Approximation of solution branches for semilinear bifurcation problems
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 191-207.
@article{M2AN_1999__33_1_191_0,
     author = {Cherfils, Laurence},
     title = {Approximation of solution branches for semilinear bifurcation problems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {191--207},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {1},
     year = {1999},
     mrnumber = {1685752},
     zbl = {0923.65077},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1999__33_1_191_0/}
}
TY  - JOUR
AU  - Cherfils, Laurence
TI  - Approximation of solution branches for semilinear bifurcation problems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 191
EP  - 207
VL  - 33
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/M2AN_1999__33_1_191_0/
LA  - en
ID  - M2AN_1999__33_1_191_0
ER  - 
%0 Journal Article
%A Cherfils, Laurence
%T Approximation of solution branches for semilinear bifurcation problems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 191-207
%V 33
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/item/M2AN_1999__33_1_191_0/
%G en
%F M2AN_1999__33_1_191_0
Cherfils, Laurence. Approximation of solution branches for semilinear bifurcation problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 191-207. http://archive.numdam.org/item/M2AN_1999__33_1_191_0/

[1] R. A. Adams, Sobolev spaces. Academic Press (1975). | MR | Zbl

[2] E.L. Allgower and K. Georg, Numerical continuation methods, an introduction. Springer Verlag, Berlin (1990). | MR | Zbl

[3] I. Babuska and H. S. Hoo, The p - version of the finite element method for domains with corners and for infinite domains. Numer. Meth. PDE 6 (1990) 371-392. | MR | Zbl

[4] I. Babuska and M. Suri, The h-p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math.Anal. Numér. 21 (1987) 199-238. | Numdam | MR | Zbl

[5] H. Brezis Analyse fonctionnelle. Masson, Paris (1983). | MR | Zbl

[6] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 1: branches of nonsingular solutions. Numer. Math. 36 (1980) 1-36. | MR | Zbl

[7] F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 2: limit points. Numer Math. 37 (1981) 1-28. | MR | Zbl

[8], F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, part 3: simple bifurcation points. Numer. Math. 38: 19811-30. | MR | Zbl

[9] G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems. To appear in Handbook of Numerical Analysis, 1994. | MR

[10] L. Cherfils, Méthode de cheminement adaptative pour les problèmes semi-linéaires dépendant d'un paramètre. Thèse de l'Université J. Founer, Grenoble I (1996).

[11] L. Cherfils, Approximation des branches de solutions d'un problème de bifurcation semi-lineaire. C. R. Acad. Sci. Paris 324: (1997) 933-938. | MR | Zbl

[12] P.G. Ciarlet, Basic error estimates for elliptic problems. In Handbook of numencal analysis. Elsevier Science Publishers B. V., North-Holland (1991). | MR | Zbl

[13] M. Crouzeix and J. Rappaz, On numerical approximation in bifurcation theory. Masson, Paris (1986). | MR | Zbl

[14] P. Grisvard, Elliptic problems nonsmooth domains. Pitman, Boston (1985). | Zbl

[15] J. C. Paumier, Analyse numérique d'un problème aux limites non linéaire. Numer. Math. 37: (1981), 445-452. | MR | Zbl

[16] J.C. Paumier, Méthodes numériques pour les bifurcations statiques. collection R M A, Masson (1997). | MR

[17] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982) 437-445. | MR | Zbl

[18] Raugel G., Résolution numérique de problèmes elliptiques dans des domaines avec coins. Thèse de l'Université de Rennes. (1978).

[19] P. A. Raviart and J. M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1988). | Zbl

[20] N. M. Wigley, An efficient method for subtracting off singularities at corners for Laplace's equations J. Comput. Phys. 78 (1988) 369-377. | MR | Zbl