme can be best described as that in the cases that extremely fine
grids are requiredfor the numerical simulation, one can take into account the effects of small scale terms in an
efficient way, instead of simply adding more mesh points. This reasoning leads to the inertial-multigrid-algorithm:
A primary advantage of this algorithm is that it provides Yh -accuracy with £Ph -computational complexity and has
better numerical stability properties than a direct discretization using Yh (cf. [6]). Numerical results obtained by
[2] confirmed that the algorithm indeed provides Y*h -accuracy when used to simulate the solutions of réaction-
diffusion équations in one-, two-, and three-space dimensions and when used on the one-dimensional Kuramoto-
Sivashinsky équation.

In this paper, we study the bifurcation diagram of the scheme, which incorporated the idea of approximate
inertial forms, and compare it with that of the underlying continuous problem and that of the Standard finite
différence scheme. In practice, this means examining the numerical method for a large range of physical
parameters at once rather than just looking at convergence for a fixed set of parameters. Thus, this analysis aims
toward proving convergence to a bifurcation diagram rather than to a single solution. As an example, we will study
the inertial-multigrid-algorithm for the reaction-diffusion équation and Kuramoto-Sivashinsky équation.

(*) Manuscript received May 5, 1997.
AMS subject classifications: 35A40, 65M06.
(*) Universitat Munster, Institut fur Numerische und instrumentelle Mathematik, Einsteinstr, 62, D-48149 Munster, Germany
(2) Department of Mathematics, The Pennsylvania State University University Park, PA 16802, USA
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716 R BRONSTERING AND M. CHEN

A new set of incrémental unknowns, which is L2 -orthogonal and second-order, is used in our study. For a
one-dimensional problem on Q = [a, b] with zero Dirichlet boundary condition we set
h = (b — a)/(N + 1) where N=2n + 1. Suppose ux approximates the solution u(x) at mesh points xt, where
xt = a + ih and 1 < i ^ TV, so the unknowns are uh = (w1, ..., uN)Te RN. The new set of incrémental
unknowns is defined by

3, = 4 (~ «2,-2+ 2 « 2 . - 1 " « O ' Ï = 1 , . « , « + 1 ,

where pt is an average value of w(x) in the neighborhood of x — x2l and qi is an incrément of u(x) in the
neighborhood of x = x2i_v Expanding qi at x2l_l by Taylor's formula and assuming the solution u(x) to be
smooth, one can see that qt = O(h2). It is in such sense that we say this set of incrémental unknowns is
second-order.

Let 0>h and Sth be subspaces of UN
9 where

and

I + 1 = 0 , ï = l

Since 0>h is defined by n + 1 linearly independent constraints, dim ^ f c = N - ( n + 1 ) = n. Likewise,
dim Slh — n + 1. One can show that 3Ph and £lh are orthogonal to each other since for any yh e SPh and

2 n + 1

+\

according to the zero boundary conditions. Hence UN=^h® £lh is a L2-orthogonal décomposition.
In section 2, we will show that for any uh= (uv ..., u2n+1)

Te UN, there is an unique décomposition

where yh G &h dépends only o n p = (pv . . . ,/?n) r and zh G Slh dépends only on q = (^ p ..., qn + l )
T. We therefore

say that the incrémental unknowns defined in (1.1) are L2 -orthogonal.
Comparing with the existing incrémental unknowns, one finds that the wavelet-like incrémental unknowns are

L2 -orthogonal, but of first-order only; and the second-order incrémental unknowns are second-order, but not
L -orthogonal (cf. [5]). The advantages of this set of incrémental unknowns comes with a price which is that the
inverse transform of (1.1) is not local anymore, which means that for any given p and q, one has to solve a System
of linear équations to find the corresponding uh.
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BIFURCATIONS OF FINITE DIFFERENCE SCHEMES 717

The paper is organized is the following way. In section 2, we will introducé gênerai space décompositions based
on finite différence semidiscretizations and dérive the ALF based on that décomposition. In section 3, we prove
that the primary bifurcation values of the ABF are the same as those of the original finite différence scheme. Finally
in section 4, we will present the bifurcation diagrams of the discretized réaction-diffusion équation and Kuramoto-
Sivashinsky équation.

2. GENERAL SPACE DECOMPOSITIONS

We consider évolution équations of the form

W O G ^ , (2.1)

where i^ is a Hubert space (possibly infinité-dimensional), u( t ) is the unknown function, A is a symmetrie
(possibly unbounded) linear operator on 'V, and F is a nonlinear operator on i^.

Assuming that there exists a convergent finite différence serrüdiscretization for this problem, one can
approximate (2.1) by a System of ordinary differential équations

( « J , + Afcufc + Ffc(«fc) = 0, «fc(0) = («„)*€ f h = Rw, (2.2)

where N is the number of (inner) grid points. The reaction-diffusion équation and the Kuramoto-Sivashinsky
équation we will study in section 4 both satisfy the above abstract form. To simplify the notations, the index h
will be dropped throughout the rest of this paper, that is, we will use the symbols u, A, F, &, SI etc. instead of
uh, Ahy Fh, &h, Sth. The équation to be considered is thus the ordinary differential équation

ut + Au + F(u) = 0, w(O) = woe RN. (2.3)

Introducing the new variable p e Rn and q e IRn + 1 from the L2 -orthogonal décomposition of MN defined in
(1.1) and writing them in the matrix form, one has

p = VT w, q = WT u , (2.4)

where « = (uv u2, ..., uN)T, p = (pv ...,pn)
T, q= (qv ..., qn+xf, V . ^ x " and We ^ x < " + 1> ( see formula

(4.4) for the explicit forms of V and W). Let T be the operator

then

Tu = Vp + Wq .

Since the matrices V and W have maximal ranks, one sees that VT V and WT W are invertible. Noticing also that
the column vectors of V are orthogonal to the column vectors of W, namely, VT W = 0 and WT V = 0, one can
prove that T is invertible. The inverse relation of (2.4) (or (1.1)) is therefore

u = rlVp + r1Wq(=yh + zh). (2.5)

We now show that formula (2.5) defines a unique décomposition of u with respect to MN = é? ® £, that is,
we show that for any p G Un and q e Un+ \ T1 Vp € & and T~x Wq e 2L. It is easy to see that

^>={u\WTu = 0}i £ = {u\VTu = 0} . (2.6)

vol. 32, n° 6, 1998



718 R. BRONSTERING AND M. CHEN

Therefore for any p e Un
9 let v = V( VT V)~1 pt one can check that Vp = 7ï? and W r u = 0 which implies that

v = T~l Vpe B*. The proof for T1 Wq e ^ proceeds analogously.

Remark 2.1. Since V r W=O and W rV=O, the column vectors of V and W are a basis of ^> and â
respectively. Therefore, for any u e RN one can find unique p e Rn and q e [Rn + * with M = Vp + W#.

Substituting (2.5) into (2.3) and applying VT T (and WT T) from left one obtains after exploiting the
orthogonality of the décomposition

VT Vpt + VT T(Au + F(u) ) = 0 ,

WT Wqt + WT T( Au + F( u ) ) = 0 , (2.7)

where u - 7^l( Vp + Wq), In the cases that A and T commute, i.e. AT-TA, (2.7) can be written as

VT Vpt + VT AVp + VT AWq +f(p, q ) = 0 ,

WT Wqt + WrAVp + WTAWq + #(p, ç ) = 0 , (2.8)

where V rAVe [R"xn, WTAWe R ( B + 1 ) x ( " + 1), VTAW<E Unx(n + l \ WTAV<= R<" + 1>x" and

g(p, q) := W7 TF{T~\Vp + Wq)) . (2,9)

Since (2.8) is equivalent to (2.3), the AIF (c.f. [9]) can be defined by neglecting the time derivative qt in (2.8)
and performing one fixed point itération step for the resulting nonlinear algebraic équation, starting with
q = ö. Hence if we assume that W ÂVK is invertible, the AIF is

P, + ( VT Vy\ VTAVp + VTAW<p(p ) +f{p, 00» ) ) ) = 0 ,

q = <p(p ) = - ( WT AWy \ WT AVp + g(p, 0 ) ) , (2.10)

= VTu0.

Remark 2.2. When (2.10) is used for the numerical simulation of a solution, the first équation corresponds to the
coarse grid approximation and the second équation corresponds to a nonlinear correction of the coarse grid approxi-
mation. In order for the algorithm to be numerically efficient, WTAW has to be well conditioned. Since space M is
used to approximate the high modes of the eigenspace of A, we can expect WT AW to be well conditioned. In the
examples considered in section 4, we can prove that 0 < fux\q\2 ^ {AWq, Wq) ̂  fi2\q\2 which implies that
cond ( WT AW) = jd2 /JUJ which is bounded from above by a constant independent of h.

3. THE LINEAR PART

Assume now that A and/or F in (2.3) dépends on a parameter 0 and that F(0) -DuF(0) = 0. Then
u = 0 is a trivial solution for all 0. To find primary bifurcation values, that is, values of 6 at which branches of
nontrivial stationary solutions bifurcate from u = 0, the first thing to do is to examine A which is the Hnear part
of (2.3) at u - 0. By the implicit function theorem, only those Q for which A becomes singular can be bifurcation
values.

M2 AN Modélisation mathématique et Analyse numérique
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BIFURCATIONS OF FTNITE DIFFERENCE SCHEMES 719

In order for the above réduction to an AIF to be accurate, we expect that the primary bifurcation values of (2.10)
are "close" to those of the original System (2.3), namely, the singular values of the linear part Â of (2.10) are
"close" to those of A.

In the cases that |F(w)| = O( \u\2), Â can be computed easily. \F(u)\ = O(\u\2) yields
| 0 O , O ) | = O( |p | 2 ) and (p(p) = - ( WTAWy1 WTAVp+ (higher order terms in p). It is easy to show that
this implies \f(p, 0 ( p ) ) | = O( |p |2)- As a conséquence, the linear part of (2.10) at p = 0 is given by

A = ( VT vy\ VTAV~ VTAW( WTAW)~1 WTAV) . (3.1)

We now prove the following resuit about the singular values of A and Â :

LEMMA 3.1. À is singular if and only if A is singular, provided WT AW is invertible.

Proof. First, we note that Â can be written as

À = (vTvy1
 VTAPAV=(VTV)~1 VTPAAV,

where

l WTA,

1 WT.

Let À be singular, then there exists a p =& 0 such that Âp = 0. It follows that VTPAAVp = 0, so
PAAVpe J . Using the définition of PA, it is easy to see that WTPAAVp = 0. Hence PAAVpt 0> n 21
which yields PA AVp = 0. If A was not singular, then from APA Vp = PA AVp = 0, one has
PA Vp = 0 so VT PA Vp = VT Vp = 0 and p = 0 because VT V is regular. This yields a contradiction, so
A has to be singular.
Let A be singular, then there exists a u ^ 0 such that Au = 0. If we write u = Vp-\- Wq as in remark
2.1, then either p or q has to be nonzero. Since

0 = WTAu = WTAVp + WT AWq

and WrAW is invertible,

q = - ( WT AWyl WT AVp .

Hence p can not be zero. From the définition of PA one can see immediately that VT APA Wq = 0 for any
q. Consequently,

0 = VTAPA u = VTAPA( Vp + Wq) = VT APA Vp .

Therefore Âp = 0 and Â must be singular.

D

vol. 32, n° 6, 1998



720 R- BRONSTERING AND M. CHEN

Remark 3.L The bifurcation values, that is, the values of 6 for which A and À become singular, are not to be
confused with the eigenvalues of A and Â.

4. NUMERICAL RESULTS

The software package AUTO designed by Doedel et al. (cf. [7]) for the computation of bifurcation diagrams
is used. In principle, it suffices to provide AUTO with the right hand side of the équation as input and AUTO
will compute the diagram. However, since not only selected solutions but entire families of solutions must be
computed for the diagram, the number of degrees of freedom of the sy stem has to remain moderate due to memory
limitation. For example, it is often not possible to deal with Systems with several hundreds of degrees of freedom.

Assume now we want to obtain the bifurcation diagram of a certain finite différence senûdiscretization (2.3)
for some fixed number N of grid nodes. If TV is prohibitively large, we have two choices. Firstly, we could just
replace the grid by some coarser grid, that is, reduce N to some n <N. However, any essential information which
cannot be resolved by the coarser grid would get lost. Secondly, we could reduce the number of degrees of
freedom by replacing (2.3) by some AIF (2.10) and hope that the diagram of (2.10) will still capture the essential
dynamics of (2.3). According to Lemma 3.1, at least the primary bifurcation values of (2.10) are exactly those
of (2.3), so we can expect the diagrams of (2.3) and (2.10) to coincide at least in a small horizontal strip around
the horizontal line {||w|| =0} of the bifurcation diagram.

Since only steady states are computed in the bifurcation diagrams, we will drop the factor ( VT V)" in the AIF
(2.10) in this section.

4.1. A simple reaction-diffusion équation

We will compute the bifurcation diagram of the equilibria of the équation

on the spatial interval [0, n] with zero boundary conditions u(t, 0) = u(t, n) = 0. By setting JLL = 6~1,
t = jus and v(s, x) = u(t, x) , équation (4.1) can be transformed to the classical Chaffee-Infante problem

vs - jjiv^ - v - v3 = 0 (4.2)

which has been studied rather extensively, see for example [14].
The primary bifurcation values 6 of (4.1) are given by the eigenvalues of — d2 /dx, that is, 8k = k ,

k =1 ,2 , . . . . For Sk<6<9kJhl there are exactly k pairs of nontrivial equilibria $?o>—> vî-v
|| (pj || = || <p~ ||. At 6 ~ 6k a new branch of pairs of equilibria bifurcates from the trivial branch u = 0. There
is no secondary bifurcation or bifurcation of any other kind in this System.

We semidiscretize (4.1) by the standard finite différence approximation with h = , N
K x

where (uv ..., uN)T are the unknowns and ut(t) approximates u(x, t) at x — ih for 1 ^ i; ̂  N. The boundary
conditions are reflected by setting uQ = uN+l = 0 in the scheme. Writing the finite différence scheme in the matrix
form, we have A = - Ah - 01, where

/ 2 - 1

- 1 2 - 1

- 1 2 - 1

- 1 2 /
f NxN

M2 AN Modélisation mathématique et Analyse numérique
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Let i V = 2 n + l , we define pt and qt by (1.1) which can be written in the matrix form p = V u and
q = Wr u where

il 2 1 \
1 2 1

\

12 - 1

- 1 2 - 1

1 2 1
1 2 1

(4.4)

- 1 2 - 1
- 1 2

Calculating explicitly the quantities in (2.10), one finds

- 16 h \ TAh II) , = - I I J _ 3 + 2 W i _ 2 - 7 II I_1 + 1 2 M I -

i-pi + v / = 1 n ,

(4.5)

where the conventions

(4.6)

are used.
From the above calculations, one obtains that Ah T, T and Ah are symmetrie which leads to AT= TA for

A — —Ah — 6I. Therefore, the formula (2.10) will be used to calculate the bifurcation diagram.

vol. 32, n° 6, 1998



722 R. BRONSTERING AND M. CHEN

The linear part of (2.10) (without the factor ( VT V)~l) can be explicitly written out as:

(4-7)

Formula (4.7) is a System of ordinary differential équations with n équations since the variables q is a function
of p which is determined by the second équation. For any /?, g(p, 0)i can be evaluated using (2.9) and q can then
be obtained by solving the second équation of (4.7).

Remark 4.L Following the remark 2.2, we can prove that in the case where 0<h<9~m, the condition
number of WT AW is smaller than 6. In fact, one can write WT AW explicitly

where

___5__3_ö , 3 9
Ah2 8 ' b~Sh2 16-

It is easy to check that a,b,a-2b are positive. Since WrAW is symmetrie, by Gershgorin's Theorem all of
its eigenvalues lie in the interval [Rv R2] where

Rx = a-2b, R2 = max {a, a + 2b} = a + 2b .

Denoting S = Oh , one can check that 0 ^ S < 1 which leads to

We made AUTO compute the bifurcation diagrams (L2 -norms of steady states versus 6) for (4.3) and (4.7) in
the parameter range 0 ^ 6 ^ 20 for various grids. Bifurcations of nontrivial steady states from u = 0 are
denoted by m in the diagrams.

Starting with the coarsest grid of only one inner grid point, we refined the grid until the computed primary
bifurcation values were indistinguishable from the exact values &k — k2 in the diagram. It turned out that 4
refinement steps (Af =31 grid points) were necessary to obtain the desired accuracy (see fig. 1). We took the
Af =31 diagram as the "référence diagram". Note that for three refinement steps (N= 15) the eigenvalues of
h'2[- 1, 2, - 1] in [0,20] still differ substantially from the eigenvalues of the Laplacian which is shown in
figure 2. Thus, reducing Â  from 31 to 15 produces larger errors in the higher primary bifurcation values. However,
we see from figure 3 that a better result is obtained with only n~ 15 degrees of freedom in the AIR The
n — 15 diagram is almost indistinguishable from the référence diagram, even for higher values of 6.

M2 AN Modélisation mathématique et Analyse numérique
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1.50.

1.25_

1.00-

0.75_

0.50_

0.25u.

0.0 0.

0 . 0 5 . 0 20 .0

Figure 1. — Bifurcation diagram of (4.3) with AT =31. The solid branch contains stable solutions, the dashed branches contain unstable
solutions.

1 . 50.

1.25L

1 . 0 CL

0.75_

0 . 5 0 _

0 . 2 5 u

0 . 0 0,

0 . 0

Figure 2. — Bifurcation diagrams of (4.3) with AT =15 (dashed Unes) and of N = 3l (solid Unes).

4.2. The Kuramoto-Sivashinsky équation

As a second example, we consider the Kuramoto-Sivashinsky équation

(4.8)

vol. 32, n° 6, 1998



724 R. BRONSTERING AND M. CHEN

1.50.

0 . 0 0.

0 . 0 5 . 0

Figure 3. — Bifurcation diagrams of (4.7) with n = 15 (dashed lines) and of (4.3) with iV = 31 (solid Unes).

on #^j e r ( 0, 2 n ). Equation (4.8) has been studied extensively and its bifurcation diagram in the parameter range
[0, 70] is certainly among the most of ten reproduced figures in dynamical Systems literature of the past ten years
([15], [16], [19], [20], [26] and many more). Because only odd functions are considered, we may restrict the
équation to the subspace of functions defined on 0 ^ x ^ n with w(0) - u(n) = w"(0) = u"(n) = 0.

The primary bifurcation values of (4.8) are those 9 for which 4 A2 + 9 A = A(4 A + 9) becomes singular.
As A is nonsingular on this space, the primary bifurcation values are the eigenvalues of -4 A which are given
by Ôk = 4k2, £ = 1 , 2 , ...

Replacing (4.8) by the semidiscretization, which has been proved to keep the dissipation property of the original
K-S équation (4.8) (see [8]), one obtains

(4.9)

where

uux
F(u)=-

2h

with h = n/(N + 1 ) and (wp . . . , uN)T are the unknowns
/ = 1,2,..., N. According to the boundary conditions,

which approximate
we set uo = uN+

u(t, x) at x — ih for
= 0, u_1 = -uï and

= ~- uN. As we proved in the preceding example, AhT, T and Ah are symmetrie which leads to
AT= TA for A = 4 A2

h + 9Ah? so (2.10) with the incrémental unknowns defined in (1.1) can be used to calculate
the bifurcation diagram in this example as well.
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The terms in (2.10) for the équation (4.9) can again be written explicitly (the terms involving Ah has akeady
been calculated in (4.5)),

Ah\WTA2
hVp)=pl_2-pl_l-pi+pl + v i=l , . . . , / i

where the same convention as in (4.6) and q_ j = — q2, qn + $ = — qn, are used.
The AIF of (4.9) (namely (2.10) for the K-S équation) is thus given by

(4.10)

+ 4(ql_
4 h

Remark 4.2. Sirnilar to the first example, the linear équation for q has a condition number K which is smaller
than 12 if h<6~m. In fact,

T cql_2 + bq,_1 + aql + bql+1 + cq, + 2, 3 *£ i =S n - 1 ,

WTAWq)2 =(b-

where

_ h _
2hA 4h2' h4 Sh2'

Hence for h<9~m it is easy to check that ail a, b, c, b~c,a~b,a~2b-2c are positive and that by
Gershgorin's Theorem all of the eigenvalues of W AW lie in the interval [Rv /?2] where

/^ = min {a-2b-2c, a-2b} = a~2b-2c,

R2 = max

so

vol. 32, n° 6, 1998



726 R. BRONSTERING AND M. CHEN

Again, we made AUTO compute the bifurcation diagrams for the original scheme (4.9) and its AIF (4.10) and
compared the diagrams. Following the same procedure, the bifurcation diagram of (4.9) with Af= 17, which is
shown in figure 4, is chosen to be the référence diagram. The points where Hopf bifurcations occur are denoted
by •

Figure 4 is also compared with existing results. For instance, it is almost identical to figure 3.1 in [26] which
was computed using 12 modes of a classical spectral method.

10 . 20 . 30 . 40. 50.

Figure 4. — Bifurcation diagram of (4.9) with N = 17.

6 0 . 7 0 .

10 . .

0 .

Figure 5.

1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 .

Bifurcation diagrams of (4.9) with N = 8 (dashed lines) and N = 17 (solid lines).

7 0 .

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



BIFURCATIONS OF FINITE DIFFERENCE SCHEMES 727

1 0 .

0 . 10 . 20 . 3 0 . 40 . 50 . 60 . 7 0 .

Figure 6. — Bifurcation diagrams of (4.10) with n = 8 (dashed Unes) and of (4.9) with N = 17 (solid Unes).

Reducing the number of grid points to N= 8 leads to major différences in the right part of the diagram (see
fig. 5). Therefore, N = 8 grid points are not sufïicient to correctly reproduce the dynamics. Again, we see that
a substantial improvement of the bifurcation diagram can be produced by taking n = 8 degrees of freedom in
the AIF (see^/zg. 6). In order to make the plots not too complicated, we left out the bifurcation points in figure 5
and figure 6.
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