@article{M2AN_1999__33_1_67_0, author = {Li, Bo and Luskin, Mitchell}, title = {Approximation of a martensitic laminate with varying volume fractions}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {67--87}, publisher = {EDP-Sciences}, volume = {33}, number = {1}, year = {1999}, mrnumber = {1685744}, zbl = {0928.74012}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1999__33_1_67_0/} }
TY - JOUR AU - Li, Bo AU - Luskin, Mitchell TI - Approximation of a martensitic laminate with varying volume fractions JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 67 EP - 87 VL - 33 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_1999__33_1_67_0/ LA - en ID - M2AN_1999__33_1_67_0 ER -
%0 Journal Article %A Li, Bo %A Luskin, Mitchell %T Approximation of a martensitic laminate with varying volume fractions %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 67-87 %V 33 %N 1 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_1999__33_1_67_0/ %G en %F M2AN_1999__33_1_67_0
Li, Bo; Luskin, Mitchell. Approximation of a martensitic laminate with varying volume fractions. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 67-87. http://archive.numdam.org/item/M2AN_1999__33_1_67_0/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl
,[2] Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal 100 (1987) 13-52. | MR | Zbl
and ,[3] Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc.Lond. A 338 (1992) 389-450. | Zbl
and ,[4] Experiments on the martensitic transformation in single crystals of indium-thallium alloys.Acta Metall. 2 (1954) 148-166.
and ,[5] Diffusionless phase changes in the indium-thallium System. Trans. AIME J. Metals 197 (1953)1516-1524.
and ,[6] Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. | MR | Zbl
and ,[7] Numerical analysis of oscillations in nonconvex problems. Numer. Math. 59 (1991) 747-767. | MR | Zbl
,[8] Numerical approximations in variational problems with potential wells. SIAM J. Numer. Anal 29 (1992) 1002-1019. | MR | Zbl
and ,[9] Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. | MR | Zbl
, and ,[10] Equilibrium configurations of crystals. Arch. Rat Mech. Anal 103 (1988) 237-277. | MR | Zbl
and ,[11] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[12] Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal 28 (1991) 321-332. | MR | Zbl
, and ,[13] Optimal order estimates for the finite element approximation of the solution of a nonconvex variational problem. Math. Comp. 57 (1991) 621-637. | MR | Zbl
and ,[14] Constitutive theory for some constrained elastic crystals. J. Solids and Structures 22 (1986) 951-964. | Zbl
,[15] Stable equilibrium configurations of elastic crystals. Arch. Rat. Mech. Anal. (1986) 1-14. | MR | Zbl
,[16] On the convergence of finite element approximations of a relaxed variational problem. SIAM J. Numer. Anal. 28, (1991) 419-436. | MR | Zbl
,[17] Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions. SIAM J. Numer. Anal. 31 (1994) 111-127. | MR | Zbl
,[18] Minimizing sequences and the microstructure of crystals in Proceedings of the-Society of Metals Conference on Phase Transformations. Cambridge University Press (1989).
,[19] Twinning in crystals II. In Metastability and Incompletely Posed Problems. S. Antman, J.L. Ericksen, D. Kinderlehrer and I. Muller Eds. IMA Volumes in Mathematics and Its Applications. Springer-Verlag, New York 3 (1987) 185-212. | MR | Zbl
,[20] Characterizations of gradient Young measures. Arch. Rat Mech. Anal 115, (1991) 329-365. | MR | Zbl
and ,[21] Relaxation of a double-well energy. Cont Mech. Thermodyn. 3 (1991) 193-236. | MR | Zbl
,[22] Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal 35 (1998) 376-392. | MR | Zbl
and ,[23] Nonconforming finite element approximation of crystalline microstructure. Math. Comp. 67 (1998) 917-946. | MR | Zbl
and ,[24] On the computation of crystalline microstructure. Acta Numerica (1996) 191-257. | MR | Zbl
,[25] Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Namer. Math. 75 (1997) 205-221. | MR | Zbl
,[26] Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29 (1992) 320-331. | MR | Zbl
and ,[27] Strong convergence of numerical solutions to degenerate variational problems. Math. Comp. 64 (1995) 117-127. | MR | Zbl
and ,[28] Numerical approximation of parametrized measures. Num. Funct. Anal. Opt. 16, (1995) 1049-1066. | MR | Zbl
,[29] On the numerical analysis of non-convex variational problems. Numer. Math. 74 (1996) 325-336. | MR | Zbl
,[30] Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin (1994). | MR | Zbl
and ,[31] Numerical approximation of relaxed variational problems. J. Convex Analysis 3, (1996) 329-347. | MR | Zbl
,[32] Lower-semicontinuity of variational integrals and compensated compactness in Proceedings ICM 94 Birkhäuser. Zürich (1995). | MR | Zbl
,[33] Compensated compactness and applications to partial differential equations in Nonlinear analysis and mechanics. Pitman Research Notes in Mathematics. R. Knops Eds. Pitman, London (1978). | MR | Zbl
,[34] Partial Differential Equations. Cambridge University Press, Cambridge (1987). | MR | Zbl
,