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} MATHEMATICAL MODELUNG AND NUMERtCAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 32, n° 6, 1998, p 773 à 788)

NESTED SEQUENCES OF CHEBYSHEV SPACES
AND SHAPE PARAMETERS (*)

Marie-Laurence MAZURE and Pierre-Jean LAURENT

Abstract — Through a geometncal approach of the blossoming pnnciple, we achieve a dimension élévation process for extended
Chebyshev spaces Applied to a nested séquence ofsuch spaces included in a polynomial one, this allows to compute the Bézier points from
the initial Chebyshev-Bézier points This method leads to interesting shape effects © Elsevier, Paris

Key words Chebyshev sphnes, shape parameters, shape effects, geometncal design
AMS subject classification: 65D17

Résumé —Au moyen d'une approche géométrique du principe de floraison (« blossoming »), nous obtenons une procédure d'élévation
de la dimension pour les espaces de Chebyshev généralisés Appliqué à une suite emboîtée de tels espaces inclus dans un espace de
polynômes, ceci permet de calculer les points de Bézier à partir des points de Bézier-Chebyshev Cette méthode conduit à des effets déforme
intéressants © Elsevier, Pans

1. INTRODUCTION

Let us recall the classical de grée élévation process for polynomials. Consider a polynomial function F of degree
less than or equal to n with values in Ud, and dénote by PQ, ..., Pn its Bézier points with respect to (0, 1). It is well
known that, when considering F as a polynomial function of degree less than or equal to n + 1, its new Bézier
points Qo, ..., Qn + 1 can be computed as foliows:

! _ 1 + ^ T ï P , l**i**n, Qn+1=Pn. (1.1)

As pointed out by L. Ramshaw [27], the blossoming principle allows a very elegant proof of this resuit. Denoting
by ƒ the blossom of F, that is to say, the only function of n variables to be symmetrie and affine with respect to each
variable, and to give F when restricted to the diagonal of Un

9 the Bézier points of F are given by

P^ftty-'l1) ï = 0,...,n. (1.2)

Hère, the multiplicative notation a means that the point a is repeated exactly k times. Considered as a polynomial
function of degree less than or equal to n + 1, F has a blossom that we shall dénote by ƒ, which is clearly the
foliowing function of n + 1 variables:

(1.3)

Similarly to (1.2), the new Bézier points of F are defined by

(*) Présentée October 15, 1997 by P-J Laurent, member of the Editonal Board
Laboratoire de Modélisation et Calcul (LMC-MAG), Université Joseph Founer, BP 53, 38041 Grenoble cedex (France)
E-mail mazure @ imag fr, pj 1 @ imag fr
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774 Marie-Laurence MAZURE, Pierre-Jean LAURENT

Thus, the degree élévation relations (1.1) are nothing but (1.3) applied to the (n + 1 )-tuples (0n + 1~l Y).
In this paper, we shall extend the degree élévation process to the case of extended Chebyshev spaces, and show

how this can yield very nice and efficient shape parameters. Observe that, in this more gênerai framework, the
expression "degree élévation", particular to the polynomial case, is now to be replaced by dimension élévation.

The blossoming principle has recently been developed for extended Chebyshev spaces. This can be done for
instance through a geometrical approach [25, 14, 16, 17] which consists in defining blossoms by means of
intersections of osculating flats, according to an idea introduced in [29] for geometrically continuous polynomial
splines. Let us mention the existence of other approaches of a more algebraic nature (see [1, 3, 20, 21]).

Section 2 recalls the geometrical définition of Chebyshev blossoming (for more details see [14, 16, 17]). In
Section 3, this approach proves to be particularly efficient to develop the dimension élévation process. In
Section 4, by means of a detailed example, it is shown how this process can lead to shape parameters the efficiency
of which is pointed out in Section 5 by studying the corresponding splines.

2. BLOSSOMING IN CHEBYSHEV SPACES

Consider a closed bounded interval I=[t0, tx], with to<tv and an (n + 1 )-dimensional subspace % of
C°°(/) containing the constant functions. Assume that D% :={t/ ' | t / e ^ } is an extended Chebyshev space on
I (in short EC space), i.e., that each nonzero element of D^é has at most w — 1 zéros (counted with multiplicities)
in /. This assumption clearly implies that each nonzero element of °U has at most n zéros in /, which means that
U itself is an EC space on L

Choose n functions <PV ..., <Pn e °U such that ( I , <PV ..., 0n) forai a basis of °U and set 0 := (&v ..., 0n)
T.

Recall that the osculating flat of order i of 0 at a point x e I is the affine flat passing through 0( x ) and the direction
of which is spanned by the first i derivatives 0\x),..., 0(l\x). In the following, it will be denoted by
Osci 0(x). Due to the assumption on the space D&, it can be proved (see [14, 16, 17, 23]) that, for any distinct

r r

Tp ..., zr e /, and any positive integers ^ ..., jJr satisfying 2 A*, = n » t n e intersection f} O s c n / i 0(rt) consists of
a single point.

Now, given an n-tuple (xv ...,xn) e 7n, dénote by (xv ..^xn)
ord the n-tuple composed of the same éléments

arranged in increasing order. Using a multiplicative notation, we can always write

with z1 < T2 < .„ < zr, the notation T^ meaning that the point p is repeated exactly // times. Then, since
r

O Oscn_w 0(Tt) consists of a single point, this point can be labelled as follows:

This provides a function q> defined on In which will be called the blossom of 0. Clearly, the blossom (p of 0 is
symmetrie and satisfies

<p(xn) = 0(x) for all x e I. (2.2)

Let us fix n — 1 points xv ..., xn_x G 7, with (xv ..., xn_l )ord = (T^1... r^r)- Then, by the very définition of the
r

blossom, the function tp(xv ..., xn_v. ) has values in the affine flat 2 := O Oscn_^ 0(tt) which can be proved

to be an affine line ([14, 16]). In fact, <p(xv ..., xn_v, ) is C°° and strictly monotone on / (see [1, 16, 17, 20, 23]).
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NESTED SEQUENCES OF CHEBYSHEV SPACES 775

This resuit is essential to develop the classical numerical algorithms. It can be stated equivalently as foliows: given
two distinct points a, b e /, there exists a fonction a (depending on a, b and also on xv ..., xn_l), C°° and strictly
monotone on /, and such that, for all x e /,

(p(xv ...,xn_vx) = ( 1 - a(x) ) <p(xv ..., xn_va) + a(x) (p(xv ..., xn_v b) . (2.3)

In particular, a( a ) = 0, a( b ) = 1.
A function F: I-$Ud will be said to be a ̂ -fonction when each of its components belongs to °U. Observe that,

given a ^-function F, there exists a unique affine map h:Rn ~^Ud such that F= h o 0 . Then, the blossom ƒ
of F is defined by

f:=ho<p. (2.4)

Accordingly, if JC1? ...,xn e ƒ, with (JCX, ...,xn)ord = (T^1... T ^ ) , we still have

f(xv ...,xn) e P | OSC„_WF(T,) , (2.5)
l = \

but, without any additional assumption on h, there is no reason why the intersection appearing in (2.5) should be
reduced to a single point. On the other hand, from (2.4), it can easily be deduced that the blossom ƒ is symmetrie
and gives F when restricted to the diagonal of In. Finally, for xv ..., xn_ v a, b e /, a ̂  b, the affinity of h allows
us to write f(xv ..., JCW_P x) as an affine combination of f(xv ...,xn_v a) and f(xv ...,xn_v b). More precisely,

f(xv...,xn_vx) = (l-a(x))f(xl,...,xn^va) + a(x)f(xv.^xn_vb), (2.6)

a being the same function as in (2.3).
As a direct conséquence, given xel, we can deduce the existence of real numbers yt(x) e [0 ,1 ] ,

7 = 1,..., 7i, ï = 09..., H-y, such that, for all ^-functions F,

v
Ü - 1 ) - ° + l ) t [ + l * - 1 ) - (2-7)

When y goes from 0 to «, (2.7) describes a de Casteljau type algorithm. The affine combinations involved in (2.7)
being in fact convex ones, this algorithm allows the computation of f(xn) as a convex combination of the
n +1 points f(tQ~lt\), i = 0, ..., n, which we shall refer to as the Chebyshev-Bézier points of the
% -function F. In other words,

X , % O /, (2.8)

1 = 0

where âS0{x),..., $n(x) do not depend on F and satisfy

n

2 ^ ( J C ) = 1, 0 ^ ^ ( J C ) ^ 1 j e e / . (2.9)

When applying (2.8) to any element of %, it clearly follows that ( ̂ 0 , . . . , Sèn ) is a basis of °U, which will be called
its Chebyshev-Bernstein basis.

vol. 32, n° 6, 1998



776 Mane-Laurence MAZURE, Pierre-Jean LAURENT

Let us consider the Chebyshev-Bézier points of function 0, i.e., 77t := <p(tn
Q~l t\)9 i = 0, ...,n. According to

(2.8), we have

n

0{x) = ^JÛSi{x)ni for all x e l . (2.10)
i = 0

Due to the f act that functions H, 0V ,.., <Pn are linearly independent, it easily follows that the affine space spanned
by the image of 0, (denoted by ( aff( lm 0 ) ) is of dimension n (hence, is equal to Rn ). On the other hand, (2.10)
shows that

aff(Im 0) c aff(770,..., 77J , (2.11)

which proves both the linear independence of the Chebyshev-Bézier points 770,..., JJn of 0 and the equality
aff( lm 0 ) - aff( 770, ..., 77w ).

For all x e / and all i ^ n, the osculating flat Osc, 0(x) is i-dimensional: indeed, ( &'v ..., 0'n) being a basis
of the EC space D%y the n vectors 0\x),..., 0^n\x) are linearly independent. Now, by the very geometrical
définition of the blossom <p of 0, for all i = 0,..., n, the (i + 1 ) points 770,..., i77 belong to Osci ^(^ 0)- Thus,
according to the affine independence of the Chebyshev-Bézier points of 0, we have

Oscz * ( t0) = aff(/70, ..., 77,) i = 0,.... n . (2.12)

Symmetrically, we obtain

„...,/7 l l) i = 0,. . . ,n. (2.13)

One could give explicit expressions of the Chebyshev-Bernstein basis (cf. [14, 16]), but the interesting thing
is that, in addition to (2.9), it satisfies other properties similar to the polynomial Bernstein basis, which can directly
be derived from the geometrical définition of the blossom, as shown in the proof of the next theorem.

THEOREM 1.1: The Chebyshev-Bernstein basis satisfies

*P > ( f o ) = O 0 s ï j < i 5 £ n , * ^ I ( ï 1 ) = 0 0^j<i**n, (2.14)

^ ° ( f o ) > O , ( - l ) l * ^ I ( r 1 ) > 0 ï = 0 , . . . , w . (2.15)

Proof: The Chebyshev-Bézier points 77( are in f act defined by

{17,} : = O s c , * « b ) n O s c ( I _ , * ( » , ) i = 0, . . . ,n. (2.16)

Therefore, there exist real numbers kx v ..., Xx t, jut v ...,/ij n_t, such that

^ = ^ o + 2 ^ « * ( 0 ( ' o ) = ^» + 2 ^ J # 0 ) ( ^ i ) »" = 0, . . . ,n. (2.17)

Consider a fixed integer i, 1 ^ i; ̂  n. The corresponding equality (2.17) gives

M2 AN Modélisation mathématique et Analyse numérique
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As an immédiate conséquence of (2.18), we can dérive in particular that

- , (2.19)

where g dénotes the C*° function defined on / by:

g(x) :=det (<P'(io). - . tf0"1^,,). * ( * ) " * ( ' o ) . * ' ( ï i ) . - . ^""\t1)) xel. (2.20)

Clearly, g(t0) = g\to) =... = fir°~1)(f0) =0, and the ith derivative

is not equal to 0 since D% is an EC on /. Consequently,

gW-^^y 9{'\t0) whenx-»f0. (2.21)

Moreover, function g does not vanish on ]r0, rL] : otherwise, there would exist a point Ç G ~\tQ9 tx[ such that

g\i) = det (0\to),.... «P( |-

which would contradict the fact that D% is an EC space on I. Therefore, it follows from (2.21) that #(x) keeps
the sign of g°\t0) all over ]t0, f j . Consequently, (2.19) proves that

Xtl>0 ï= l , . . . , n . (2.22)

On the other hand, differentiating (2.10) and the first part of (2.9) up to order j yields

* 0 ) ( ' o ) = 2 * , 0 ) ( ï o ) ( f l , - f l o ) K j ^ n . (2.23)

On account of the affine independence of the points JJ0, ..., IIn> comparing these latter relations with the left
equalities in (2.17) proves that the n x n matrix ( âi[^{ tQ))} i = l n is the inverse of the lower triangular matrix
defined by the Xl 2 ' s, 1 ̂  2 ̂  i ̂  n. Accordingly, we have:

Thus, due to (2.22), 081 (tQ)>0. The corresponding properties at t} can be proved in a similar way. •

Theorem 1.1 generalizes classical properties of the polynomial Bernstein basis. For instance,
B"(t) = Ct) ( 1 " t)n~lt satisfies J?"(l)(0) = ( - 1 )' Bn

n_t
il\ 1 ) = n(n - 1 )...(n - i + 1 ).

3. DIMENSION ELEVATION

In this section, we suppose that $1 a %, where tft is an ( n + 2 )-dimensional EC space on the same interval
I- t̂ o' 'il* Then, let us first observe that any ^-function is a ^-function. We additionally assume D$ itself
to be an EC space on I. Thus, with a given ^-function F, we can now associate two blossoms, first ƒ, which is
the function of n variables introduced in the previous section, but also the blossom f of F vie wed as a
^-function, which means in particular that ƒ is a function of (n + 1 ) variables. The following resuit was given
in [25]. We hère give another proof, based on the properties of the Chebyshev-Bernstein basis.

vol. 32, n° 6, 1998



778 Mane-Laurence MAZURE, Pierre-Jean LAURENT

THEOREM 3.1: Let F be a %-function, and Pl ^f(fQ~l t\ ), i = 0, ..., n its Chebyshev-Bézier points. Considérée
as a $-function, F has n + 2 Chebyshev-Bézier points, namely Pl :=/(*o + 1~' A )» * = 0, ..., n + 1 , where
f is the blossom o f F viewed as a %-function, Then, these new Chebyshev-Bézier points can be computed from
the original ones as follows:

Po = P0> P^V-^P.-i + ^P, i = l , . . . , n , Pn+1=Pn, (3.1)

where av ..., an belong to ]0, 1[ and do not depend on F.

Proof: Clearly, F(to) = PQ = Po and F(r 1 ) = Pn = Pn + V Let us introducé the new Chebyshev-Bézier points
of function 0 :

AI:=0(*oII + 1 ~ l ' i I ) * = 0 , . . . ,#n- l . (3.2)

Then, denoting by h the affine map such that F=ho&, we have Pl = h(IIl')9 for ail / = 0,..., n. Moreover,
one can also check that P^h^îl^) for ail i = 0,..., w+1 . Therefore, it is sufficient to prove the resuit for

For a fixed integer z, l ^ i ^ n, by applying (2.5), we have:

ÜtG O s c I * ( t 0 ) n O s c * n + 1 _ l ( / 1 ) . (3.3)

Now, Ose CP/i + 1_ i ( r 1 ) = Osc cZ>n_((_1)(ri). Consequently, according to (2.12) and (2.13),

77, G aflf(770,.... Ht) n a f f C / ^ , . . . . HJ . (3.4)

Due to the linear independence of the Chebyshev-Bézier points (i70,..., 77^), the intersection involved in (3.4)
consists in the affine line passing through JJt _ t and JJ%. Hence, there exists a real number ai7 such that

(3.5)

It only remains to prove that at G ]0, 1[.
Let us dénote by ( ^ 0 , ..., ^ n + 1 ) the Chebyshev-Bernstein basis of the space ^ , so that, in particular,

B+l

1 = 0

Using (3.5), we can rewrite (3.6) as follows:

i = i

n - l

i = l

The Chebyshev-Bézier points 770, ..., Un being affinely independent, by comparison of (2.10) and (3.7), we can
conclude that the Chebyshev-Bernstein bases of tyt and $ are linked by the foliowing relations:

at = atai+(\-at + 1)£l + 1 ï = 0, . . . ,n, (3.8)

M2 AN Modélisation mathématique et Analyse numénque
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with aQ := 1 and an +1 := 0. By differentiation of the latter equalities, we obtain

@l'\to) = aiÉl
('\to) + (l-al + ,)âl + i

(l\to) i = 0,...,n. (3.9)

According to (2.14), Éi + l
(0(t0) =0, and (3.10) eventually reduces to

(3.10)

Thus, (2.15) proves that a, > 0. Exchanging the rôles of t0 and tx would similarly lead to (1 - at)>0 for
ail i = l , ..., n. •

In practice, the previous resuit will be used as follows. Consider a nested séquence

where, for / = «,..., n + m, ^ is an (*+ 1 )-dimensional EC space on / containing the constant functions such
that D<%1 is also an EC space on /. Starting with a ^rt-function F, with Chebyshev-Bézier points PQ, ..., Pn, we
can perform m consécutive dimension élévation processes, so as to obtain the n + m + 1 Chebyshev-Bézier
points of F viewed as a öUn + m-function. This is of special interest when the last space °Un + m is easy to deal with,
the best example being of course the case when %n + m is the polynomial space of degree n-\-m. In that case,
the final n + m + 1 Chebyshev-Bézier points are simply the Bézier points of F viewed as a polynomial function
of degree less than or equal to n-\- m, from which the curve defined by F can thus be obtained by applying the
classical polynomial subdivision algorithm. Moreover, in case ûUn dépends on one or several parameters, these
parameters will play the rôle of shape parameters. This will be illustrated by an example in the next section.

4. DIMENSION ELEVATION AND SHAPE PARAMETERS

It is well known that, since the interval I = [f0, *J is closed and bounded, each EC space on / is the kernel
of a differential operator (see [7,15,28]). More precisely, given an ( n + 1 )-dimensional subspace ^ of
C°°(/), it is an EC space on / iff there exist n + 1 functions w0, ..., wn (called weight functions), C°° and positive
on ƒ such that

Ln, (4.1)

where D is the ordinary differentiation and Lo,..., Ln, are the differential operators defined on C°°(/) by

L0U\=—U, LU~—(L XU)' i = l , . . . , n . (4.2)

The previous resuit pro vides an easy way of constructing EC spaces. Given positive weight functions
œi e C°°(/), z' = 0,..., n and the corresponding operators Lt, the EC space K e r D o L n will be denoted by
EC(co0, ..., cort). Observe that an EC space can be associated with several different Systems of weight functions.

If ^ c C°°(/) is an (n + 1 )-dimensional space containing the constant functions, the space D°U is an EC space
on / iff there exists weight functions coQ = H, cov ..., con such that °U = E C ( H )

0 , ..., wn) (see [15]). From now on,
we shall always consider such spaces.

Let us dénote by 3Pi the space of polynomial functions of degree less than or equal to i on ƒ = [tQ, r j . Consider
the 4-dimensional EC space on I associated with the following four weight functions

w0 := H, wx :=p2, w2 := w3 := H , (4.3)

vol. 32, n° 6, 1998



780 Marie-Laurence MAZURE, Pierre-Jean LAURENT

where p is a given positive function belonging to 0>v that is ̂ 3 :=EC(1I,/?2, II, H). Observe that, p being
completely determined by the two positive numbers po'.= p(to) and px :=p(tl), the space ÖUZ dépends only

P\on p0, pv and in fact, more precisely, only on the ratio —.
oc P°

Given t / e C°°(/), by (4.1), one can check that

U<= %&\U'ÇL 0>2. (4.4)
P

P\ 2
Suppose first that p e ^ \^0 , z.e., that the parameter — is not equal to 1. Then, since 0>2 = span ( H, p, p ), (4.4)

Po
implies that

%^spm(%p\p\p5). (4.5)

Using (4.1), it can similarly be proved that EC( H, p, II, H, H) = span ( H,/?2,/?3,/?4,/?5). Therefore, we obtain the
following nested séquence of EC spaces on /:

% cz % :=EC( JL,p, H, n, H) cz % :=EC( ïï, ïï, ïï, I , I , II) = &>5 . (4.6)

Given a ^-function F, with Chebyshev-Bézier points Po, P p P2, P3, dénote by Q^ i = 0,..., 4, its five
Chebyshev-Bézier points when considered as a ^-function, and by Rt, i = 0,..., 5, its six Chebyshev-Bézier
points when considered as a ̂ 5-function. We know that

Öo = ^o' Ö ^ d - a ^ ^ - x + a , ^ i ' = l , 2 , 3 , Q 4 - P 3 , (4.7)

and

^o = Öo' ^ = ( l - A ) Ö , _ i + A Ö , î=l ,2,3,4, i?5 = Ö4, (4.8)

where the a ' s and the /?£ ' s belong to ]0, 1 [ and do not depend on F. We intend to compute these coefficients.
Now, for any distinct a, b, c e / , the value of the blossom <p = ( <pv <p2, <p3 )

T of <P := ( <PV <P2, 03)
T

*-=(p3>p4,p5)T i s given by

{<p(a, b,c)} = O$c2 <P(a) <^Osc2<P(b) r\O$c2<P(c) . (4.9)

Let us set A-~p(a), B:=p(b), C:=p(c), A point X= (x, v, z ) r e (R3 belongs to O S C 2 ^ ( Ö ) iff
d e t ( X - ^ ( a ) , ^ ' ( a ) , ^ / / ( a ) ) = 0, Le., iff

Thus, solving the linear System corresponding to (4.9) eventually leads to:

<p2(a, b9 c) = -^ (A3(B + C) + B3(C + A) + C3(A + B)

( + A2B2 + B2C2 + C2A2 + 2ABC{A + B + C) ) ,

<p3(a9b9c)=^ABC(A2 + B2 + C2+AB +BC+CA) . (4.10)

M2 AN Modélisation mathématique et Analyse numérique
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As for how to calculate the value of (p at {a, a, c ) , this should be done by sol ving

{<p(a, a, Z?)} = Osc1 <P(a) n O s c 2 <P(c) .

However, ail functions <p(xv x2,. ) being continuous on /, it follows that, in fact, formula (4.10) is still valid even
if a, b, c are not assumed to be distinct.

The value of the blossom y/=(y/vy/2, \pv y/4 f of W := ( Wv W2, W3, W4 f := (p2, p3, p\ p5 f at
(a,b,c,d)el4 can be similarly computed from the equality

{y/(a,b,c, J ) } = Osc3 W(a)nOsc3 *F(b) n Osc3 f r ( c ) n O s c 3 W(d) ,

which is valid only when the four points are distinct. One can eventually prove that, whatever the points
a,b,c,de I may be, if D \=p(d),

+ D2{A + B + C ) + 2( ABC + ABD + ACD + J9CD ) ) ,

y/3(a,b,c,d)=j<: (A2(£C4- CD + D 5 ) + B2(AC + CD + DA)

+ C2(AB + BD + DA) + D2(AB + BC + CA) +3 ABCD) ,

y/4(a, b, c, d) =~ABCD(A +B + C + D) . (4.11)

In order to calculate the 7 coefficients at and /?. appearing in (4.7) and (4.8), let us focus on function
=03-W4-p

5. Using (4.10), we can calculate its Chebyshev-Bézier points PX = q>3( to, tQ, tl ) and
2 = 93(

to^tvh^ which gives

3p2
l). (4.12)

Its new Chebyshev-Bézier points are given by g f = \f/A{tA
Q~l t\), and (4.11), leads to

From (4.12) and (4.13), it results that

3Po(4Po+Pi) Po(Po Pi) Po(Po + 3Pi) ,A,A,
a, = 5 5—, a7 = —5 r, a^ = ^ 7-. (4.14)

1 2 { 6 l + ' S + \ ) 2 3 ^ + 4 + 3 î 3 2 ( ^ 3 + 6 ^ )
Furthermore, the points RQ,..., R5 are in fact the Bézier points of the monomial *5 with respect to (p0, px ), namely
Rt-pl~'p\, i = 0,..., 5. Accordingly, from (4.13), one can check that

o 4 Po R
 3 Po ff . 2 ^ o ft Po r A 1 «
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All these results are summarized in figure 1. The ratio px /p0 acts as a shape parameter. In particular, in the limit
case px /p0 —» + oo9 we obtain the polynomial curve of degree less than or equald to 5 whose Bézier points

by R0~Rl = = Po, R3 = Pv R4 = P2, R5 ~ Pv and the symmetrie situation whenRt are given

P l / jp 0 ->0 + :
Suppose now that p e &0. Then, we clearly have alli = ^ for i = 3, 4, 5, which proves that (4.6) still holds.

Moreover, since this case correspon4s to pQ=pv the ratios indicated m figure 1 are still valid: they describe the
classical degree élévation, which thus appears as a particular case of the dimension élévation process described
above.

Po(3p0+2pi) pi(3pi+2p0)

Figure 1. — Chebyshev-Bézier points Pt, Qt and Bézier points Rt

5. CHEBYSHEV SPLEVES

In this section, we suppose that wv w2, w3, are three continuous positive functions, assumed to be piecewise
C°° with respect to a given subdivision to<tl< • • <ts<ts + v For all i = 0,..., .s, consider the
4-dimensional EC space associated with H and the restrictions of these functions to the interval [tt, £ï + 1 ] ,

!rf := EC( H, , w2 w3
(5.1)

Le., ^ll = Ker D o Ll
n, where the Ly $ are the differential operators defined on C°°( [tt, tl + 1]) similarly to (4.2).

Consider the (s + 4)-dimensional spline space £f composed of ail continuous functions S : [tQ, ts+1] —> U such
that:

(i) for ail i = 0, ..., s, the restriction of S to [f,, *l + 1 ] belongs to ^ ,

(ii) for ail i = 1, ..., s, S satisfies the foliowing connection condition at tt\

(5.2)

where fi\ > 0 and 0'2 3= 0.
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In terms of the ordinary derivatives, condition (5.2) can be written as follows:

/sf(tt)\ (p\ o\ /s'(f)\
I „ + 1 = 1 ^ ,2 1 I „ I , (5.3)

where

pl
2'~p2 + -L-1 * / { ' L- (5-4)

Therefore, it is a geometrie continuity connection. However, the corresponding matrix is not necessarily totally
positive since it may happen that fi2 < 0 : indeed, the crucial assumption of total positivity must be made on the
connection matrix appearing in (5.2).

Using a resuit of P. J. Barry [1], it has been proved in [17] that any spline S e Sf is uniquely determined by
s + 4polesP_v -;PS€ ^d which have a geometrical définition in terms of osculating flats that we shall now
recall.

First observe that, for a given i, 1 ̂  i ̂  s, since the first two derivatives of S at t~ and t* are linked by
(5.3), we can define the osculating flats Osct S(tt) and Osc25(r i) as that of either its (i — 1 )th section or its
ith one.

Now, assume the Chebyshev-Bézier points of each section to be affinely independent. Then, we have ([17]):

{Pt_2} :=Osc2 £(*,_! ) nOsc 2 5(^ ) nOsc2S(ti + l) 1 ̂  i ̂  s , (5.5)

and the remaining poles can be defined for instance by

F_3 :=5(ï0), {P_2} :=Osc 1 5(r 0 )nOsc 2 5(r 1 ) ,

For i = 0, ..., s, dénote by Pj, j = 0,..., 3, the Chebyshev-Bézier points of the z'th section S^t t +i-j of the spline
S. From (2.12) and (2.13), we can deduce that

2 l l 2 l \Pl
2-

l)i (5.7)

Osc2 S(tt) n Osc2 5(fI + 1 ) = aK(P\, Pl
2) . (5.8)

Consequently, (5.5) means that, for 1 ̂  i ̂  s, the pole Pt_2 is obtained by intersecting the two affine lines
aff(F I

1"\F2"1) and aff(FI
1, P

l
2). Similarly, (5.6) means that P_3 = P°0, P_2:=P°V Ps_x:=Ps

2, and
Ps := Ps

v It is well known that it is then possible to get rid of the assumption of affine independence by using
affine maps.

From the définition of the poles, it follows that each spline S can be written as

S(t)= 2 - ^ ( O P f ,
e=-3

where (jVe)e=:_3 s, called the Chebyshev B-spline basis of $f ^ satisfies

2
i = - 3
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Furthermore, the support of each Jfg9 Le., the domain of influence of the pole Pe, is equal to [te, te+4], with

Let us now develop an explicit example based on the particular EC space studied in section 4. Given positive
real numbers pt, i = 0, ..., s + 1, dénote by p : [tQ9 ts + 1~\ —» IR the continuous piècewise affine function such that
p(t

l)-Pl f ° r all U and consider ^ : = E C ( H , p ? [ f t y H, H). From now on, assume that ti+l-ti=l for all
i = 0, ..., i1, and choose f}\ - 1 and ^ = ° f o r ' = 1» •»» 'y* Then, it follows from (5.3) and (5.4) that the space
^ described above is the space of all C1 functions S : [tQJ ts+1~\ —> U such that S^ t+^ e ^ , z = 0, ..., 5, and

S"( ^ ) = s"( f~ ) + 2 - ^ ! ^ 5'( r() for all i = 1,..., 5 . (5.9)

Consider a spline function S e 5^ . Assuming the Chebyshev-Bézier points of each of its sections to be affinely
independent, it is possible to compute the poles by using their geometrical définition recalled in (5.5) and (5.6).
We have thus to intersect the two lines aff(PI

1~
 l,Pl

2~
x) and afr*(PI

lï P
l
2). Now, from the very définition of the

Chebyshev-Bézier points, we know that, for all i — 1, „., s, there exist two regular lower triangular matrices such
that

'/>!-/>;

where, in fact, P'3
 1 = P'o because of the continuity of S. One can check that

30 pf

and similarly,

30 P l
2

(5.12)E , ,

3p i_1
2 + 4p i P , _ 1 + 3p,2

60 p 2

For Ï = 1,..., s, the common point of the two affine lines aff(PI
1~

1, P\~l) and aîf(Pl
vP

l
2), Le., the pole

Pt - 2> will be obtained by solving the équation

x l-P\-l) = P\+ti{P\-Pl
2). (5.13)
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Taking (5.10) into account and replacing S"(f* ) by its expression resulting from (5.9), equality (5.13) leads to

= [(1 +A) D,-XE,-] SXO-

Due to the linear independence of the two derivatives, equality (5.14) is equivalent to

P,

Solving this system in ( X, fi ) finally gives:

where

t; ) . (5.14)

(5.15)

(5.16)

(5.17)

Therefore, conversely, starting from given poles Pt e IR , z' = — 3, ..., s, the Chebyshev-Bézier points of each
section are obtained as described in figures 2 and 3. Then, after two dimension élévations, we shall obtain the
Bézier points of each section, from which the corresponding curve can be drawn by polynomial subdivision.

. Pi-2 , \

Figure 2. — Computing the Chebyshev-Bézier points from the poles ( i = 2, ...,$ — 1 ) .
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Figure 3. — Computing the Chebyshev-Bézier points of the first section from the poles.

For fixed poles P(9 i = - 3, , s9 the positive numbers pt act as shape parameters The efficiency of these shape
parameters is clearly ïllustrated by figures 4 and 5 Here, we deal with a closed curve defined by 11 poles
Therefore, the computation of the Chebyshev-Bézier points from the poles will be done only according to figure 2,
all the data bemg now defined moduloli A small circle (resp a star) at a pôle means that ^ = 1 0 0
(resp pt= 1/100) if tt is the center of the support of the correspordmg Chebysbev B-sphne, all the other
pt ' s being equal to 1

Figure 4. —pt = 100 for each "o", otherwise pt = 1
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Figure 5. — pt = 1/100 for each " * ", otherwise p t = 1.

These shape effects can also be pointed out by observing the Chebyshev B-splines. Suppose that tx — i and
that p5 = 100 (resp. 1/100), all the other px ' s being equal to one. Then, only five Chebyshev B-splines are
different from the usual B-splines of degree 3, namely those whose support intersect ]4, 6[. These Chebyshev
B-splines are shown in figure 6.
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Figure 6. —Chebyshev B-splines JTV M'2, Jf v Jf 4, JTS when p5 = 100 (left) or p5 = 1/100 (right), pt = 1 for i ^ 5.
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