@article{M2AN_1999__33_1_113_0, author = {Li-Ping, He and De-Kang, Mao and Ben-Yu, Guo}, title = {Prediction-correction {Legendre} spectral scheme for incompressible fluid flow}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {113--120}, publisher = {EDP-Sciences}, volume = {33}, number = {1}, year = {1999}, mrnumber = {1685747}, zbl = {0917.76062}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1999__33_1_113_0/} }
TY - JOUR AU - Li-Ping, He AU - De-Kang, Mao AU - Ben-Yu, Guo TI - Prediction-correction Legendre spectral scheme for incompressible fluid flow JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 113 EP - 120 VL - 33 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_1999__33_1_113_0/ LA - en ID - M2AN_1999__33_1_113_0 ER -
%0 Journal Article %A Li-Ping, He %A De-Kang, Mao %A Ben-Yu, Guo %T Prediction-correction Legendre spectral scheme for incompressible fluid flow %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 113-120 %V 33 %N 1 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_1999__33_1_113_0/ %G en %F M2AN_1999__33_1_113_0
Li-Ping, He; De-Kang, Mao; Ben-Yu, Guo. Prediction-correction Legendre spectral scheme for incompressible fluid flow. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 113-120. http://archive.numdam.org/item/M2AN_1999__33_1_113_0/
[1] Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969). | MR | Zbl
,[2] Navier-Stokes Equations. North-Holland, Amsterdam (1977). | MR | Zbl
,[3] Computational Fluid Dynamics, 2nd edition. Hermosa Publishers, Albuquerque (1976). | MR
,[4] Finite Difference Methods for Partial Differential Equations. Science Press, Beijing (1988).
,[5] Finite Element Methods in Flow Problems. John Willey, New York (1974).
, , and ,[6] Finite Element Approximation of the Navier-Stokes Equations, Lecture Note in Math. 794. Springer-Verlag, Berlin (1979). | MR | Zbl
and ,[7] Numerical Analysis of Spectral Methods, CBMS-NSF Reginal Conference Series in Applied Mathematics 26. SIAM, Philadelphia (1977). | MR | Zbl
and ,[8] A Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin (1988). | MR | Zbl
, ,[9] Numerical methods of thermal convection. J. Comp. Phys 2 (1976) 12-26.
,[10] On the numerical approximation of some equations arising in hydrodynamics. In Numerical Solution of Fluid Problems in Continuum Physics, SIAM-AMS Proceedings II, G. Birkhoff and R.S. Varga, Eds. AMS, Providence (1970) 11-23. | MR | Zbl
,[11] Numerical methods for incompressible viscous flow. Scientia Sinica 20 (1977) 287-304. | MR | Zbl
,[12] On pressure stabilization method and projection method for unsteady Navier-Stokes equations. In Advance in Computer Methods for Partial Differential Equations VII, R. Vichnevetsky, D. Knight and G. Richter, Eds. IMACS, New Brunswick (1992) 658-602.
,[13] On pressure boundary conditions for incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids 7 (1987) 1111-1145. | Zbl
and ,[14] Some spectral approximations of two-dimemsional fourth-order problems. Math. Comp. 59 (1992) 63-76. | MR | Zbl
, and ,[15] Efficient Spectral-Galerkin method I, Direct solvers of second and fourth order equations using Legendre polynomials. SIAM Sci. Comput. 15 (1994) 1489-1505. | MR | Zbl
,[16] On two-dimensional Navier-Stokes equation in stream fonction form. J. Math. Anal. Appl. 205 (1997) 1. | MR
, and ,[17] The fully discrete Legendre spectral approximation of two-dimensional unsteady incompressible fluid flow in stream function form. SIAM J. Numer. Anal. 35 (1998) 146. | MR | Zbl
and ,[18] Sobolev Space. Academic Press, New York (1975). | MR | Zbl
,[19] Problèmes aux Limites Non homogènes et applications, Vol. 1. Dunod, Paris (1968). | MR | Zbl
and ,[20] Approximation results for orthogonal polynomials in Sobolev space. Math. Comp. 38 (1982) 67-68. | MR | Zbl
and ,[21] A prediction-correction Legendre spectral scheme for two-dimensional unsteady incompressible fluid flow in stream function form, RR 1996-3, Department of Mathematics, Shanghai University.
, and ,