@article{M2AN_1999__33_1_191_0, author = {Cherfils, Laurence}, title = {Approximation of solution branches for semilinear bifurcation problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {191--207}, publisher = {EDP-Sciences}, volume = {33}, number = {1}, year = {1999}, mrnumber = {1685752}, zbl = {0923.65077}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1999__33_1_191_0/} }
TY - JOUR AU - Cherfils, Laurence TI - Approximation of solution branches for semilinear bifurcation problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 191 EP - 207 VL - 33 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_1999__33_1_191_0/ LA - en ID - M2AN_1999__33_1_191_0 ER -
%0 Journal Article %A Cherfils, Laurence %T Approximation of solution branches for semilinear bifurcation problems %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 191-207 %V 33 %N 1 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_1999__33_1_191_0/ %G en %F M2AN_1999__33_1_191_0
Cherfils, Laurence. Approximation of solution branches for semilinear bifurcation problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 191-207. http://archive.numdam.org/item/M2AN_1999__33_1_191_0/
[1] Sobolev spaces. Academic Press (1975). | MR | Zbl
,[2] Numerical continuation methods, an introduction. Springer Verlag, Berlin (1990). | MR | Zbl
and ,[3] The p - version of the finite element method for domains with corners and for infinite domains. Numer. Meth. PDE 6 (1990) 371-392. | MR | Zbl
and ,[4] The h-p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math.Anal. Numér. 21 (1987) 199-238. | Numdam | MR | Zbl
and ,[5] Analyse fonctionnelle. Masson, Paris (1983). | MR | Zbl
[6] Finite dimensional approximation of nonlinear problems, part 1: branches of nonsingular solutions. Numer. Math. 36 (1980) 1-36. | MR | Zbl
, and ,[7] Finite dimensional approximation of nonlinear problems, part 2: limit points. Numer Math. 37 (1981) 1-28. | MR | Zbl
, and ,[8], Finite dimensional approximation of nonlinear problems, part 3: simple bifurcation points. Numer. Math. 38: 19811-30. | MR | Zbl
, and ,[9] Numerical analysis for nonlinear and bifurcation problems. To appear in Handbook of Numerical Analysis, 1994. | MR
and ,[10] Méthode de cheminement adaptative pour les problèmes semi-linéaires dépendant d'un paramètre. Thèse de l'Université J. Founer, Grenoble I (1996).
,[11] Approximation des branches de solutions d'un problème de bifurcation semi-lineaire. C. R. Acad. Sci. Paris 324: (1997) 933-938. | MR | Zbl
,[12] Basic error estimates for elliptic problems. In Handbook of numencal analysis. Elsevier Science Publishers B. V., North-Holland (1991). | MR | Zbl
,[13] On numerical approximation in bifurcation theory. Masson, Paris (1986). | MR | Zbl
and ,[14] Elliptic problems nonsmooth domains. Pitman, Boston (1985). | Zbl
,[15] Analyse numérique d'un problème aux limites non linéaire. Numer. Math. 37: (1981), 445-452. | MR | Zbl
,[16] Méthodes numériques pour les bifurcations statiques. collection R M A, Masson (1997). | MR
,[17] Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437-445. | MR | Zbl
and ,[18] Résolution numérique de problèmes elliptiques dans des domaines avec coins. Thèse de l'Université de Rennes. (1978).
,[19] Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1988). | Zbl
and ,[20] An efficient method for subtracting off singularities at corners for Laplace's equations J. Comput. Phys. 78 (1988) 369-377. | MR | Zbl
,