A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 32 (1998) no. 7, p. 843-858
@article{M2AN_1998__32_7_843_0,
     author = {Bao, Weizhu and Barrett, John W.},
     title = {A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {32},
     number = {7},
     year = {1998},
     pages = {843-858},
     zbl = {0912.76025},
     mrnumber = {1654432},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1998__32_7_843_0}
}
Bao, Weizhu; Barrett, John W. A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 32 (1998) no. 7, pp. 843-858. http://www.numdam.org/item/M2AN_1998__32_7_843_0/

[1] J. Baranger and H. El Amri, Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-Newtoniens, RAIRO M2AN 25, 31-48 (1991). | Numdam | MR 1086839 | Zbl 0712.76068

[2] J. Baranger and H. El Amri, A posteriori error estimators for mixed finite element approximation of some quasi-Newtonian flows, Mat. Aplic. Comp. 10, 89-102 (1991). | MR 1172087 | Zbl 0770.76034

[3] J. Baranger and K. Najib, Analyse numérique des écoulements quasi-Newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau. Numer. Math. 58, 35-49 (1990). | MR 1069652 | Zbl 0702.76007

[4] J. W. Barrett and W. B. Liu, Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law, Numer. Math. 64, 433-453 (1993). | MR 1213411 | Zbl 0796.76049

[5] J. W. Barrett and W. B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68, 437-456 (1994). | MR 1301740 | Zbl 0811.76036

[6] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland (1978). | MR 520174 | Zbl 0383.65058

[7] P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9, 77-84 (1975). | Numdam | MR 400739 | Zbl 0368.65008

[8] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numér. 3, 33-75 (1973). | Numdam | MR 343661 | Zbl 0302.65087

[9] E. Dari, R. Durán and C. Padra, Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comp. 64, 1017-1033 (1995). | MR 1284666 | Zbl 0827.76042

[10] Q. Du and M. D. Gunzburger, Finite-element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow, SIAM J. Numer. Anal. 27, 1-19 (1990). | MR 1034917 | Zbl 0697.76046

[11] R. S. Falk and M. E. Morley, Equivalence of finite element methods for problems in elasticity, SIAM J. Numer. Anal. 27, 1486-1505 (1990). | MR 1080333 | Zbl 0722.73068

[12] D. M. Fall, Régularité de l'écoulement stationnaire d'un fluide non newtonien, C. R. Acad. Sci. Paris 311, 531-534 (1990). | MR 1078116 | Zbl 0717.35016

[13] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer (1986). | MR 851383 | Zbl 0585.65077

[14] R. Kouhia and R. Stenberg, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg. 124, 195-212 (1995). | MR 1343077 | Zbl 1067.74578

[15] P. P. Mosolov and V. P. Mjasnikov, A proof of Korn's inequality, Soviet Math. Dokl. 12, 1618-1622 (1971). | Zbl 0248.52011

[16] D. Sandri, Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau, RAIRO M2AN 27, 131-155 (1993). | Numdam | MR 1211613 | Zbl 0764.76039

[17] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62, 445-475 (1994). | MR 1213837 | Zbl 0799.65112

[18] R. Verfürth, A posteriori error estimators for the Stokes equations II non-conforming discretizations, Numer. Math. 60, 235-249 (1991). | MR 1133581 | Zbl 0739.76035