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MATHEMATICAL MODEUING AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol, 32, n° 7, 1998, p. 877 à 895)

GLOBAL BV SOLUTIONS FOR A MODEL OF MULTI-SPECIES MIXTURE IN POROUS MEDIA (*)

Youcef AMIRAT and Yue-Jun PENG

Abstract. — We consider an initial boundary value problemfor a nonlinear differential system consisting of one équation ofparabolic type
coupled with a nxn semi-linear hyperbolic system offirst order. This system of équations describes a model of compressible miscible
displacement ofn+1 chemical species in porous media, in the absence of diffusion and dispersion. In one-dimensional spacet we construct
a global weak solution with bounded total variation for the concentration. © Elsevier, Paris

Résumé. — On considère un système différentiel constitué d'une équation parabolique couplée avec un système nx n semi-linéaire
hyperbolique du 1er ordre. Ce système d'équations intervient dans la modélisation mathématique de l'écoulement d'un mélange à
n+l constituants miscibles compressibles en milieu poreux, en absence de diffusion moléculaire et de dispersion. On considère le cas
unidimensionnel et on suppose que les données initiales et aux limites des concentrations sont à variations bornées. On démontre Vexistence
globale en temps d'une solution faible du problème qui est à variation bornée pour les concentrations. © Elsevier, Paris

1. INTRODUCTION

We consider the compressible miscible displacement of a multi-species mixture in porous media. These kinds
of models have been described by many authors, see for instance Bear [8], Scheidegger [16], Peaceman [15],
Douglas and Roberts [9]- [10]. When the viscosity of the fluid is taken to be constant, the mathematical analysis
of these models has been studied by Amirat-Hamdache-Ziani, They proved the existence of global weak solutions
in L°° for an initial boundary value problem in three space dimensions, in the case of two species mixture which
corresponds to a single concentration équation n = 1 coupled with a parabolic one. This solution is obtained by
a compensated compactness argument applied to the approximate solution constructed by the viscosity method
[4]-[5]. By the same technique, they also treated some homogenization problems in one space dimension [3]. All
these results have been generalized by Amirat-Peng [6], to the case of n + 1 species mixture for which the
concentration variables satisfy a hyperbolic system of n équations. Thus we need some more techniques to achieve
the results.

In this paper, we are interested in a simple one-dimensional model of n -f 1 species mixture, which can be
viewed as modelling experiments in a core sample. We neglect the molecular diffusion, the dispersion, the
gravitational terms, the injection and production source terms. We assume always that the viscosity of the fluid
mixture is constant. Then this model can be written as the following parabolic-hyperbolic system:

equipped with the initial and boundary conditions

(1.3)

(*) Manuscript received October 24, 1997.
Laboratoire de Mathématiques Appliquées, CNRS UMR 6620, Université Biaise Pascal» F-63177 Aubière cedex, France.
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878 Youcef AMIRAT and Yue-Jun PENG

and

where O = ] 0 , 1[ and Ö r = O x ] 0 , I [ with T>0» w - ( l ^ i ^ n ) dénote the volumetric concentrations
of the fluid mixture» p is the pressure, q is the Darcy velocity of the fluid mixture. For simplicity, we have supposed
the porosity, the permeability and the viscosity constant equal to 1. The pressure équation (1.1) expresses the
conservation of the total mass and the empirical Darcy law, and the concentration équation (1.2) means the
conservation of mass for the ith component of the mixture. Remark that the boundary conditions treated hère for
the pressure équation are Dirichlet's type at the inflow end and Neumann's type at the outflow end.

As shown in [6], the admissible domain of the concentration variables w = (uv w2,..., unY is

{ n J

i = l J
The functions a and b. ( 1 =£ i ^ n ) are defined on K and have the form

(1.6) fl(«) = i z i « I - + 2B + 1fi, with ff=l-2>.,
t = i 1 = 1

where zt > 0 ( 1 ^ i; ̂  n + 1 ) is the constant compressibility factor of the ith component. For convenience,
we extend continuously the functions a and b to Rn. Hence, in view of (1.7), we can take bi(u) = O as
ut ^ 0 ( 1 ^ i ^ n). We note that a(u)>0 in the compact K. If z^Zj for some i, j , we replace u. or
Uj by ui + uj so that the System (1.2) reduces to w— 1 équations. For this reason, we suppose throughout this
paper that zé ̂  Zj for ail i ̂  j ,

Our objective is to construct a global weak solution such that the concentration variables are bounded with
bounded total variation. In the case n = 1, this resuit has been obtained by Anürat-Moussaoui [2]. Hère we
assume that there exists a fonction p e L2( 0, T ; H2( Q ) ) n H\ 0, T ; L2( Q ) ) n L°°( 0, T ; Hl( Q ) ) such that

(1.8) p ( 0 , O = 0, - 3 ^ 0 , 0 = 91(0, p(x,O)=po(x), x e O , t e ] 0 , r [ ,

(L9) 0 ^ - ^ ( x ) , ^ ( r ) ^ M , jce O, r e ] 0 , T[, where M > 0 is a constant,

(1.10) u°(x\ ul(t)<=K, dL.e.xeÛ and a . e . f e ] 0 , r [ ,

(1.11) u° x

where BV dénotes the space of functions with bounded total variation. Condition (1.9) means that the flow comes
from the left to the right, that is consistent with the boundary condition for u, Of course, the équation (1.2) and
the condition (1.4) should be understood in the sensé of distributions. That is, for ail test functions g in
C*([0, l [ x [0 ,T[) , we have

ui{dtg + dx{gq))dxdt+ bt(u)dtpgdxdt

(1.12) = | u%x)g(x,Q)dx+\1\](t)q(Qft)g(09t)dt, l ^ î ^ n ,
JQ JO
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MULTI-SPECIES MIXTURE IN POROUS MEDIA 879

where Co( [0, 1[ x [0, T[ ) dénotes the space of C^difïerentiable functions with support contained in
[ o , i [ x [ o , r [ .

The main resuit of this paper is

THEOREM 1.1: Under hypotheses (L8)-(1J1), problem (1.1)-(1A) has a global weak solution (p9 u) satisfying

where J£{Q) dénotes the space of Radon measures on Q. D
The remainder of the paper deals with the proof of this theorem, the main steps of which is analogous to that

of the scalar case n = 1, see [2]. In the next section» we introducé a change of variables which is essential to
treat the BV estimâtes. Section 3 is devoted to the regularization of the problem. Some similar results to those of
[2] will be used without proof. In Section 4, we introducé an intermediary variable v and establish its BV estimate.
Finally, in Section 5 we complete the proof of the theorem by the Schauder's fixed point theorem.

2. REDUCTION OF THE SYSTEM TO A TRANSPORT EQUATION

Folio wing an idea used by Kazhikhov-Shelukin [12] and Serre [17] in solving one dimensional équations of
viscous gas, we seek a transformation u »-> G(u) which allows to reduce the quasi-linear System (1.1)-(1.2) to
a transport équation. Let (p,u) be a smooth solution of (1.1)-(1.2). Then the quantity h = G(u)+p vérifies
the following équation

(2.1) dth + q djt = — q in QT,

provided that G{ u ) satisfies

(2-2) 2^)^=1-
i = 1 i

Let us now look for solutions of (2.2) in the special form

n

(2.3) G(«) = ̂ a i l o g w , . + )?logM,

where av a2,..., an and /? are constants, ü is defined by (1.6). We have

with

i = 1 t = 1 1 = 1 i = 1

-a(u)-zn^.lü + a(u) ü-a(u)

vol. 32, n° 7, 1998



880 Youcef AMIRAT and Yue-Jun PENG

So that (2.2) leads to the relation

As comparée with (2.2), we get

(2.4)
1 = 1

By a suitable choice of the coefficients (ce.,/?), we obtain

(2.5)

which are n particular solutions of (2.2). We show now that Gv G2? ...5 Gn are independent. Let / = / ( w ) be the
Jacobian matrix of the transformation G= (Gv G2»..., Gn)\ By a straightforward calculation, we have

0 \

0

cny cny

where we dénote by c- = ( 1 ̂  i: ^ n - 1 ), c„ = , w. = VuX l ^ i ^ n) and
Ci S' + l 41 ^n + 1

y = 1/u.
LEMMA 2.1: The transformation G = (Gl,G2, ..., Gn)* defined by (2,5) is a C diffeomorphism from K to

Rn. D

Proof: It is easily seen that the matrix J(u) may be written in the form / = CW(u), where C is the diagonal
matrix C = diag ( cv c2,..., cn ) and

W(u) =

wx -w2 0 0 \
0 w2 -w3 0 ... 0

0 ... ... 0 wn_l -w}

\Wi+y y - •» - y /

Therefore

(2.6) det/(u) •Cft«)
M2 AN Modélisation mathématique et Analyse numérique
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In view of the special form of the matrix W(u), it is not difficult to get

(2.7) detW(M)=n w, + ? 2 II w..

Hence det W( u ) ^ 0 for any M G ^ , and G is locally invertible. To show that G is a C1 diffeomorphism it remains
to prove that G is globally injective in K, To this end, let u~ (uv u2,..., wn)' and u- (u'v u2,..., u'n)

f be two
points in K such that Gt(u) = G.(w') ( 1 =£ i: s£ n)> Then from

log w-- log ui+l = log u\- log w'+ p 1 ̂  i: ̂  n- 1 ,

and

log Wj - l og Ü = lOg Wj - lOg U ,

we get

- i i l = — = - = constant, VI ^ i ^ n - 1 ,
"i+i ui u

which implies w. = u(( 1 ^ i ^ n), This finishes the proof of Lemma 2.L D

L E M M A 2 . 2 : Let J ~ 1 ( u ) = ( y . j ( u ) ) 1 ^ Uj^nbe the inverse matrix of J(u) in K. Then

by(w)| «S | c T11, KiJ^n, VueK. ü

Proof: Let we K fixed. By the Cramer's formula, we have

By a straightforward calculation, we can write

w;.=(-ir(u)nw,+y(i

Therefore

iw*.i n wf

n

11

since w z ^ l ( l ^ / ^ n ) . This means that each element of W~l(u) is uniformly bounded by 1 in K. Thus
the result follows from the identity J~ï(u) = W~l(u) C~\ D

3. REGULARIZATION OF THE PROBLEM

Let us first introducé a perturbation of G to avoid its singularities on the boundary BK of K. Let S > 0 be a
small parameter. We define the approximate function of b(( u ) by

vol. 32, n° 7, 1998
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with

Then we define the approximate transformation Gâ = (GS
V Gô

2,..., G
â
n)* by

and

f u, +ô

We check easily that

2 a i T
Ï = 1 i

Therefore, the transport équation (2.1) is still valid for the approximate transformation G , which is defined in
K.

Following [2], we introducé a closed convex set of functions in Lï(QT)n:

& = {v \ve Ll{QT)n,v(x,î) e iTa.e. inOr} .

Since (1.1) is a linear équation for any given fonction M» the folîowing resuit is vaiid in ôur case, see [2] for the
proof.

LEMMA 3.1: Let w e l and assume that conditions (1.8) and (1.9) are fulfilled. Then, there exists a unique
solution (p, q) of problem (LI) and (1.3), such that p e W» where

W=L2(0>T;H2(Q))nH1(0,T;L2(Q))nLoo(0,T;Hl(Q)).

Moreoven we have the estimâtes:

and

(3.2) 0 ^ q = ~dxp ^ M , a.e. r

where M is the constant in (L9), and C > 0 is a constant depending only on the fonction p in (L8) and
zv z2,..., zn. D

Next we regularize the solution (p, q) of problem (1.1) and (1.3), denoted by (p1, qn), with n>0 B. small
parameter. In the next discussion, we dénote by C > 0 various constants independent of r\. The fonction q1 is
chosen such that,

(i) ti ^ q\x, t)^n + M, V(x, t) G Qr

(ii) qn converges, as rj tends to 0, to q strongly in L2(QT) and weakly in L2(0, T;Hl(ü)),
(iii) | a ^ | ^C/rj.

M2 AN Modélisation mathématique et Analyse numérique
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Similarly, the function p1 is chosen such that,
(i) p"e C\ÜT),
(ii) p*(0,î)=0, Vfe]O,T[,
(üi) \\pv\\w^C\\p\\w,
(iv) || àxp

l\iLr^QT^ ^ Mv where Mx > 0 is a constant independent of rj,
(v) ilp l̂l c2(ör) ^ Q ( ^ ) WPWW*

 w r i e r e C0>0 is a constant depending on rj,
(vi) T?77 converges, as r\ tends to 0, to p in W.
In the following the constant M will be used in the place of Max (M, Mx ). We regularize also the data u and

u by M0* e C\Û)n and u1* e C^O, T]n respectively, satisfying for any rj > 0 small enough,
(i) u\x) G ̂ , w1?7(r) e f , V x e X2, V/G [0, r ] ,
(ii) uOfî(O) = ultî(O), i (1*^ 1

( i i i ) | | M ° ' 7 | | w i . i ( û r + \\ulJÎ\\wl*\]0T[T hv(Qy BV(o,r)
(iv) (uOrl,ulTI) converges to (u,u) in L ^ f x L ^ O J ) " as */ tends to 0.
We refer to [2] for these regularizations.
Now we consider the initial-boundary value problem

( d t w i + q l d x w i + b % w ) d t p ' ' = 09 i n Q ^ 1 ̂  i ^ n ,
( 3 * 3 ) [w(x,0) = u°XxX xeQ, w(0,t)=u\t\ te]O,T[.

Of course, the solution w of (3.3) dépends on two parameters tj and d, which will not be explicitly written for
the moment. Setting

Then it is easy to see that hi is solution of

(3.4) h.(x90) = A?(JC) := G*(u\x)) + / ( x , 0 ) , JC G

{(0,0 = h](t):=G%ulXtn te ]0, T[ ,
where cf = ~ dj/1. Moreover we have

^ and ̂ ^ belong to C \ Ö r) and ̂  ^ 0 .

As a conséquence of a resuit in [2], problem (3.4) admits a unique global solution
h=(hvhT ...,hnYG C^Öj.)". It follows that the vector-valued function w = (Gô)~1(h-p^I) is a classical
solution in Cl(ÙT)n of (3.3). Thus we have defined a séquence ( w ) ô > 0 . The next step consists in showing that the
limit of (wô)ô>0 exists and is a solution of

4. BV ESTIMATES FOR AN ÏNTERMEDIARY VARIABLE

In the absence of the regularity for pn, équation (3.3) is not enough to establish a BV estimate for the
concentration. We introducé then a new séquence of vector-valued functions v3 = (vv vô

v ..., t / ) ' defined by

(4.D

vol. 32, n° 7, 1998



884 Youcef AMIRAT and Yue~Jun PENG

and

(4.2) »? = o f + i « * f & ' . l ^ « - « n - l ,

w h e r e

(4.3) s 5 = v n e"-*-* + .n «*->*•-'.

The aim of this section is to show a BV estimate for the limit of the séquence ( t / ) . We begin by

LEMMA 4.1: The function vö defined by (4.1)-(4.3) satisfies vô e K and

(4.4) v\ = v â vâ
n S

ö

where

(4.5) 5*=l-i>?. ü

1 = 1

Proof: By définition, we have immediately i ; f > O ( l ^ i ^ n ) . Then by a straightforward calculation, we
get

Therefore

(4.6)

which yields v e K. Now by induction, we can write ü1 in the form

7 = 1

Hence (4.4) follows from (4.5) and (4.6). D

LEMMA 4.2: For any S > 0, the vector-valued function v solves the system

(4-7) ^ Ï ^

(4.8)

(4.9) vô(O,t) = u\t)+ô, f e ] 0 , r [ .

ïe operator L and the function R are defined respectively by

j=

M2 AN Modélisation mathématique et Analyse numérique
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and

**(*) = 2 («£-,•(*)+<*) exp(V(x,0) X " ^ ) + ̂ U ) exp(V(*. 0) j J A xe fl ,
i=0 \ j=0Cn-j/ \ j=l j /

with

Proof: For convenience, we drop the index ö. Let us first dérive the équation satisfied by vn. Differentiating the
relation vnS~ehn/Cn with respect to t and x and using (3.4), we get

(4.10) S( dtvn + q" dxvn ) = i eVc"( 3, A„ + ̂  a A ) - vn( dt S + ^

By (3.4) and (4.3), we have

2

We deduce from the définition (4.1) and (4.2) that,

5)' lrt-i /c«-1 — TT hn-ifcn-i — TT " ~ J _ 1
e j=l — 1 1 £ — 1 1 7j — ^ :

7 = 1 7' = 1 « —/'+ 1 M

and

So that

and by (4.4) we obtain,

vol. 32, n° 7, 1998
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Substituting this relation into (4.10), we get (4.7) for i = n. By induction we now suppose that (4.6) is true for
the index i+ 1 and shall show it for the index i. In fact, by induction and using the relation vi = vi + 1 e

hilCi we
have

\j = i+1 cy

which is (4.7) for the index i.
Let us now prove (4.8) and (4.9). From the définition of GÈ and hp we have

^ if i = n,
w
wi if 1 ̂  i'^ n - 1

ït follows from (43) that

f.o

Hence

v 7 wn(x,0)w(x,0)

which leads to (4.8) for i = n. Since p(Q, JC) = O, we have also

w^O, r)

Therefore

which proves (4.9) for i = «. Similarly, conditions (4.8) and (4.9) for i < n may be obtained by induction. O

M2 AN Modélisation mathématique et Analyse numérique
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LEMMA 4.3: As Ö —> 0, the séquence ( v ) ccmverges to v in Hl{ OT)n weakly and in L ( QT) strongly. Moreover,
v is a solution of

(4.11) dtvi + g"dxvi = ~q"q'!(^^-L(vyjvi inQr l * i *L n,

(4.12) ü i U 0 ) = ii?'(x

(4.13) ü(0,r) = Mlï7(O, 0 < / < 7 \

where L is defined in Lemma 4.2 and

= S «?-•(*) «p(p'(x, 0) 2 7 ^ ) + A * ) exp(/»*(x, 0 ) 2 i ) .
i 0 \ j 0 j / \ j\^j/j = 0 n-j

Furthermore, v(x, t) e ^ /o r every (x, r) m O p ami v belongs to C1(QT)n. D

The proof of this lemma is analogous to that of [2], we refer the reader to that paper.

LEMMA 4.4: Let v be the solution of problem (4J1)~(4.13). Then

(4.14)

(4.15)

where Cl>0 is a constant depending only on the data, C2 > 0 is a constant depending on the data and rj,
whereas Cl and C2 are independent of u. D

Proof: For 1 ̂  i ^ rc, we set

From (4.11) and (4.13), we have for tj>0 small enough,

Thus

(4.16) f \q"(0, t) dxv((0, t)\dt^2 CM2 T+ f |3/«J'(/) | dt.
Jo JO

Now differentiating (4.11) with respect to JC, we get

(4.17) 3,( öxt>,. ) + dx( q\Vi ) = - ». L,( V)(?dj' + q" dxq" )

vol. 32, n° 7, 1998
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Then multiplying (4.17) by sign (dxvt) and integrating over Q yields

(4.18)

i/O

But

dxq")Li{v)vi signât;,.) dx- \ q" q^L^V ) dxvt + vt d£( V ) ) sign (3^.) dx
Jo

Therefore, integrating (4.18) from 0 to t, and adding the équations for i= 1 to n, we obtain

o i=

f S ̂  f 2
0 i = 1 J 0 i = 1
f
+ cw f' fda^l + layD&dï + ca/2 f f 2 |a,»,-

Jo Jo Jo Jo i=i
Using (4.16), Lemmas 4.2-4.3 and the définition of ^ , we get

f Ê 1^1 ^ ^ c+cM2 f' f 5; IÔ^I £fa£fc, V*E ]O, r ] .
Jo i=i JoJo 1=1

Thus, by the Gronwall's lemma, dxv is bounded in L°°(0, T \ Ll(Q)n) by a constant independent of ?/. It follows
that drt; is also bounded in L°°(0, T;Ll(Q)n). This proves (4.14).

To prove (4.15), we multiply (4.17) by dxvi to obtain

-<fqn\ a^l2 L.( u ) - ,f ^ »£

Integrating it over Qt = Q x ]0, t[, with 0 < r < r , we get

£^(0,s) 13,̂ (0, s)\2ds

- i f | ayu*)|ax!>.(je,*)|2<k£fr
z JoJo

- f f'[t;,L,(p ) a^ ;(g'ây + q*djT)](x,s)dxds
Jo Jo

- f l\q"q"\dxVi\
2Li(v))(x,s)dxds-\t l\qJ>q>1Vi(dxUv))dxvi)(x,s)dxds.

Jo Jo Jo Jo

M2 AN Modélisation mathématique et Analyse numérique
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The first term on the right hand side is majorized by a constant depending only on the HX(Q) norm of the data
M° and p0. For the second term, we use (4.11) and (4.13) to get

9*((U) id^o.*)!2

= | - q \ 0 , s) q\0, 5) L.(u\s)) u}\s) dxv;{0,s)~ dp]'(s) dxv((0. s)\

0,s) \dxv,i0,s)\ + \dtu]\s)\ r^-Vïi | 3 ^ , . ( 0 ^ ) |

i(0,s)\2 + li \dtul\s)\2+ ^13^(0, s)\22 C2M3 +l

^ 2 C M + g ( 0 , J ) | a ; t l ; , . ( 0 , 5 ) | + | ö A ( J ) | ,

since g^(0, s) ^ r\. Hence

\ f qn(0,s) 19^(0, J) | 2 & ̂  2 C2M3 r + i f | 3 ^

For the third term, by the construction of qn
r we have

UoJo
f l
oJo

For the fourth term, we have

f f' |(vt;Lt{V ) dxVi(q" dxq" + q"dxq
rl))(x,s)\dxdS

^ C f' f I^ i (§ ' 3x^ + 4* dJf )Us)\dxds
Jo Jo

) \dxv.\
Jo Jo

(x,s)dxds

For the fifth term, we have

f f cflqn\dxvi\
2(x,s)dxds^2M2\ j j a^ 2 (x, s) dxds

J o J o JoJo

For the last term, we have from (4.19)

ir f«
I Jo Jo

q1 èx{L(\)))){x,s)dxd$ =sS CMZ

J o J o 1 = 1

vol. 32, n° 7, 1998



890 Youeef AMIRAT and Yue-Jun PENG

Finally,

V iB^^dxds, Vf e ]0, T] .
o J o i = i

We conclude again from the Gronwall's lemma that d v is bounded in £°°(0, T;L2(Q)n), and then from (4.11)
dtt> is bounded in L2(QT)n. This complètes the proof of Lemma 4.4. D

5. END OF THE PROOF OF THEOREM

Let us now return to problem (3.3). Recall that its solution wô is in Cl(ÜT)n and is given by
wô=(Gôy\h0-pn/). Thus, by définition

and

«5
W l _ (hô

n-pn)fcn

w5

Using (4.1) and (4.2), we get

and

It follows that

(5-1) ^ = ^
w v

o i
with the convention 2 — = 0- Thus

M2 AN Modélisation mathématique et Analyse numérique
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S S

Since 2 w. = 1 - w , we deduce

w =-

and therefore

n.

We easily see that, as Ô tends to 0, w converges in Hl(QT)n weakly to w given by

(5.2)

Clearly w is a solution of problem (3.5) and satisfies, w(x, t) e K for every (x, t) e Qr Furthermore, from the
inequality —M^p^^O we get

Now we introducé a mapping 9"̂  defined on # by

V u e

We will prove that 9"̂  has a fixed point in # . Firstly, using (5.2) and Lemma 4.4, we have the following resuit.

LEMMA 5.1: For any u in M, the mapping ST̂  is well-defined and satisfies:

(5.3) w\x91) G Kfor every (x,t) in QT,

(5 4) II W II «» 1 1 ~\~ II d W II 2 1 n ^ C

(5 5) II W II *> 1 n ~H II d W H 2 n ̂  C ( f] )

where CY > 0 i,y a constant depending on the data and tf, but independent of u. G

LEMMA 5.2: For any ff>0, the mapping 2T has a fixed point in D

Pmo/- Clearly by (5.3), d'n(âS) is contained in M, and by (5.4), 9^(^?) is a bounded set of Wlll(QT).
Therefore it is relatively compact in 0S. To apply the Schauder's fixed point theorem, it remains to prove that the
mapping 2F'n is continuous.
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For this purpose, let ( um ) be a séquence in âS which converges strongly, as m tends to infinity, to a function
u in Ll(QT)n, and let (pm, qm) be the corresponding solution of problem (1.1) and (1.3). According to Lemma 3.1,
there is a subsequence, still denoted by (/?m), and a function p e W such that pm-J>p, a.e. in Qr in
L~(0, T\Hl(Q)) weak- * , and in H\0, T\ L2(Q)) weak. It is easily seen that p is a solution of

a(u) dtp~ dj? = O in

,0 =

Since the solution of this problem is unique, the whole séquence (pm) converges to p. In addition, the séquence
Qm — —^xPm converges, as m —» ~, to <l~ — dxp strongly in L2(QT). Indeed, (qm) is bounded in
L2(0, T\Hl(Q)) and dtqm is bounded in L2(0, T\H~l(Q)). Thus the result follows from the compactness
argument of Aubin's type, see [7] or [14]. The séquence qn

m converges, as m —> <*>, to q1 strongly in L2(QT).
Let us now consider the solutions w and wm of problem (3.3) with respective coefficients (pn, q1) and

(pv
m, qln). We introducé two auxiliary functions v and vm given by

Wj

and

(£-g 0)
vy = -

It is clear that v and ( vm) are bounded in Hl( QT)n and are solutions of the corresponding équations (4.11), with
respective coefficients ((f,qv) and (<ĝ , <^), and with the same boundary and initial conditions (4.12)-(4.13).
Then, the différence z1 — v - vm satisfies

We observe that

Ë
j ; l=\

Therefore, multiplying (5.6) by sign (z™) and integrating it over Q, it follows

| £ \zT\ dx + ql(l, t) \zT(h 01 « £ l^(^) | \zT\ dx + j^ \ql-q"\ \axvt\ dx

\z7\dx,
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where Cl and C2 are constants independent of rj and m. Now integrating it again over ]0, t[, we obtain since

Then for any s>0 we can find an integer Af such that m>N implies

Ç 6 f ? \
Jo JoJo

where C6(tj) and C7(rf) are constants independent of m. So that, by the GronwalFs Lemma, we have

f
Jowhere C8(ff) is a constant independent of m. This means that vm converges, as m —» «*>, to t? in

L°°(0, T; L 1 ( f l ) ) . Using the convergence of (pm) to /?, together with the relations linking v and w, we deduce
that wm converges, as m —> <*>, to w in L (&T). Hence the mapping 2T̂  is continuous, and the proof is finished.
D

Proof of Theorem 1.1: Take a séquence (*/m) of nonnegative real numbers which tends to zero as m tends to
oo. With every integer m ^ l we associate the fixed point um e M of the mapping 2T^. Let (pm, qm) be the
corresponding solution to (1.1) and (1.3) associated with wm. Then (pm9 u

m) satisfies the system

(5.7) ^m)dtPm-d2
xpm = O inO r ,

(5.8) Btu™ + ql dxit™ + b.( um) BtPm = 0 in O p K i ^ n .

Since (um) is bounded in the space L°°(0, T; Wul(Q)n) n ^ ( 0 , T; L l ( O f ) , there is a subsequence, still
denoted (wm), which converges to a fonction u in Ll(QT)n strongly and therefore in Lr(ÜT)n strongly for any
r e [l» + oo[, The séquence (pm) is bounded in W. Then, there is a subsequence, still denoted (pm), which
converges, as m —» ©o, weakly in L2(0, T; H2(Q)) nHl(0, T; L2(Q) ) to a functionp. By a compactness argu-
ment, qm = -dj>m converges, as m -4 oo, to q = -dj> in Lr(QT) strongly for any r e [ l , + °°[. Therefore,
qn^ converges, as m —» °o^ to q in Lr{QT) strongly for any r e [1, + oo[s and also in L2(0, T ; Hl{Q)) weakly.

Of course, a(um) (resp. (&.(wm)) converges, as m -> oo, to a( w) (resp. (&.(w)) in Lr(üT) strongly for any
r e [1, + oo[. Then we can pass to the limit in (5.7). On the other hand, for any g e Cj( ]0, 1[ x [0, T[ ), we
have

[u?dtg + u™dx(q%g) - è . ( « m ) dpmg)dxds

f1 r
= - I KO(JC) g(x, O)^x- u^t) q^(O,t) g(O,t) dt9 I s

Jo Jo
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Then we can pass to the limit in each term. Note in particular that the weak convergence of q1^ to q in
L2(0, T;Hl(Q)) implies that of qn^(0, t) to #(0, t) in L2(0, T) weakly. Finally, the BV estimâtes of u corne
from (5.4). Thus the proof of Theorem 1.1 is completed.

6. REMARK

Consider the System (1.1) and (1.2) with the following particular initial and boundary conditions

and

(6.2) u(0,t) = u\t), W ( * , 0 ) = K°(*)» xe O, f e ] 0 , r [ ,

where px andp2 are constants. Comparing this problem to (1.1)-(1.4), we see that only (1.3) is replaced by (6.1).
Assume that condition (1.10) holds and in addition there exist two constants m>0, à>0 such that,

( p 0 ( ) , Po(0)=Pl, Po(l)=p2,
( }

 \

and

'u°e C1>a(Ö)", M 1 eC 1 ' S 2 ( [0 J ] ) " , with«°(O) = « ' (0 ) ,

By using a resuit in f 1], we can prove that for any u given in K, the solution/? of problem (1.1) and (6.1) satisfies
the estimate:

where C > 0 is a constant depending only on the initial and boundary conditions of py and

W2;\QT)^{v G L2(QT), dp, dxv, d^v G L\QT)},

with 2 < r < 3. Therefore, on repeating the same arguments as [2] for n = 1, we are able to prove the following
theorem. The proof will be omitted.

THEOREM 6.1: There is a constant # Q<jS^ â, such that problem (1J)-(L2) and (6.1)-(6.2) is uniquely
solvable in the space C2+fisl+m(QT)xCP(QT)n. If in addition, u°(x) e K, ul(t) e K for every (x, t) in
Q^ then u lies in Ci+m(QT)n. D
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