Bifurcations of finite difference schemes and their approximate inertial forms
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 32 (1998) no. 6, p. 715-728
@article{M2AN_1998__32_6_715_0,
     author = {Bronstering, Rolf and Chen, Min},
     title = {Bifurcations of finite difference schemes and their approximate inertial forms},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {32},
     number = {6},
     year = {1998},
     pages = {715-728},
     zbl = {0914.65094},
     mrnumber = {1652609},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1998__32_6_715_0}
}
Bronstering, Rolf; Chen, Min. Bifurcations of finite difference schemes and their approximate inertial forms. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 32 (1998) no. 6, pp. 715-728. http://www.numdam.org/item/M2AN_1998__32_6_715_0/

[1] N. Aubry, W. Lian and E. S. Titi, Preserving symmetries in the proper orthogonal decomposition, SIAM J. Sci. Comp., 14, 483-505, 1993. | MR 1204243 | Zbl 0774.65084

[2] R. Bronstering, Some computational aspects on approximate inertial manifolds and finite differences. Discrete and Continuous Dynamical Systems, 2, 417-454, 1996. | MR 1414079 | Zbl 0949.65135

[3] M. Chen, H. Choi, T. Dubois, J. Shen and R. Temam, The incremental unknowns-multilevel scheme for the simulation of turbulent channel flows. Proceedings of 1996 Summer Program, Center for Turbulence Research, NASA Ames/Stanford Univ., pages 291-308, 1996.

[4] M. Chen and R. Temam. Incremental unknowns for solving partial differential equations. Numerische Mathematik, 59, 255-271, 1991. | MR 1106383 | Zbl 0712.65103

[5] M. Chen and R. Temam, Nonlinear Galerkin method in the finite difference case and wavelet-like incremental-unknowns. Numerische Mathematik, 64(3), 271-294, 1993. | MR 1206665 | Zbl 0798.65093

[6] M. Chen and R. Temam, Nonlinear Galerkin method with multilevel incremental-unknowns. In E.P. Agarwal, editor, Contributions in Numerical Mathematics, pages 151-164. WSSIAA, 1993. | MR 1299757 | Zbl 0834.65094

[7] E. J. Doedel, X. J. Wang and T. F. Fairgrieve. Software for continuation and bifurcation problems in ordinary differential equations. CRPC-95-2, Center for Research on Parallel Computing, California Institute of Technology, 1995.

[8] C. Foias, Jolly, Kevrekidis and E. S. Titi. Dissipativity of numerical schemes. Nonlinearity, pages 591-613, 1991. | MR 1124326 | Zbl 0734.65080

[9] C. Foias, O. Manley and R. Temam. Modeling of the interaction of small and large eddies in two dimensional turbulent flows. Math. Model. and Num. Anal., 22(1), 1988. | Numdam | MR 934703 | Zbl 0663.76054

[10] C. Foias and E. S. Titi Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity, 4, 135-153, 1991. | MR 1092888 | Zbl 0714.34078

[11] G. Golub and C. Van Loan. Matrix Computations. The John Hopkins University Press, second edition, 1989. | MR 1002570 | Zbl 0733.65016

[12] J. Hale. Asymptotic Behavior of Dissipative Systems. AMS, 1988. | MR 941371 | Zbl 0642.58013

[13] J. M. Hyman, B. Nicolaenko and S. Zaleski Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces. Physica D, 23, 265-292, 1986. | MR 876914 | Zbl 0621.76065

[14] M. Jolly Explicit construction of an inertial manifold for a reaction diffusion equation. J. Diff. Eq., 78, 220-261, 1989. | MR 992147 | Zbl 0691.35049

[15] M. S. Jolly, I. G. Kevrekidis and E. S. Titi. Approximate inertial manifolds for the Kuramoto-Sivashinsky equation : Analysis and computations. Physica D, 44, 38-60, 1990. | MR 1069671 | Zbl 0704.58030

[16] M. S. Jolly, I. G. Kevrekidis and E. S. Titi. Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation. J. Dyn. Diff. Eq., 3, 179-197, 1991. | MR 1109435 | Zbl 0738.35024

[17] D. A. Jones, L. G. Margolin and E. S. Titi. On the effectiveness of the approximate inertial manifold-a computational study, to appear in Theoretical and Computational Fluid Dynamics, 1995. | Zbl 0838.76066

[18] D. A. Jones, L. G. Margolin and A. C. Poje. Enslaved finite difference schemes for nonlinear dissipative pdes. Num. Meth. for PDEs, page to appear. | MR 1363860 | Zbl 0879.65063

[19] Kevrekidis, Nicolaenko and Scovel. Back in the saddle again : A computer assisted study of the Kuramoto-Sivashinsky equation. Siam J. Apl. Math., 50, 760-790, 1990. | MR 1050912 | Zbl 0722.35011

[20] E. Korontinis and M. R. Trummer. A finite difference scheme for Computing inertial manifolds. Z angew Math. Phys., 46, 419-444, 1995. | MR 1335911 | Zbl 0824.65125

[21] L. G. Margolin and D. A. Jones. An approximate inertial manifold for computing Burger's equation. Physica D, 60, 175-184, 1992. | MR 1195598 | Zbl 0789.65069

[22] M. Marion, Approximate inertial manifolds for reaction-diffusion equations in high space dimension. J. Dyn. Diff. Eq., 1, 245-267, 1989. | MR 1010967 | Zbl 0702.35127

[23] M. Marion and R. Temam. Nonlinear Galerkin methods. SIAM J. Num. An., 26, 1139-1157, 1989. | MR 1014878 | Zbl 0683.65083

[24] B. Nicolaenko, B. Scheurer and R. Temam. Some global dynamical properties of the Kuramoto-Sivashinsky equation : Nonlinear stability and attractors. Physica D, 16, 155-183, 1985. | MR 796268 | Zbl 0592.35013

[25] R. Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer Verlag, 1988. | MR 953967 | Zbl 0662.35001

[26] R. Wallace and D. M. Sloan. Numerical solution of a nonlinear dissipative System using a pseudospectral method and inertial manifolds. Siam J. Sci. Comput., 16, 1049-1070, 1994. | MR 1346292 | Zbl 0833.65087