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THE GRAZING COLLISIONS ASYMPTOTICS OF THE NON CUT-OFF KAC EQUATION (*)

G. TOSCANI

Abstract. — We investigate the non cut-off Kac équation when the cross-section is concentrating on grazing collisions. We prove that this
process leads to the one-dimensional Fokker-Planck équation, and that, at last under suitable regularity of the initial data, the convergence
is uniform in time. © Elsevier, Paris

Résumé. — On s'intéresse à l'équation de Kac « non cut-off» lorsque la section transversale se concentre sur les collisions rasantes. On
montre que l'on aboutit à l'équation de Fokker-Planck en dimension 1 d'espace, et que sous des hypothyses de régularité de la donnée
initiale, il y a convergence uniforme en temps. © Elsevier, Paris

1. INTRODUCTION

The non cut-off Kac équation [6] is a model for a single molecule motion in a pseudomolecules like-bath
confmed to move on a straight line. According to this model the numerical density évolution of molecular
velocities v e R at time t 5= 0 is determined by the Boltzmann problem solution

\ \ (1.1)
- 7 1 , 7 1 ]

In (1.1) ( u \ w*) are the post-collisional velocities, given by

v* = v cos 6 - w sin 6, w* = v sin 6 + w cos 6 (1.2)

while the function fl(fi) has a singularity of the form jn~a when fj. —> 0+ and 1 < a < 3.
The kernel fi was introduced by Desvillettes by analogy with the non cutoff kernel of the Boltzmann

équation [3] to understand, at least in this "simple" case, if the singularity, destroying at each positive time the
memory of the initial density, introduces regularizing effects on the solution. It is a fact that in the classical Kac* s
caricature of a Maxwell gas [10], where /3(/u) = 1/(2 n), the solution to the initial value problem keeps at best
the regularity of the initial density.

One of the reasons of assuming such a conjecture is that an asymptotics of the Boltzmann équation when the
cross-section is concentrating on the grazing collisions (these collisions are those that are neglected when the
cut-off assumption is made) leads to the Fokker-Planck-Landau équation, which is known to induce regularizing
effects (or at least compactness properties, even in the spatially inhomogeneous case [11]).

At time when Desvillettes wrote his paper, few results on this asymptotic équivalence were available [5], [4].
In additions, these papers were only concerned with formai results, proving that the Boltzmann collision operator
reduces to the Landau one for a smooth density.

(*) Manuscript received April 17, 1997
This work has been partially supported by I.A.N.-C.N.R., Pavia (Italy).
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764 G. TOSCANI

In the last two years, a lot of progresses have been made on the subject, mainly due to Arsen'ev and Buryak
[1], Villani [16], [17] and Goudon [9], In particular, in [17] the author shows how to treat the asymptotics of
grazing collisions in a frame consistent with the existence theorems on the Boltzmann équation without cut-off.
Villani's technique covers also the Coulomb case, thus giving a first rigorous basis to the work of Degond and
Lucquin [4].

Despite the motivations quoted by Desvillettes to introducé the non cut-off Kac équation, the asymptotic
problem for this équation remains untouched.

In this note we prove that in the grazing collisions limit, the target équation is the classical Fokker-Planck
équation. Moreover, at least when the initial density satisfies some regularity hypotheses, and possesses a
sufficiently high number of moments, the solution to the non cut-off Kac équation converges towards the solution
to the Fokker-Planck équation uniformly in time, and in a strong sense (related to the regularity of the initial
density). In addition, we obtain explicit bounds on the distance in terms of the small parameter involved in the
limit procedure.

The results of the present paper depend deeply on the fact that in this case we can consider the Fourier transform
of the Boltzmann équation, and we have the possibility of particularly exact computations. The same idea is at
the basis of some recent results of Gabetta, Toscani and Wennberg [8], and of Gabetta and Pareschi [7]. In the
former paper the authors obtain exponential convergence to equilibrium for Kac équation and for the Boltzmann
équation for Maxwell molécules with or without cut-off in a norm equivalent to weak-* convergence of measures.
In the latter, convergence to equilibrium for Kac équation with or without cut-off in various Sobolev spaces is
discussed. More recently, Carlen, Gabetta and Toscani [2], always using the Fourier transform version of the
Boltzmann équation, obtained a sharp bound on the rate of exponential convergence to equilibrium for the same
équations with cut-off in a weak norm. These results were then combined, using interpolation inequalities, to
obtain the optimal rate of convergence in the strong //-norm, as well as various Sobolev norm.

2. THE NON CUT-OFF KAC EQUATION AND ITS FOURIER TRANSFORM

In this section we coliect results on the non cut-off Kac équation. Most of these results are pubiished, and we
refer to them only shortly. Some detail will be added when necessary. First of all we quote the following

THEOREM 2.1 [6]: Let <p 2= 0 be an initial datum such that, for some r e N,

and let fi(ju) be a cross-section satisfying the following property on (0, TL]

Poju~a ^ Pit*) ^PiV~a (2.2)

for some constants 0 <Po<px and a e ( 1 , 3 ) . Then, there exists a nonnegative solution
f(v,t)e L°°([0, + oo) ; L * ( R ) ) to eq. (1.1) with initial datum (p in the following sense:

For all functions <j> £ Wx °°( R ) we have

jk [ f(v,t)<p(v)dv= j [ K<p(v,w)f(v,t)f(w,t)dvdw (2.3)
JR JRJR

where

?\)dd. (2.4)
J -
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ASYMPTOTICS OF THE NON CUT-OFF KAC EQUATIONS 765

The solution conserves the mass,

\ f(v, t) dv =\ <p(v) dv .
JR JR

Moreover, if in (2.1) r ^ 2 , also the energy is conserved

f v2f(v,t)dv= f v2<p(v)dv,
JR JR

and we can find a constant Cr such that, for all t 5= 0

f (l + v2r)f(v,t)dv<Cr. (2.5)
J R

F i n a l l y , if a s s u m p t i o n ( 2 . 1 ) h o l d s w i t h r ^ 2 , f o r a l l t > 0 a n d a l l v > 0 w e h a v e

Desvillettes's theorem shows that the solution to eq. (1.1) gains regularity, and links this gain to the number
of moments that are initially finite. The uniqueness of the solution to eq. (1.1) was proved subsequently by Gabetta
and Pareschi [7], by means of Tanaka's functional. There, the authors were mainly interested in the problem of
convergence to equilibrium in Sobolev spaces. For this reason, they were looking at uniform bounds on Sobolev
norms of the solution (these bounds are not available in conséquence of Theorem 2.1). Since we will need such
type of bounds, let us briefly recall the method, which has been developed first by Lions and Toscani in their proof
of the central imit theorem [12].

In the sequel, let ƒ( v ) ^ 0 dénote a function with unit mass and energy o. Let us introducé the convex
functionals

2k_1 dv. ; k ^ 1 (2.6)

and

jV x 1 * 1 / . , IV s^ A V" • ' /

We remark that when k= 1 they coincide with Fisher's measure of information. The meaning and relevance of
the aforementioned functionals in connection with the propagation of regularity is contained into the next results.

THEOREM 2.2 [12]: Let n>\. There exists a constant cn such that, for all densities f with finite energy and

\É1L f (2.8)

whenever kp = 2n.
Theorem 2.2 has a simple conséquence.
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766 G. TOSCANI

THEOREM 2.3: Let ƒ 5= 0 be a density of bounded energy, such that for some n ^ 1 Ln(f) and Jn(f) are finite.
Then f e / T ( R ) , and, for O^k^n we have

f \/k)]2dv ^ {cn[Ln(f)+Jn(f)]}2J^r (2.9)

Proof: Given k =£ n,

fdv

Since k ^ n, we can apply Hölder inequality and (2.8) to obtain

V
Finally

and the re suit follows.
The last result we quote deals with the time growth of the functionals Lk and Jk.

THEOREM 2.4 [7]: Let f(v,t) be the unique solution to eq. (1.1), where cp ^ 0 satisfies (2.1) for some
r ^ 2, and fi satisfies (2.2). Then, if for some k ^ 1 Lk(f0) and Jk(f0) are finite, Lk(f(t)) and Jk(f(t)) are
finite for all t 2= 0, and there exists constants Ak, Bk ^ 0 such that the following bounds hold

L{<p) (2.10)

k>\

k>\ (2.11)

We can now pass to the Fourier transform of eq. (1.1). The Fourier transform of f(v, t) is

(2.17)

e" ï00Since v —» e" lies in W ï00(Rp ), it is possible to use eq. (2.3). Then, a simple calculation leads to the following
équation for ƒ( £, t )
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which is in certain respects much simpler than the équation for f(v, t), being the collision operator less
complicated. The conservation of mass and energy for ƒ translates to

Ko, 0 = 1. ll/(.,OIL=si

#j(o,o=-o- IIJ«(.,OIL«ff- (2-19)

3. THE FOKKER-PLANCK EQUATION AND THE PROPAGATION OF REGULARITY

In this short section we will deal with the one-dimensional in space Fokker-Planck équation

A simple calculation leads to the following équation for the Fourier transform ƒ(£, 0

) . (3.2)

Let <p( v ) be any density on R with unit mass and energy a. Let X be any random variable with this density, and
let W be any independent Gaussian random variable with density Ma given by

a {^\ (3.3)

For every t > 0 define

Zt = e~tX+(l-e~2t)mW. (3.4)

Then the random variable Zt has a density f(v,t) at each t, and it is well-known that f(v, t) is evolved from
<p under the action of the adjoint Ornstein-Uhlenbeck semigroup. Therefore ƒ( v, t) satisfies équation (3.1), which
can of course be checked directly from the définition.

For any a > 0 , we set fa(v) = a~mf(a~m v). Then, f(v, t) is expressed by the convolution formula

where a(t) = e~2\ 0(t) = l - e~2t.
The corresponding of Theorem 2.2 is a conséquence of (3.5) and of the properties of the functionals Lk and

Jk. We have

THEOREM 3.1: Letf(v, t) be the unique solution to eq. (3.1), where the initial value q> 5= 0 has unit mass and
energy o. Then, if for some k^ l Lk(<p) and Jk((p) are finite, Lk(f(t)) and Jk(f(t)) are finite for all
t ^ 0, and the following bounds hold

mzK{e2kJk((p);(l-e-2rkJk(Ma)}. (3.6)

Proof: Since both q> and Ma have unit mass, by Lemma 2.1 of Lions and Toscani, [12] for any k
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768 G. TOSCANI

Hence, we can bound Lk(f(t)) with Lk(<pa^) in the time interval t ^ 1, and with Lk(Ma^t^) whenever
-k

t>\. Since Lk(fa) = a Lk(f), the fîrst bound in (3.6) follows. The same argument can be used for Jk.

4. THE GRAZING COLLISION LIMIT

We can now make précise assumptions on the asymptotics of the grazing collisions, namely in letting the kernel
y? concentrate on the singularity 0 = 0. We will introducé a family of kernels {/?e( \6\ ) } e > 0 satisfying the
following hypotheses

i) For any given e > 0, /?e satisfies (2.2).
ii) £( |6>|)6> 2e ^ ( [ 0 , 7 0 ] , and

lim [ £ ( \9\)de=l
e -» 0+ J 0

i) and ii) can be obtained in several ways, for example taking, for 0 < v < 1

We prove now our main resuit.

THEOREM 4.1: Let 0 ^ ç> be an initial datum with unit mass> zero mean velocity, energy a, satisfying hypothesis
(2.1) with r ^ 2. Moreover let L3(<p) and J3((p) be finite. Let {/?e} be a séquence of kernels concentrating to
zero and satisfying hypotheses i) and ii).

Then, for ail t>0 and ô>0 the solution f£( • ,t) to the non cut-offKac équation with initial value (p converges
to ƒ( . , f ), solution to the Fokker-Planck équation (3.1) with the same initial value strongly in W3~ ' ( R ) . The
convergence is uniform in time, and the following bound holds

lim <p(e,S,<p) = O. (4.1)
e->0+

The function (/> can be computed explicitly.

Proof: Let <p(v ) satisfy the hypotheses of the theorem. Then, given € > 0, by Theorem 2.1 we conclude that
the non cut-off Kac équation

f
(4.2)

has a unique solution/e(f, t), and/ e(£, t) satisfies

(^0 f» . . .
dt =J /?e(|0|)[/e(fcosefO/e(fsinflfO-/e(O,O/6(^O]de- (43)
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Let us expand / e( £ cos 0,t) and / e (£ sin 9, t) in Taylor's series of the variable f, the former up to the second
order, the latter up to the third order. For the sake of simplicity, we will not take care of time dependence, and
we will dénote by f the derivative of ƒ with respect to <J. By (2.19) we obtain

cos e ) =/,( { ) +fc( cos e -

sing) = l - a ^ y u+f"(Ç ) s ^ . (4.4)

Hence, substituting into the collision intégral we obtain

fa
fi (\e\)sm2 9 d9-dt

Let us subtract eq. (3.2) from eq. (4.5). We obtain

j t (U& 0 -ƒ(£, t)) = -<jÇ\f€(Ç, t) -M, 0 ) " « £ ( & 0 - / ( ^ t))'+R(f€) . (4.6)

In (4.6) we put

^( / € )=-A(e)^ 2 / e (^) - f i (e )^(^) + C(C)<ï 3 / £(^)^"(^)+O(e)^ /(?) (4.7)

with obvious meaning of the quantities A, B, C, D. Let us multiply both sides of (4.6) by
, 0 -ƒ(£, t) ), and then integrate over R.

f {Re[(l(ï, t) -M, /))'(ƒ«(«• 0 -A6 0)] ̂  + 2 f- 2 f {Re[(l(ï, t) -M, /))'(ƒ«(«• 0 - A 6 0 ) ] ^ + 2 f lte[/ï(/e) (ƒ,({, * ) -A«.*) ) ] df. (4-8)

Under the hypotheses we made on ç», by Theorems 2.3 and 2.4, we know that the //3-norms of the solution to
both the non cut-off Kac équation and the Fokker-Planck équation are uniformly bounded in time. Moreover, we
outline that the Fisher information L(f( t) ) of the solution to the Fokker-Planck is monotonically decreasing with
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770 G. TOSCANI

time if it is bounded initially. This last property has been recently used in [15] to give a proof of the logarithmic
Sobolev inequality. These facts, combined with the uniform boundedness of the third moment of the Kac équation,
lead to obtain uniform estimâtes on the last intégral into (4.8). In more detail, we have

WOI

\B( e

By Cauchy-Schwarz inequality and Parseval's formula we get

^ c||ƒ,11 „.!!ƒ,-ƒ!!„,.

(4.9)

(4.10)

Similarly we obtain

Finally

•[/.<

I v2 ƒ.( v ) II L, II ƒ. - ƒ II „, « a |] /£ |L || /e - ƒ || H,

'll/JI^H/e-Zlln'-

-ƒ(<?,or

(4.11)

(4.12)

(4.13)

The quantities on the right sides of (4.10-13) can be bounded uniformly in terms of (p in view of Theorems 2.4
and 3.1. Then, using these bounds into (4.8), and considering that A(e), B(e), C(e) and D(e) are infinitésimal
with e, we obtain the inequality

- 2 f
JR

(4.14)
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where E( e ) dépends on the family of kernels, and G dépends on <p through its moments and L3 and Jv Let us set
ge(

v> *) ~fSv'?) ~ftv**)• Then, by Parseval's formula, inequality (4.14) can be rewritten in terms of ge

dv

In dimension one, the Nash inequality [13] states that

dv dv+E(e)G(<p) . (4.15)

2dv)3\f(v)\2dv \f(v)\dv)4.

Let us apply inequality (4.16) to the first term on the right of (4.15). Since ||#J|Li =Ê 2, we obtain

- ƒ .
Bg.(v,t)

dv

Hence, if we set y(t)= \ge(v,t)\2dv, y(t) satisfies the inequality
JR

with v( O ) = 0. Let z = ye \ Then z satisfies

dt 8 C

(4.16)

(4.17)

(4.18)

(4.19)

with z( 0 ) = 0. It is immédiate to recognize that at any time t, z( t) can not exceed the limit value z*( t), solution
of the équation

and this implies the bound

(4.20)

(4.21)

Hence we proved thatfe( v,t) converges stronly in L ( R ) to ƒ( v, t), and the convergence is uniform in time. To
conclude the proof of the theorem, consider that from (4.20) follows

(4.22)

3 + 3/2 + 3/4 + • -, 2which implies convergence in W ' . Using the same trick, we can prove convergence in W
namely the result.

5. CONCLUDEVG REMARKS

In this paper, we investigated the grazing collision asymptotics of the non cut-off Kac équation, proving the
strong convergence to the solution of the one-dimensional Fokker-Planck équation. The result of Theorem 4.1 can
be improved, in the sense that the more regular the initial density <p is, the stronger the convergence of/€ is.
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772 G. TOSCANI

It would be désirable to extend these results to the Boltzmann équation for Maxwell molécules, but the passage
to higher dimensions encounters several obstacles. Indeed, propagation of regularity and uniform bounds in
Sobolev spaces has been proved only for the Boltzmann équation for Maxwell pseudomolecules (with cut-off) [2].
Better results are available in dimension two of the velocity space [14]. Investigation of this case is in progress.
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